
CS446: Machine Learning Fall 2015

October 27th, 2015

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems. You need to solve all problems to get
100%.

• The exam ends at 1:45 PM. You have 75 minutes to earn a total of 100 points.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name (NetID): (1 Point)

Short Questions /29
Kernels /25
Online Learning /25
Decision Trees /20

Total /100

1

Short Questions [29 points]

(a) (5 points) In the following definition of PAC learning we left a few blank fields.
Fill in the blanks by choosing, for each empty field, one of the options given below.
Note that under each line defining a blank we provided a small set of options for
you to choose from.

(a) δ (b) ε (c) 1/δ (d) 1/ε (e) 1− δ (f) 1− ε
(g) m (h) n (i) nε/δ (j) size(H)

(k) number of examples (l) instance size (m) computation time

(n) linear (o) polynomial (p) exponential

(q) 1
2
− γ (r) 1

2
+ γ (s) 1− γ

A concept class C defined over the instance space X (with instances of length n) is
strongly PAC learnable by learner L using a hypothesis space H if for all concepts
f ∈ C, for all distributions D on X, and for all fixed δ, ε ∈ [0, 1], given a sample of
m examples sampled independently according to the distribution D, the learner
L produces with a probability at least

{at least | at most | equal to}
1− δ

{one of (a) to (f)}

a hypothesis g ∈ H with error at most
{at least | at most | equal to}

ε
{one of (a) to (f)}

where the number of examples
{one of (k) to (m)}

is polynomial
{one of (n) to (p)}

in

n |, 1/δ , 1/ε , and size(H)
{four of (a) to (j)}

.

(b) (8 points) Consider the following algorithm B for functions in C. B has
the property that given any polynomial size sample of m labeled examples
{(x1, c(x1)), . . . (xm, c(xm))} according to some c ∈ C, B outputs a hypothesis
h ∈ H that is incorrect on at most one of the m examples.

Then, the concept class C is PAC learnable
{PAC learnable | not PAC learnable}

.

Justify your answer.

For the polynomial sized m > 2, B can achieve an error of at most 1/m < 1/2
given any sample and hence C is weakly PAC learnable. By applying boosting,
we can achieve an error of at most ε with probability 1 ≥ 1− δ for any ε, δ > 0.

2

(c) (8 points)

In this question we consider the Winnow algorithm.

(1) In class we proved that Winnow can learn k-monotone disjunctions over a
domain of n variables. State the upper bound on the number of mistakes
Winnow will make.
Winnow will make O(k log n) mistakes when learning k-literal monotone dis-
junction using n variables.

(2) We consider a learning problem of the domain X = {1, 2, . . . , N}d. A d-
dimensional hyper-rectangle over this domain X is a subset c ⊆ X defined
by 2d values: 1 ≤ ai ≤ bi ≤ N , for i = 1, . . . , d.
The subset is

c = {(x1, . . . , xd) ∈ X : ai ≤ xi ≤ bi∀i = 1, . . . , d}.

Let RECT denote the class of all such d-dimensional hyper-rectangles over
X.

i. Show that you can use Winnow to learn the concept class RECT. Justify
your answer.
Winnow learns linear functions over its feature space; in order to use
Winnow we therefore need to expand the feature space so that the target
concept becomes linear in the new feature space. One direct way is to
define a new feature space Y of features of the form:

ya,bi ≡ a ≤ xi ≤ b ∀i = 1, . . . , d, 1 ≤ a ≤ b ≤ N.

Clearly, |Y | = dN2/2, and in this space, a hyper-rectangle is a conjunction
of d variables. This is a linear function and therefore Winnow can learn
it.

ii. What is the mistake bound of your algorithm? Explain.
First note that the mistake bound was proved for k-monotone disjunc-
tions. However, using De Morgan law it is easy to see that it holds also
for k-monotone conjunctions.
The dimensionality of the new feature space is n = dN2/2. The number
of relevant features is k = d. Consequently, the number of mistakes is
O(d log dN2/2) = O(d logN).

3

(d) (8 points) We define a set of concepts

H = {sgn(ax2 + bx+ c); a, b, c,∈ R},

where sgn(z) is 1 when z is positive, and 0 otherwise. What is the VC dimension
of H? Prove your claim.

The VC dimension is 3. To prove this, we need to show that there is one config-
uration of three points such that all its labelings can be shattered, and that no
set of 4 points can be shattered. Note that, from the definition of H we are only
dealing with points on the x axis (although the VC dimension is still 3 in two
dimensions).

The case of 3 can easily be verified by checking the 8 possible labelings.

And, any alternating labeling of four points will result in a configuration that
cannot be shattered because quadratic functions can change signs at most twice.

4

Kernels [25 points]

In this question we will define kernels, study some of their properties and develop one
specific kerenl.

(a) (1 point) Choose one of the options below:
A function K(x, z) is a valid kernel if it corresponds to an

inner(dot) product
{”inner(dot) product” | ”sum”}

in some feature space, between feature

representations that correspond to x and z.

(b) (12 points) In the next few questions we guide you to prove the following prop-
erty of kernels:

Linear Combination Property: if ∀i, ki(x, x′) are valid kernels, and ci > 0 are
constants, then k(x, x′) =

∑
i ciki(x, x

′) is a valid kernel.

i. Given a valid kernel k1(x, x′) and a constant c > 0, use the definition in(a)
to show that k(x, x′) = ck1(x, x′) is also a valid kernel.

Since k1(x, x′) is a vaild kernel, it can be written as a dot product k1(x, x′) =
φ(x).φ(x′), for some φ(x) that is a feature mapping function that maps x to
a feature vector in some (possibly larger dimensionality) space.
We define a new feature mapping function φ′(x) =

√
cφ(x). We get that:

k(x, x′) = ck1(x, x′) = φ′(x).φ′(x′),

so k(x, x′) can also be written as a dot product and it therefore a vaild kernel.

ii. Given valid kernels k1(x, x′) and k2(x, x′), use the definition in (a) to show
that k(x, x′) = k1(x, x′) + k2(x, x′) is also a valid kernel.

Since k1(x, x′) is a vaild kernel, we can write k1(x, x′) = φ1(x)φ1(x′), where
φ1(x) is a feature mapping function:

φ1(x) =< f1(x), f2(x), . . . , fn(x) >

Similarily, we can write k2(x, x′) = φ2(x)φ2(x′) where

φ2(x) =< g1(x), g2(x), . . . , gm(x) >

Now, we define a new feature mapping function with a range of dimensionality
n+m:

φ3(x) =< f1(x), f2(x), . . . , fn(x), g1(x), g2(x), . . . , gm(x) > .

5

We get that

φ3(x)φ3(x′) = φ1(x)φ1(x′) + φ2(x)φ2(x′) = k1(x, x′) + k2(x, x′) = k(x, x′).

So, k(x, x′) is a vaild kernel.

iii. Conclude that the Linear Combination Property holds.

From i, we know that

∀ci > 0, ciki(x, x
′) is a valid kernel.

From ii, by induction, we know that (N+ denotes {1, 2, 3, · · · })

∀t ∈ N+,

t∑
i=1

ciki(x, x
′) is a valid kernel.

To see that, observer that (initial conditions):

c1k1(x, x′) is a valid kernel

c1k1(x, x′) + c2k2(x, x′) is a valid kernel

Then suppose we have valid kernels

t−1∑
i=1

ciki(x, x
′) and ctkt(x, x

′)

We know from ii that

t∑
i=1

ciki(x, x
′) is also a valid kernel

for ∀t ∈ N+.

This concludes that k(x, x′) =
∑

i ciki(x, x
′) is a valid kernel.

6

(c) (12 points) In order to learn functions over sets, we represent sets as feature
vectors in an n dimensional space, and define a kernel in this space. Our instances
are all subsets of a set S, of size |S| = m. The n dimensional feature representation
of A ⊆ S is:

ϕ(A) = (φU1(A), φU2(A), . . . , φUn(A)),

where U1, U2, . . . , Un are all the subsets of S, and the coordinates are defined using
the following feature mapping function:

φU(A) =

{
1, if U ⊆ A

0, otherwise.

That is, ϕ(A) ∈ {0, 1}n, where n = 2m.

Let A,B be subsets of S. We define the kernel

K(A,B) = ϕ(A)>ϕ(B).

Show that K(A,B) can be computed in time that is polynomial in m.

ϕ(A) = (φU1(A), φU2(A), . . . , φUn(A))

ϕ(B) = (φU1(B), φU2(B), . . . , φUn(B))

So, we have

K(A,B) = ϕ(A)ϕ(B) =
2m∑
i=1

1{φUi
(A) = 1, φUi

(B) = 1},

that is, we add 1 to the sum iff the corrspoding coordinates in the dot product
are both 1. When φUi

(A) = 1 and φUi
(B) = 1, we know that

Ui ⊆ A and Ui ⊆ B

Thus, we get
Ui ⊆ A ∩B

This leads to
K(A,B) =

∑
Ui

1{Ui ⊆ A ∩B} = 2|A∩B|

It take O(m) (linear) time to compute |A ∩ B|. Then it takes constant time to
futher compute K(A,B) as 2|A∩B| (or log(m) time depending on how we compute
the exponential function).

This concludes that K(A,B) can be computed in time that is polynomial in m.

7

On-Line Learning [25 points]

In this problem we will consider a few variations of the Perceptron Learning algorithm
and their properties. Recall the perceptron algorithm,

1: for (x, y) ∈ {xi, yi}Ti=1 do
2: if y(wᵀx) ≤ 0 then
3: w′ ← w + ηyx
4: w ← w′

5: end if
6: end for
7: return w

(a) (10 points) Suggest a variation of the preceptron update rule (line 3) which has
the following property:

If the algorithm sees two consecutive occurrences of the same example, it will never
make a mistake on the second occurrence.

(Hint: determine an appropriate learning rate that guarantees this property).
Your work will result in one of the options below.
Which one? d

{one of (a) to (d)}

(a) η ≥ 1−y(wᵀx)
‖x‖2+1

(b) η ≤ −y(wᵀx)
‖x‖2+1

(c) η ≤ −y(wᵀx)
‖x‖2 (d) η ≥ −y(wᵀx)

‖x‖2

Prove that your proposed variation satisfies the property stated above (that is,
show how you derive the learning rate you chose).

Let wi be the weight before making the mistake and wi+1 be the updated weight.
We want ywT

i x < 0 but ywT
i+1x ≥ 0

wi+1 = wi + ηyx

ywT
i+1x = ywT

i x+ ηy2‖x‖2 ≥ 0 (from prev. equality, and the requirement)

ywT
i x+ ηy2‖x‖2 ≥ 0 (as y=+1 or -1)

ywT
i x+ η‖x‖2 ≥ 0

η ≥ −yw
T
i x

‖x‖2

8

(b) (5 points) Consider the following variant of perceptron: Instead of returning w
in line 7, return w

‖w‖ .

Choose one of the following options and justify your answer: The decision bound-
ary of the variant and the standard perceptron are same

{same | different}
be-

cause:

The decision boundary are the same because,

sgn(wTx) = sgn(
wTx

‖w‖
)

since ‖w‖ > 0. Thus making the final prediction with a rescaled version of the
original w makes no difference.

(c) (5 points) Consider the following variant of perceptron: Following each mistake,
instead of the usual update in line 3, perform the following update,

w′ ← w + ηyx

‖w + ηyx‖
.

Choose one of the following options and justify your answer: The decision bound-
ary of the variant and the standard perceptron are different

{same | different}
because:

You can get intuition for answering this question but thinking about (a) above.
There, rescaling the weight vector made the difference between predicting cor-
rectly on example x or making a mistake on it. To make this concrete, it’s best
to consider a specific scenario.

Consider 2 training examples {(0, 5),−1} and {(5, 0),+1}. Without loss of gen-
erality, we can take η = 1.

We start with w0 = (0, 0),

With usual updates, we get

w1 = w0 − (0, 5) = (0,−5)

w2 = w1 + (5, 0) = (5,−5)

With the modified updates, we get

w1 =
w0 − (0, 5)

‖w0 − (0, 5)‖
= (0,−1)

w2 =
w1 + (5, 0)

‖w1 + (5, 0)‖
=

(5,−1)√
26

The resulting ws are not the same and there is at least one example x (find it)
on which they will make a different prediction. Hence the decision boundary are
not same.

9

(d) (5 points) Derive the SGD update for the SVM algorithm, which has the follow-
ing loss:

‖w‖2 +
M∑
i=1

max(0, 1− yi(wᵀxi))

(disregard the single point where the objective function is not differentiable.)

Denote the gradient of the loss function wrt w for a single example (xi, yi) by
gi(w)

gi(w) = 2w +

{
−yixi if 1− yi(wᵀxi) > 0

0 otherwise

The SGD update is

wt+1 ← wt − ηgi(wt)

wt+1 ← wt − 2ηwt +

{
ηyixi if 1− yi(wᵀ

t xi) > 0

0 otherwise

10

Decision Trees [20 points]

(a) (10 points) Let x be a vector of n Boolean variables and let k ≤ n be an integer.
We define the class Pk of k-parity functions over the n variables. A k-parity
function fS is defined as follows: a set S ⊆ {x1, . . . , xn} is chosen such that
|S| = k. Let x = (x1, x2, . . . xn) ∈ {0, 1}n. Then fS(x) = 1 iff an odd number of
variables in S are set to 1 in x.

Example: Let n = 3 and consider functions in P2. Let S = {x1, x2}. Then
fS(100) = fS(101) = fS(010) = fS(011) = 1, and fS(000) = fS(001) = fS(110) =
fS(111) = 0.

i. Fix S ⊆ {x1, . . . , xn}, and assume that you are using ID3 to learn a decision
tree from data that is consistent with fS. Consider two variables, x1, x2 such
that x1 ∈ S and x2 6∈ S. Which of these variables is more likely to be the
root of the decision tree for fS? x1

{x1 ; x2}
Justify your answer:
x1 is more likely to be the root of the decision tree. Consider the following
two cases: (i) S = {x1}, and (ii) S = {x1, ..., xs}. Now, for the first case, x1

effectively separates the instances according to the target classification, and
therefore is the best candidate for root. For the second case, eventhough x2

is not part of the “ideal” DT, all variables, in fact, lead to maximum entropy,
i.e., there’s no likely winner. For instance, consider the example given in the
problem description.

ii. Consider fS ∈ Pk. State the depth of the smallest possible consistent decision
tree for fS in terms of n and k. Describe the shape of the decision tree for
fS.
Justify your answer.
The depth of the smallest possible consistent decision tree is k. This is be-
cause, any consistent decision tree will have to examine all variables in S to
classify an instance. Note that, the relative order of these variables doesn’t
affect the classification/labellings.

11

(b) (10 points) Assume that you are using an implementation of ID3 that takes
an upper bound on the depth of the output decision tree as a parameter. You
will use this implementation of ID3 to learn from a dataset Dtrain, compute the
empirical error, and then evaluate the learned tree on a test set Dtest. You will
learn two trees, Tk, learned with bound k on the depth, and Tm, learned with a
depth bound m.
Assume k <m. (But note that we say nothing about the size of k; it could be a
very small number or a very large number).

i. Which tree, Tk or Tm, is likely to have larger empirical error (that is, error
on Dtrain)? Tk

{Tk ; Tm ; impossible to tell}
Justify your answer:
Tk is likely to have larger empirical error on Dtrain. Since k < m, Tm will fit
the training data better than Tk (or, no worse). Tk will therefore have larger
error.

ii. Which tree, Tk or Tm, is likely to have larger error when tested on Dtest?
impossible to tell

{Tk ; Tm ; impossible to tell}
Justify your answer:
This is impossible to tell. On one end, if both heypotheses fit the training data
euqalty well, Tk is likely to generalize better. On the other hand, if k << m
and Tk does not fit the training data well relative to Tm’s performance on
training, it is likely that it will do quite poorly on the test data too.

12

This page was intentionally left blank.

13

