
CS446: Machine Learning Fall 2016

Final Exam

December 6th, 2016

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems. You need to solve all problems to get
100%.

• Please make sure that your exam booklet contains 20 pages.

• The exam ends at 1:45 PM. You have 75 minutes to earn a total of 100 points.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

• A list of potentially useful functions has been included in the appendix at the back.

Good Luck!

Name (NetID): (1 Point)

Näıve Bayes /25
Expectation Maximization /25
Multiclass Classification and Graphical Models /25
Short Questions /24

Total /100
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Näıve Bayes [25 points]
In this question, we consider the problem of classifying Black Friday deals (Y ) into two
categories: valid deals (A), and scams (B).
For every deal, we have two attributes: number of views (X1), and time taken to
receive 100 views (X2).
We assume that the number of views (X1) is related to each category (A, B) via
a geometric distribution with a category-specific parameter (θA, θB resp.) and that
the time taken to receive 100 views (X2) is related to each category (A, B) via an
exponential distribution with a category-specific parameter (λA, λB resp.).
Also, (γA, γB) are our prior beliefs for each of the categories (A, B), resp.
The summary of the model assumptions is given below:

Pr[Y = y] = γy ∀y ∈ {A,B}

Pr[X1 = x1|Y = y] = (θy)(1− θy)(x1−1) ∀y ∈ {A,B}

Pr[X2 = x2|Y = y] = (λy)e−x2λ
y ∀y ∈ {A,B}

(a) [15 points] Assume DA to be the set of training instances with label A, and DB

to be the set of training instances with label B

i. (5 points) Under the given näıve Bayes assumption, and using the notation
of xi1 and xi2 to represent the values of X1 and X2 respectively for the ith

training instance, write down the expression for the log likelihood (LL) of the
dataset.

LL = LL(γA) + LL(γB) + LL(θA) + LL(θB) + LL(λA) + LL(λB)

where,

LL(γA) =
∑
i∈DA

(
ln(γA)

)
LL(γB) =

∑
i∈DB

(
ln(γB)

)
LL(θA) =

∑
i∈DA

(
(xi1 − 1)ln(1− θA) + ln(θA)

)
LL(θB) =

∑
i∈DB

(
(xi1 − 1)ln(1− θB) + ln(θB)

)
LL(λA) =

∑
i∈DA

(
ln(λA)− xi2λA

)
LL(λB) =

∑
i∈DB

(
ln(λB)− xi2λB

)
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ii. (5 points) Now, assume the following notation:

|DA| = nA

|DB| = nB∑
i∈DA

xi1 = fA∑
i∈DB

xi1 = fB∑
i∈DA

xi2 = gA∑
i∈DB

xi2 = gB

Using this notation, derive the expressions for the MLE estimates of the
parameters of your model.

• θA, θB:
Setting the derivatives of LL(θA) and LL(θB) to zero, yields the following

maximum likelihood estimates :-

θA =
nA
fA

θB =
nB
fB

• λA, λB:
Setting the derivatives of LL(λA) and LL(λB) to zero, yields the follow-

ing maximum likelihood estimates :-

λA =
nA
gA

λB =
nB
gB
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• γA, γB:
The estimates of γA and γB can be directly calculated by just counting

the number of instances with each of the labels :-

γA =
nA

nA + nB

γB =
nB

nA + nB

iii. (5 points) Assume that the given data in Table 1 is generated by a näıve
Bayes model. Use this data and your MLE expressions obtained above to com-
pute the prior probabilities (γA, γB) and parameter values (θA, θB, λA, λB).
That is, fill out Table 2. (Keep the solutions as fractions.)

X1 X2 Y
2 12 A
4 5 A
3 7 A
12 11 B
1 1 B
7 8 B
12 4 B

Table 1: Dataset for Poisson näıve Bayes
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γA = 3/7 γB = 4/7
θA = 1/3 θB = 1/8
λA = 1/8 λB = 1/6

Table 2: Parameters for näıve Bayes

(b) [5 points] Derive an algebraic expression for the näıve Bayes predictor for Y in
terms of the parameters of the model.
That is, predict Y = A iff

α > 1, where

Let α =
Pr(Y = A) Pr(X1, X2|Y = A)

Pr(Y = B) Pr(X1, X2|Y = B)

α =

(
γA
)(

(θA)(1− θA)(x1−1)
)(

(λA)e−x2λ
A
)

(
γB
)(

(θB)(1− θB)(x1−1)
)(

(λB)e−x2λB
)
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(c) [3 points] Based on the parameter values from Table 2, compute

Pr(Y = A|X1 = 2, X2 = 16)

Pr(Y = B|X1 = 2, X2 = 16)

use 16 ≈ 24(ln(2)) to simplify your calculations

=
Pr(Y = A) Pr(X1 = 2, X2 = 16|Y = A)

Pr(Y = B) Pr(X1 = 2, X2 = 16|Y = B)

=

(
γA

γB

)(
1− θA

1− θB

)(x1−1)(
θA

θB

)(
λA

λB

)
e−x2(λ

A−λB)

Solving above, we get :-

=
16
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(d) [2 points] What will the classifier predict as the value of Y , given the above data
point i.e. X1 = 2, X2 = 16?

Y = A
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Expectation Maximization [25 points]

Consider the following generative probabilistic model:

W → X ← Z.

over the Boolean variables W , X, Z, where the data is generated according to:

• The variable W is set to 1 with probability α, and 0 with probability 1− α.

• The variable Z is set to 1 with probability β, and 0 with probability 1− β.

• If (W,Z) = (1, 1) then X = 1 with probability λ11
If (W,Z) = (0, 1) then X = 1 with probability λ01
If (W,Z) = (1, 0) then X = 1 with probability λ10
If (W,Z) = (0, 0) then X = 1 with probability λ00

This information is summarized below.

P (W = 1) = α

P (Z = 1) = β

P (X = 1|W = 1, Z = 1) = λ11

P (X = 1|W = 0, Z = 1) = λ01

P (X = 1|W = 1, Z = 0) = λ10

P (X = 1|W = 0, Z = 0) = λ00

You need to estimate the parameters of this model. However, one of the variables,
Z, is not observed. You are given a sample of m data points:

{(w(j), x(j))|w, x ∈ {0, 1}}mj=1

In order to estimate the parameters of the model, α, β, λ11, λ01, λ10, λ00, you will
derive update rules for them via the EM algorithm.
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(a) (3 points) Choose the correct expression for P (w(j), x(j)) in terms of the unknown
parameters α, β, λ11, λ01, λ10, λ00. (Circle one of the four options given below.)

i. P (w(j), x(j)) = (1− β) [αλ
xj
11(1− λ11)1−xj ]wj [(1− α)λ

xj
01(1− λ01)1−xj ]1−wj

+ β[αλ
xj
10(1− λ10)1−xj ]wj [(1− α)λ

xj
00(1− λ00)1−xj ]1−wj

ii. P (w(j), x(j)) = β[αλ
xj
11]

wj [(1− α)λ
xj
01]

1−wj

+ (1− β)[αλ
xj
10]

wj [(1− α)λ
xj
00]

1−wj

iii. P (w(j), x(j)) = β[αλ
xj
11(1− λ11)1−xj ]wj [(1− α)λ

xj
01(1− λ01)1−xj ]1−wj

+ (1− β)[αλ
xj
10(1− λ10)1−xj ]wj [(1− α)λ

xj
00(1− λ00)1−xj ]1−wj

iv. P (w(j), x(j)) = β[αλ
xj
11(1− λ11)1−xj ]wj [(1− α)λ

xj
01(1− λ01)1−xj ]1−wj

Ans: iii
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(b) (4 points) Let f jz = P (Z = z|w(j), x(j)), the probability that the hidden variable

Z has value z. Choose the correct expression for f
(j)
1 in terms of the unknown

parameters α, β, λ11, λ01, λ10, λ00. (Circle one of the four options given below.)

i. f
(j)
1 =

β[αλ
xj
11]

wj [(1− α)λ
xj
01]

1−wj

P (w(j), x(j))

ii. f
(j)
1 =

β[αλ
xj
11(1− λ11)1−xj ]wj [(1− α)λ

xj
01(1− λ01)1−xj ]1−wj

P (w(j), x(j))

iii. f
(j)
1 =

(1− β)[αλ
xj
10]

wj [(1− α)λ
xj
00]

1−wj

P (w(j), x(j))

iv. f
(j)
1 =

(1− β)[αλ
xj
10(1− λ10)1−xj ]wj [(1− α)λ

xj
00(1− λ00)1−xj ]1−wj

P (w(j), x(j))

Ans: ii
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(c) (10 points) Choose the correct expression for the expected log likelihood (LL)
of the entire dataset, {(w(1), x(1)), (w(2), x(2)), ..., (w(m), x(m))} given the new pa-

rameter estimates α̃, β̃, λ̃11, λ̃01, λ̃10, λ̃00. (Circle one of the four options given
below.)

i. E[LL] =
m∑
j=1

f j1 log
(
β
[
αλ

xj
11

]wj
[
(1− α)λ

xj
01

]1−wj

)
+

m∑
j=1

(
1− f j1

)
log
(

(1− β)
[
αλ

xj
10

]wj
[
(1− α)λ

xj
00

]1−wj

)
ii. E[LL] =

m∑
j=1

f j1 log
(
β
[
αλ

xj
11 (1− λ11)1−xj

]wj
[
(1− α)λ

xj
01 (1− λ01)1−xj

]1−wj
)

+
m∑
j=1

(
1− f j1

)
log
(

(1− β)
[
αλ

xj
10 (1− λ10)1−xj

]wj
[
(1− α)λ

xj
00 (1− λ00)1−xj

]1−wj
)

iii. E[LL] =
m∑
j=1

f j1 log
(

(1− β)
[
αλ

xj
11 (1− λ11)1−xj

]wj
[
(1− α)λ

xj
01 (1− λ01)1−xj

]1−wj
)

+
m∑
j=1

(
1− f j1

)
log
(
β
[
αλ

xj
10 (1− λ10)1−xj

]wj
[
(1− α)λ

xj
00 (1− λ00)1−xj

]1−wj
)

iv. E[LL] =
m∑
j=1

f j1 log
(
β
[
αλ

xj
11 (1− λ11)1−xj

]wj
[
(1− α)λ

xj
01 (1− λ01)1−xj

]1−wj
)

Ans: ii
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(d) (8 points) Maximize the LL and select the correct update rule for β according
to the EM algorithm. (Circle one of the four options given below.)

i. β =

∑m
j=1 1− f j1
m

ii. β =

∑m
j=1 f

j
1

m

iii. β = m
m∑
j=1

f j1

iv. β =
m∑
j=1

1− f j1

Ans: ii

11



Multiclass Classification and Graphical Models [25 points] The goal of this
problem is to develop a model for a multiclass classification problem. Each data point
consists of five binary features, x = (x1, . . . , x5) ⊆ {0, 1}5, and is assigned one of four
possible labels y ∈ {A,B,C,D}.

(a) (13 points) In this part we consider a discriminative learning approach.

i. (1 point) Learning using a discriminative approach can be viewed as esti-
mating

P (y|x)
{P (x,y) | P (y|x) | P (x|y)}

ii. (10 points) You are now tasked with choosing a discriminative model for this
problem. Given your machine learning expertise, you have already narrowed
down your modeling choices to:

• one versus all (OvA),

• all versus all (AvA),

• a minimal size error correcting output code (ECOC), and

• and multiclass SVM (MSVM)

Furthermore, you plan on using linear classifiers of the form h(x) = 1[w ·x +
θ ≥ 0]) for every binary classification problem that arises from these models.
The goal of this question is to determine the number of parameters required
to represent its hypothesis.
Note that the number of parameters is the number of real-valued variables
whose values you are choosing during the learning process; for example,
a single linear classifier of the form mentioned before has 6 parameters,
consisting of each of the five dimensions of w as well as θ.

Question: What is the total number of parameters required to represent
each of these four hypotheses for this problem? In each case, explain how you
derive your results.

• one versus all (OvA):
There are 4 binary classification problems (one for each class), each of
which requires 6 parameters. Thus, the total number of parameters here
is 24.
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• all versus all (AvA):
There are

(
4
2

)
= 6 binary classification problems (one for each pair of

classes), each of which requires 6 parameters. Thus, the total number of
parameters here is 36.

• a minimal size error correcting output code (ECOC) (that is, use the
smallest number of hypotheses needed for ECOC in this case):
Four classes can be represented using a two-bit binary code; this means
there will be two binary classification problems, each of which requires 6
parameters. Thus, the total number of parameters here is 12.

• multiclass SVM (MSVM)
Representing MSVM requires 4 vectors (one per class) of length 6 (for
the features/bias). Thus, the total number of parameters here is 24.

13



iii. (2 points) Suppose you decide to use the minimal ECOC model. Briefly
discuss any potential issues with using this model to solve the classification
problem.
The model requiring the minimal number of parameters is the ECOC model.
This model divides the data into two different binary classification problems;
however, depending on how the codes are assigned to the classes (and the
form the data takes), these problems may not be separable. In other words,
choosing this model means we sacrifice expressivity in favor of having a smaller
representation.
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(b) (12 points) In this part we will consider a generative approach.

i. (1 point) Learning using a generative approach can be viewed as estimating
P (x, y)

{P (x,y) | P (y|x) | P (x|y)}

ii. (4 points) We model the problem using a Bayesian network. After some
thought, you narrow down the candidate graphs to the following two choices:

Figure 1: Option A

Figure 2: Option B

Question: Write down the factored joint probability distribution represented
by each model.

• Model A:
p(y, x1, x2, x3, x4, x5) = p(y)p(x1|y)p(x2|y)p(x3|y)p(x4|y)p(x5|y)

• Model B:
p(y, x1, x2, x3, x4, x5) = p(y)p(x1|y)p(x2|y)p(x3|y)p(x4|x1, x2)p(x5|x2, x3)
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iii. (4 points) We are interested in figuring out the number of parameters needed
to represent each of the models in Figures 1 and 2 above. Note that in the
context of graphical models, a parameter is a probability value for a given
variable assignment (e.g. Pr(X1 = 0, X2 = 1|X3 = 1) is a single parameter).
Compute the minimum number of parameters required to represent each
model. Explain as needed.

• Model A: p(y) requires 3 parameters (1 for each label, except the last
can be computed in terms of the other three). Each feature requires 4
parameters (1 for each possible label for y, since the other probability
value can be computed in terms of the first) Thus, a total of3+5×4 = 23
parameters are required.

• Model B: p(y) requires 3 parameters (same reason as before). x1, x2,
and x3 require 4 parameters each (same reason as before) x4 and x5
require 4 parameters each (since there are four possible assignments to
their parents) Thus, a total of 3 + 5 × 4 = 23 parameters are required
here as well.

iv. (3 points) After staring at your data for a few hours, you realize that the
features x4 and x5 are not conditionally independent given the label y. Given
this piece of information, which of the two Bayesian networks is a better
choice for this problem? Explain your answer. Option B is better - Op-
tion A encodes that x4 and x5 are conditionally independent given the label,
which the data implies is not true. However, Option B does not encode this
assumption; therefore, (given no further information), it can better represent
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the data.
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Short Answer Questions [24 points]

(a) (8 points) For the purpose of this question, consider the AdaBoost algorithm.
Let Dt be the probability distribution in the tth round of Adaboost, ht be the
weak learning hypothesis learned in the tth round, and εt its error. Now, fill in
the blanks to complete the algorithm:

D1(i) = 1/m

Given Dt and ht:

Dt+1(i) = a
{a | b | c | d}

if yi¬ = ht(xi)

Dt+1(i) = c
{a | b | c | d}

if yi = ht(xi)

where zt = f
{e | f | g}

and

where αt = i
{h | i}

Options:
a.)Dt(i)

zt
× eαt b.)Dt+1(i)

zt
× eαt c.)Dt(i)

zt
× e−αt

d.)Dt+1(i)
zt
× e−αt e.)

∑
iDt(i) exp(αtyiht(xi))

f.)
∑

iDt(i) exp(−αtyiht(xi)) g.)
∑

tDt(i) exp(−αtyiht(xi))

h.)1/2 ln{εt/(1− εt)} i.)1/2 ln{(1− εt)/εt}
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(b) (8 points) Given the instance space X = R2, consider the hypothesis class

H = {h(x1, x2) = (x1 − a)2 + (x2 − b)2 ≤ r2 : a, b ∈ R, r ∈ R+}

That is, each h ∈ H is a circle with radius r and center (a, b) whose interior is
labeled as positive and whose exterior is labeled as negative.

IsH PAC learnable? Explain your answer. (It is sufficient to explain the structure
of the argument, without getting to all the technical details.)

Yes. The hypothesis class is PAC learnable because its VC-Dimension is finite.

(c) (8 points) [Support Vector Machine]

Recall the objective function for soft SVM.

min
1

2
||w||2 + C

m∑
i=1

ξi (1)

s.t y(i)(w · x(i) + θ) ≥ 1− ξi, ξi ≥ 0,∀(x(i), y(i)) ∈ D (2)

where m is the number of examples.

i. State whether the following statements about the SVM formulation above are
correct. In each case, use one sentence to explain your answer (no need for a
mathematical derivation or a proof).

A. When using the value of C = 0, we obtain the Hard-SVM objective.

Correct/Incorrect

Reason: Incorrect. Choosing C = 0 leads to a trivial solution for ~w = 0.

B. Choosing higher values of C leads to over-fitting the training data.

Correct/Incorrect

Reason: Correct. Higher value of C leads to more weight to not making

mistakes on any training examples, which leads to over-fitting. Alterna-
tively, regularization term gets lesser emphasis in the objective function.
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C. The slack variable ξi for a data point xi always takes the value 0 if the
data point is correctly classified by the hyper-plane.

Correct/Incorrect

Reason: Incorrect. Data points classified correctly but lying within the

margin will also have non-zero slack variable value.

D. The optimal weight vector ~w can be calculated as a linear combination
of the training data points. [You need not prove this.]

Correct/Incorrect

Reason:

Correct. We can use the dual representation where weight vector ~w =∑
i αiyixi where i iterates over each training data points.

ii. Circles Dataset Consider the following data set.

All data points inside a circle of some radius are marked as positive (+1) and
points outside the circle are marked as negative (-1).

A. Given the data set above that is separable by a circle, explain how Hard-
SVM can be used to learn a valid separator in this case.
Basic idea is that we can use the dual form of SVM with a polynomial
kernel of degree = 2 to learn a non-linear (may not be a circle necessarily)
separator.
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B. Which of the figures above is more likely to be the separator that would
be learned by the Hard-SVM formulation? Justify your choice briefly.
Separator (B) is the more likely for a hard-SVM because SVM is a max-
margin classifier.
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Some formulae you may need:

(a)
d

dx
ex = ex

(b)
d

dx
ln(x) =

1

x

(c) P (A,B) = P (A|B)P (B)

(d) Let p define the probability distribution of a discrete random variable X, then:

Ep[f(X)] =
∑

x p(X = x)f(x)
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