
Midterm Review CS446 Fall Ω16

Administration

Midterm exam on Tuesday 10/25
Ç Closed books;  in class; ~4 questions

Ç All the material covered before the midterm

Ç Go over practice midterms

1

Questions?
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Midterm Review
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Today: 

Quick run-through of the material weΩve covered so far

The selection of slides in todayΩs lecture doesnΩt mean that 
you donΩt need to look at the rest when prepping for the 
exam!

Slides are from previous lectures
Ç IΩll not go in to the details

Ç Slides chosen might be not completely coherent

Ç The goal is to remind you what we did and solicit questions
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Midterm

Ç Closed book exam

Ç All lectures until today 

Ç Intro. to ML / Decision Trees / Online learning / COLT /NN/ 
Boosting/SVM

ÁLectures / Problem sets 

Ç Cheating?

ÁNo.

3
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Sample Questions
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Question types: 
4~5 question sets including a set of short questions

Previous midterm exams / solutions: 

http://l 2r.cs.illinois.edu/~danr/Teaching/CS446-
16/handout.html



Midterm Review CS446 Fall Ω16

Sample of short  Question
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Sample Question set
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Sample Question set
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Sample Question set

8



Midterm Review CS446 Fall Ω16

Course Overview
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Introduction: Basic problems and questions

A detailed example: Linear threshold units

Two Basic Paradigms:

Ç PAC (Risk Minimization)

Ç Bayesian theory

Learning Protocols: 

Ç Supervised;Unsupervised; Semi-supervised

Algorithms

Ç Decision Trees (C4.5)

Ç [Rules and ILP (Ripper, Foil)]

Ç Linear Threshold Units (Winnow; Perceptron; Boosting; SVMs; Kernels)

Á Gradient Descent

Ç Neural Networks (Backpropagation)

Ç Probabilistic Representations (naïve Bayes;  Bayesian trees; Densities)

Ç Unsupervised /Semi supervised: EM

Clustering; Dimensionality Reduction
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Key Issues in Machine Learning

Modeling
Ç How to formulate application problems as machine 

learning problems ?  How to represent the data?
Ç Learning Protocols (where is the data & labels coming 

from?) 

Representation
Ç What are good hypothesis spaces ? 
Ç Any rigorous way to find these? Any general approach?

Algorithms
Ç What are good algorithms? 
Ç How do we define success? 
Ç Generalization Vs. over fitting
Ç The computational problem

10



Midterm Review CS446 Fall Ω16

Using supervised learning

What is our instance space?
Ç Gloss: What kind of features are we using?

What is our label space?
Ç Gloss: What kind of learning task are we dealing with?

What is our hypothesis space?
Ç Gloss: What kind of model are we learning?

What learning algorithm do we use?
Ç Gloss: How do we learn the model from the labeled data?

(What is our loss function/evaluation metric?)
Ç Gloss: How do we measure success?

11
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Terminology

Target function (concept): The true function f :X ĄϑΧ[ŀōŜƭǎΧϒ

Concept:  Boolean function.  Example for which f (x)= 1 are 
positiveexamples; those for which  f (x)= 0 are negative
examples (instances) 

Hypothesis: A proposed function h, believed to be similar to f. 
The output of our learning algorithm. 

Hypothesis space: The space of all hypotheses that can, in 
principle, be output by the learning algorithm.

Classifier: A discrete valued function produced by the learning 
ŀƭƎƻǊƛǘƘƳΦ ¢ƘŜ ǇƻǎǎƛōƭŜ ǾŀƭǳŜ ƻŦ ŦΥ ϑмΣнΣΧYϒ ŀǊŜ ǘƘŜ ŎƭŀǎǎŜǎ ƻǊ 
class labels. (In most algorithms the classifier will actually 
ǊŜǘǳǊƴ ŀ ǊŜŀƭ ǾŀƭǳŜŘ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ǿŜΩƭƭ ƘŀǾŜ ǘƻ ƛƴǘŜǊǇǊŜǘ).

Training examples: A set of examples of the form {(x, f (x))} 

12
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Output

y Yɴ

An item y
drawn from a label 

space Y

Input

x Xɴ

An item x
drawn from an 

instance space X

Learned Model
y = g(x)

Protocol: Supervised learning

Target function

y = f(x)

13
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The i.i.d. assumption

Training and test items are independently and 
identically distributed (i.i.d.): 

Ç There is a distribution P(X, Y) from which the data 
D = {(x, y)} is generated.

Á{ƻƳŜǘƛƳŜǎ ƛǘΩǎ ǳǎŜŦǳƭ ǘƻ ǊŜǿǊƛǘŜ P(X, Y) as P(X)P(Y|X)
Usually P(X, Y) is unknown to us (we just know it exists)

Ç Training and test data are samples drawn from the 
sameP(X, Y): they are identically distributed

ÇEach (x, y) is drawn independentlyfrom P(X, Y)

14
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Supervised learning: Training

Give the learner examples in D train

The learner returns a model g(x)

15

Labeled Training 
Data
D train

(x1, y1)
(x2, y2)
Χ

(xN, yN) 

Learned 
model
g(x)

Learning 
Algorithm
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Test 
Labels
Y test

ȅΩ1
ȅΩ2
...

ȅΩM

Raw Test 
Data
X test

ȄΩ1
ȄΩ2
ΧΦ

ȄΩM

Supervised learning: Testing
Apply the model to the raw test data

16

Learned 
model
g(x)

Predicted
Labels
g(X test)
g(xΩ1)
g(xΩ2)
ΧΦ

g(ȄΩM)
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Supervised learning: Testing

Evaluate the model by comparing the predicted 
labels against the test labels

17

Test 
Labels
Y test

ȅΩ1
ȅΩ2
...

ȅΩM

Raw Test 
Data
X test

xΩ1
xΩ2
Χ.

xΩM

Predicted
Labels
g(X test)
g(xΩ1)
g(xΩ2)
ΧΦ

g(ȄΩM)

Learned 
model
g(x)
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Experimental Machine Learning

Machine Learning is an Experimental Field and we 
will spend some time (in Problem sets) learning how 
to run experiments and evaluate results
Ç First hint: be organized; write scripts

Basics:
Ç Split your data into two (or three) sets:

ÁTraining data (often 70-90%)

ÁTest data (often 10-20%)

ÁDevelopment data (10-20%)

You need to report performance on test data, but you 
are not allowed to look at it.
Ç You are allowed to look at the development data (and use it 

to tweak parameters)

18
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N-fold cross validation

Instead of a single test-training split:

Split data into N equal-sized parts 

Train and test N different classifiers

Report average accuracy and standard deviation of 
the accuracy

19
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Decision Trees

A hierarchical data structure that represents data by 
implementing a divide and conquer strategy

Can be used as a non-parametric classification and 
regression method

Given a collection of examples, learn a decision tree 
that represents it.

Use this representation to classify new examples

A

C

B

20
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The Representation

Decision Trees are classifiers for instances represented as 
feature vectors (color= ; shape= ; label= )

Nodesare testsfor feature values

There is one branch for each value of the feature

Leavesspecify the category (labels)

Can categorize instances into multiple disjoint categories

Color 

Shape

Blue red Green
Shape

square

triangle circle circlesquare

AB
CA

B

B

Evaluation of a 
Decision Tree Learning a 

Decision Tree

21

(color= RED ;shape=triangle)

A

C

B
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Information Gain

The information gain of an attribute a is the expected 
reduction in entropy caused by partitioning on this 
attribute

where Sv is the subset of Sfor which attribute a has 
value v, and the entropy of partitioning the data is 
calculated by weighing the entropy of each partition 
by its size relative to the original set
Ç Partitions of low entropy (imbalanced splits) lead to high 

gain

Go back to check which of the A, B splits is better

22

)Entropy(S
|S|

|S|
Entropy(S)a)Gain(S, v

v

values(a)v

ä
Í

-=

Outlook 

Overcast RainSunny

High Entropy ςHigh level of 
Uncertainty

Low Entropy ςNo Uncertainty. 
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ωNot the most general setting 
for on-line learning.
ωNote: online learning protocol 
v.s. online learning algorithm

On-Line Learning

Model:protocol
Ç Instance space: X (dimensionality ςn)

Ç Target: f: X­{0,1}, f ÍC, concept class (parameterized by n)

Protocol: 

Ç learner is given xÍX

Ç learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x) f̧(x)
Ç number of mistakes algorithm A makes on sequence S of 

examples, for the target function f.

),(max)( , SfMCM ASCfA Í=

23



Midterm Review /{ппс Cŀƭƭ Ωмс

Quantifying Performance

We want to be able to say something rigorous about 
the performance of our learning algorithm.

Evaluating a learning algorithm:
Ç Experiments

Ç COLT

ÁE.g, PAC theory, VC theory, Mistake bound

24
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Mistake Driven Learning Algorithm

learn a linear function over the feature space
Ç Perceptron                   (+ many variations)

Ç Winnow

Ç General Gradient Descent view

Issues:
Ç Importance of Representation

Ç Complexity of Learning

Ç Idea of Kernel Based Methods

Ç More about features

25
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Let C be a concept class. Learn f °C

Halving:

In the ith stage of the algorithm:
Ç all concepts in C consistent with all i-1 previously seen 

examples

Given an example     consider the value           for all      
and predict  by majority. 

Predict 1 if

Clearly                and if a mistake is made in the ith
example, then

The Halving algorithm makes at most log(|C|) 
mistakes

iC

ie )( ij ef ij Cf Í

The Halving Algorithm

|}1)(;{||}0)(;{| =Í<=Í ijijijij efCfefCf

ii CC Ì+1
||

2

1
|| 1 ii CC <+

26
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Perceptron learning rule

On-line, mistake driven algorithm.

Rosenblatt(1959) suggested that when a target 
output value is provided for a single neuron with 
fixed input, it can incrementally change weights and 
learn to produce the output using the Perceptron 
learning rule

(Perceptron == Linear Threshold Unit)

27
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Perceptron learning rule

We learn f:X­{-1,+1} represented as f =sgn{w¶x)

Where X=  {0,1}n  or X= Rn and wÍRn

Given Labeled examples:  {(x1, y1), (x2, y2ύΣΧόxm, ym)}

28

1. Initialize w=0Í

2.   Cycle through all examples          

a. Predict the label of instance x to beȅΩ Ґ sgn{w¶x)

b. If ȅΩ̧y, updatethe weight vector: 

w = w + r y x (r - a constant, learning rate)

hǘƘŜǊǿƛǎŜΣ ƛŦ ȅΩҐȅΣ ƭŜŀǾŜ ǿŜƛƎƘǘǎ ǳƴŎƘŀƴƎŜŘΦ

n
R
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Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with 
the data (i.e., the data is linearly separable), the 
perceptron learning algorithm will converge
Ç How long would it take to converge ?

Perceptron Cycling Theorem: 

If the training data is not linearly separable the 
perceptron learning algorithm will eventually repeat 
the same set of weights and therefore enter an 
infinite loop.
Ç How to provide robustness, more expressivity ? 

29
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Perceptron: Mistake Bound 
Theorem

Maintains a weight vector wÍRN,    w0=(0,Χ,0).

Upon receiving an example x ÍRN

Predicts according to the linear threshold function 
wωx²0.

Theorem [Novikoff,1963] Let (x1; y1),Χ,: (xt; yt), be a 
sequence of labeled examples with xiÍ< N, ||xi||¢R and 
yiÍ{-1,1} for all i. Let uÍ< N,g> 0 be such that, 

|| u|| = 1 and yi u ω xi²gfor all i. 

Then Perceptron makes at mostR2 / g2 mistakes on 
this example sequence.

(see additional notes)

30

Complexity Parameter
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Winnow Algorithm

The Winnow Algorithm learns Linear Threshold 
Functions. 

For the class of disjunctions:
Ç instead of demotionwe can use elimination. 

31

(demotion) 1)x (if   /2w    w,xbut   w  0f(x)  If

)(promotion  1)x (if   2w    w,xwbut     1f(x)  If

nothing  do :mistake no If

xw  iff   1    is    Prediction

  w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

==

q

q

q

q 1n;



Midterm Review /{ппс Cŀƭƭ Ωмс

Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

# of mistakes:     u + v < 3u + 2 = O(k log n)

32

(demotion) 1)x (if   /2w    w,xbut   w  0f(x)  If

)(promotion  1)x (if   2w    w,xwbut     1f(x)  If

nothing  do :mistake no If

xw  iff   1    is    Prediction

  w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

== 1n;

q

q

q

q
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Transforming Feature Spaces

33

Weather

Whether

523341321 xxxxxxxxx ÙÙ 541 yyy ÙÙ

New discriminator in functionally simpler
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General Stochastic Gradient 
Algorithms 

Given examples {z=(x,y)}1, m from a distribution over XxY, we are 
trying to learn a linear function, parameterized by a weight vector w, 
so that expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ä1, m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this 
minimization by incrementally updating the weight vector w as 
follows: 

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t. 

The difference between algorithms now amounts to choosing a 
different loss function Q(z, w)

34
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wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

LMS:Q((x, y), w) =1/2 (y ςw ¢x)2

leads to the update rule (Also called ²ƛŘǊƻǿΩǎAdaline):
wt+1 = wt + r (ytςwt¢xt) xt

Here, even though we make binary predictions based on sign (w ¢x) 
we do not take the signof the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y w ¢x)

This leads to the perceptronupdate rule:

If yi wi¢xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms 

35
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wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change. 
AdaGradalters the update to adapt based on historical information, 
so that frequently occurring features in the gradients get small 
learning rates and infrequent features get higher ones. 
¢ƘŜ ƛŘŜŀ ƛǎ ǘƻ άƭŜŀǊƴ ǎƭƻǿƭȅέ ŦǊƻƳ ŦǊŜǉǳŜƴǘ ŦŜŀǘǳǊŜǎ ōǳǘ άpay 
ŀǘǘŜƴǘƛƻƴέ ǘƻ ǊŀǊŜ ōǳǘ ƛƴŦƻǊƳŀǘƛǾŜ ŦŜŀǘǳǊŜǎ.
5ŜŦƛƴŜ ŀ άǇŜǊ ŦŜŀǘǳǊŜέ ƭŜŀǊƴƛƴƎ ǊŀǘŜ ŦƻǊ ǘƘŜ ŦŜŀǘǳǊŜ j, as: 

rt,j = r/(Gt,j)
1/2

whereGt,j = äk=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagradis:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron 
or LMS when needed.

New Stochastic Gradient 
Algorithms 

36
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Regularization

The more general formalism adds a regularizationterm to the risk 
function, and attempts to minimize: 

J(w) = ä1, m Q(zi, wi) + ¶Ri (wi)
²ƘŜǊŜ w ƛǎ ǳǎŜŘ ǘƻ ŜƴŦƻǊŎŜ άǎƛƳǇƭƛŎƛǘȅέ ƻŦ ǘƘŜ ƭŜŀǊƴŜŘ ŦǳƴŎǘƛƻƴǎΦ 

LMS case: Q((x, y), w) =(y ςw ¢x)2

Ç R(w) = || w|| 2
2gives the optimization problem called Ridge Regression.

Ç R(w) = || w|| 1 gives the problem call the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢x)
Ç R(w) = || w|| 2

2 gives the problem called Support Vector Machines

Logistics Loss case:  Q((x,y),w) = log (1+exp{-y w ¢x}) 
Ç R(w) = || w|| 2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient 
descent mechanism can be used in all cases. 
²Ŝ ǿƛƭƭ ǎŜŜ ƭŀǘŜǊ ǿƘȅ ƛǘ ƳŀƪŜǎ ǎŜƴǎŜ ǘƻ ǳǎŜ ǘƘŜ άǎƛȊŜέ ƻŦ ǿ ŀǎ ŀ ǿŀȅ ǘƻ 
ŎƻƴǘǊƻƭ άǎƛƳǇƭƛŎƛǘȅέΦ

37
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Multi-Layer Neural Networks

Multi-layer network were designed to overcome the 
computational (expressivity) limitation  of a single 
threshold element. 

The idea is to stack several 

layers of threshold elements, 

each layer using the output of 

the previous layer as input.  

Multi-layer networks can represent arbitrary 
functions, but building effective learning methods for 
such network was [thought to be] difficult. 

38
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Input

Hidden

Output
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Model Neuron (Logistic)

Neuron is modeled by a unit  Ὦconnected by 
weighted links ύ to other units Ὥ. 

Ç Use a non-linear, differentiable output function such as the 
sigmoid or logistic function

Ç Net input to a unit is defined as: 

Ç Output of a unit is defined as:

39

ÎÅÔВύ Ȣὼ
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ύ

The parameters so far? 
The set of connective weights:  ύ

The threshold value: Ὕ
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Derivation of Learning Rule (3)

Weights of output units:

Ç ύ is changed by:

where 

‏ ὸ έέρ έ

40
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The Backpropagation Algorithm

Create a fully connected three layer network. Initialize weights.

Until all examples produce the correct output within ‭(or other 
criteria)

For each example in the training set do:

1. Compute the network output for this example 

2. Compute the error between the output and target value
‏ ὸ έ έ ρ έ

1. For each output unit k, compute error term 

‏ έ ρ έȢ

ᶰ

‏ ύ

1. For each hidden unit, compute error term:
ɝύ Ὑ‏ὼ

1. Update network weights

End epoch

41
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Computational Learning Theory

What general laws constrain inductive learning ?
Ç What learning problems can be solved ? 

Ç When can we trust the output of a  learning  algorithm ? 

We seek theory to relate
Ç Probability of successful Learning

Ç Number of training examples

Ç Complexity of hypothesis space

Ç Accuracy to which target concept is approximated

Ç Manner in which training examples are presented

42
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Computational Issues

Assume the data is linearly separable.

Sample complexity:
Ç Suppose we want to ensure that our LTU has an error rate (on new 

examples) of less than ewith high probability (at least (1-d))

Ç How large does m (the number of examples) must be in order to achieve 
this ? It can be shown that for n dimensional problems

m = O(1/ e[ln(1/ d) + (n+1) ln(1/ e) ].

Computational complexity: What can be said?
Ç It can be shown that there exists a polynomial time algorithm for finding  

consistentLTU (by reduction from linear programming). 

Ç [Contrast with the NP hardness for 0-1 loss optimization]

Ç (On-line algorithms have inverse quadratic dependence on the margin)

43
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PAC Learnability

Consider a  concept class C defined over an instance space X
(containing instances of length n),  and a learner Lusing a 
hypothesis space H.  

Cis PAC learnable by Lusing H if

Ç for all f ÍC,

Ç for all distribution D  over X, and fixed 0< e, d< 1, 

L, given a collection of m examples sampled independently 
according to Dproduces 

Ç with probability at least(1-d) a hypothesis h ÍH with error at 
most e, (ErrorD= PrD[f(x) : = h(x)]) 

where m is polynomial in 1/ e, 1/ d, n and size(H)

C is efficiently learnable if Lcan produce the hypothesis in time
polynomial in 1/ e, 1/ d, n and size(H)

44
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hŎŎŀƳΩǎ wŀȊƻǊ όмύ
We want this probability to be smaller than d, that is:

|H|(1-e)  <  d

ln(|H|) + m ln(1-e)  <  ln(d)

(with e-x = 1-x+x2/2+é; e-x > 1-x; ln (1-e)  < - e; gives a safer d)

(gross over estimate)

It is called Occamõs razor, because it indicates a preference towards small 

hypothesis spaces 

What kind of hypothesis spaces do we want ?         Large ?            Small ?

To guarantee consistency we need H ÉC.    But do we want the smallestH possible ?

m

)}/1ln(|){ln(|
1

d
e

+> Hm

We showed that a         
m-consistent hypothesis 
generalizes well (err< °)
(Appropriate m is a 
function of |H|, °, ̄ )

What do we know now 
about the Consistent 
Learner scheme?

45
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Consistent Learners
Immediately from the definition, we get the following general scheme 
for PAC learning:

Given a sample D of m examples

Ç Find some h ÍH that is consistent with all m examples

ÁWe showed that if m is large enough, a consistent hypothesis must be close 
enough to f 

ÁCheck that m is not too large (polynomial in the relevant parameters) : we 
showed that the άclosenessέ guarantee requires that 

m > 1/° (ln |H| + ln 1/ )̄ 

Ç Show that the consistent hypothesis h ÍHcan be computed efficiently

In the case of conjunctions 

Ç We used the Elimination algorithm to find a hypothesis h that is consistent 
with the training set  (easy to compute) 

Ç We showed directlythat if we have sufficiently many examples (polynomial 
in the parameters), than h is close to the target function.

We need to show that m is polynomial in n when |H| is a 
function of n. That is, showing ln| H| is polynomial in n

46
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Infinite Hypothesis Space

The previous analysis was restricted to finite 
hypothesis spaces 

Some infinite hypothesis spaces are more expressive 
than others
Ç E.g., Rectangles, vs. 17- sides convex polygons vs. general 

convex polygons

Ç Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite 
hypothesis space other than its size 

The Vapnik-Chervonenkisdimension (VC dimension)  
provides such a measure. 

Analogous to |H| , there are bounds for sample 
complexity using VC(H)
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Shattering

48

ÅWe say that a set S of examplesis shatteredby a set of functions Hif 

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

Half-spaces in the plane:

sets of one, two or three points can be shattered

but there is noset of  fourpoints that can be shattered

+
---

-

+
+

+

+ -

- +
1. If the 4 points 
form a convex 

polygonΧ όƛŦ ƴƻǘΚύ
2. If one point is 

inside  the convex 
hull defined by the 

other threeΧ
(if not?)

All sets of 
three?
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VC Dimension

49

ÅWe say that a set S of examplesis shatteredby a set of functions Hif 

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

ÅThe VC dimensionof hypothesis spaceHover instance space X

is the size of the largest finite subset of X that is shattered by H.

ÅIf  there existsa subset of size d that can be shattered, then VC(H) >=d

ÅIf no subset of sizedcan be shattered, then VC(H) < d

VC(Half intervals) = 1 (nosubset of size 2can be shattered)

VC( Intervals) = 2 (nosubset of size 3can be shattered)

VC(Half-spaces in the plane) = 3 (nosubset of size 4can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are 

not



Midterm Review /{ппс Cŀƭƭ Ωмс

Sample Complexity & VC Dimension

50

What if H is 

finite?

ÅUsing VC(H) as a measure of expressiveness we have an Occam algorithm

for infinite hypothesis spaces.

ÅGiven a sample D of mexamples

Å Find some h ÍH that is consistent with all mexamples

Å If 

Å

Å Then with probability at least (1-d),hhas error less than e.

(that is, if mis polynomial we have a PAClearning algorithm;

to be efficient, we need to produce the hypothesis hefficiently. 

ÅNotice that to shattermexamples it must be that: |H|>2m, so log(|H|)̧ VC(H)

)}
2

log(4
13

log)(8{
1

dee
+> HVCm
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COLT approach to explaining Learning

51

No Distributional Assumption

Training Distribution is the same as the Test 
Distribution

Generalization bounds depend

on this view and affects 

model selection.  

ErrD(h) < ErrTR(h)   +   

P(VC(H), log(1/ )̄,1/m)

This is also called the 

άStructural Risk Minimizationέ principle. 
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Theoretical Motivation of Boosting

άStrongέ PAC algorithm:
Ç for any distribution

Ç 8°, ̄ > 0

Ç Given polynomially many random examples 

Ç Finds hypothesis with error ·°with probability ̧ (1- )̄

άWeakέ PAC algorithm 
Ç Same, but only for °·½ -®

[Kearns & Valiant Ω88]: 
Ç Does weak learnability imply strong learnability?

Ç Anecdote: the importance of the distribution free assumption
ÁIt does not hold if PAC is restricted to only the uniform distribution, say

52
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A Formal View of Boosting

Given training set (x1, y1ύΣ Χ όxm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

CƻǊ ǘ Ґ мΣ ΧΣ ¢
Ç Construct a distributionDtƻƴ ϑмΣΧƳϒ

Ç Find weak hypothesis όάǊǳƭŜ ƻŦ ǘƘǳƳōέύ

ht : X ! {-1, +1}

with small error °t on Dt:

°t = PrD [ht (xi) : = yi]

Output: final hypothesis Hfinal

53
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Adaboost

Constructing Dtƻƴ ϑмΣΧƳ}:

Ç D1(i) = 1/m 

Ç Given Dt and ht : 

Ç Dt+1 =             Dt(i)/zt£e-¬t if yi = ht(xi)

Dt(i)/zt£e+¬t if yi : = ht(xi)

=              Dt(i)/zt£exp(-¬t yi ht (xi))

where zt = normalization constant

and 

¬t = ½ ln{ (1-°t)/°t } 

Final hypothesis: Hfinal (x) = sign (ät ¬t ht(x) )

54

< 1; smaller weight

> 1; larger weight

Notes about ¬t:  
Ç Positive due to the weak learning 

assumption
Ç Examples that we predicted correctlyare 

demoted, others promoted
Ç Sensible weighting scheme:   better 

hypothesis (smaller error) Ą larger weight

Think about unwrapping it all 
the way to 1/m
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Margin of a Separating Hyperplane

55

A separating hyperplane: wT x+b= 0
Assumption: data is linear 
separable
Distance between 
wT x+b = +1and-1 is 2 / ||w||

Idea: 
1. Consider all possible w 

with different angles
2. Scale w such that the 

constraints are tight
3. Pick the one with largest 

margin

wT x+b = 0

wT x+b = 1

wT x+b = -1

wT xi +b¸1   if  yi = 1
wT xi +b·-1  if  yi = -1

=> ώύ ὼ ὦ ρ
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Maximal Margin

56

The margin of a linear separator
wT x+b = 0

is 2 / ||w||

max 2 / ||w||= min ||w|| 

= min ½ wTw

ÍÉÎ
ȟ

ύ ύ

s.t Ù× Ø ὦ ρȟᶅ ὼȟώ ᶰὛ
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Duality

This, and other properties of Support Vector 
Machines are shown by moving to the dual problem.

Theorem: Let w* be the minimizer of

the SVM optimization problem (***)

for S = {(xi, yi)}.   

Let I= {i: yi (w
*Txi +b)= 1}. 

Then there exists coefficients ¬i >0 

such that:

w* = äi 2 I¬i yi xi

60

08-LecSvm-dual.pdf
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 )(x yr  w    w,y)f(x  If (k)(k)(k)(k) t+«¸

t(x))sgn(w))t(xwsgn(  f(x) :function DecisionR w:Hypothesis

Rt(x) t(x),x : mapping Nonlinear   ;{0,1} x :Examples

i

n'

1i i

n'

n'n

¶==Í

Í­Í

ä=
;

LŦ ƴΩ ƛǎ ƭŀǊƎŜΣ ǿŜ Ŏŀƴƴƻǘ ǊŜǇǊŜǎŜƴǘ w explicitly. However, the weight vector w
can be written as a linear combination of examples: 

Where‌ is the number of mistakesmade on ὼ

Then we can compute f(x) based on ὼ and ♪

(recap) Kernel Perceptron

)),(ää
==

=¶=¶=
m

1j

(j)(j)

j

m

1j

(j)(j)

j xxyrsgn(t(x)))t(xyrsgn(  t(x))sgn(w  f(x) Kaa

ä
=

=
m

1j

(j)(j)

j t(xyr w )a
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In the training phase, we initialize ♪to be an all-zerosvector.
For training sample ὼ ȟώ ȟinstead of using the original Perceptron 
update rule in the Ὑ space

we maintain♪by

based on the relationship between ×and♪:
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 )(x yr w    w,y)f(x  If (k)(k)(k)(k) t+«¸

t(x))sgn(w  f(x) :function DecisionR w:Hypothesis

Rt(x) t(x),x : mapping Nonlinear   ;{0,1} x :Examples

n'

n'n

¶=Í

Í­Í

;

(recap) Kernel Perceptron

ä
=

=
m

1j

(j)(j)

j t(xyr w )a

1)),( +«¸= ä
=

kk

(k)
m

1j

(k)(j)(j)

j

(k)   then    yxxyrsgn(  )f(x if aaa K
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Embedding

63

Weather

Whether

523341321 xxxxxxxxx ÙÙ 541 yyy ÙÙ

New discriminator in functionally simpler
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Making data linearly separable

64

f(x) = 1 iff  x1
2 + x2

2 Ò  1
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Making data linearly separable

65

Transform data: x = (x1, x2 )  => xΩ = (x1
2, x2

2 ) 
f(xΩ) = 1 iff  xΩ1 + xΩ2 Җ  1

In order to deal with this, we 
introduce two new concepts: 

Dual Representation

Kernel (& the kernel trick)
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Kernels ςGeneral Conditions

Kernel Trick: You want to work with degree 2 polynomial features, ¿(x). 
Then, your dot product will be in a space of dimensionality n(n+1)/2. The 
kernel trick allows you to save and compute dot products in an n 
dimensional space. 

Can we use any K(.,.)? 
Ç A function K(x,z) is a valid kernel if it corresponds to an inner product in some 

(perhaps infinite dimensional) feature space. 

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction  (2 dimensional, for simplicity): 

K(x,z) = (x1 z1 + x2 z2)
2 = x1

2 z1
2 +2x1 z1 x2 z2 + x2

2 z2
2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)  

= ©(x)T©(z) Ą A dot product in an expanded space.

It is not necessary to explicitly show the feature function ¿.

General condition: construct the Gram matrix {k(xi ,zj)}; ŎƘŜŎƪ ǘƘŀǘ ƛǘΩǎ 

positive semi definite.  
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Good Luck   J !!
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