» Midterm exam on Tuesday 10/25
¢ Closed books; iIn class; ~4 questions
¢ All the material covered before the midterm
¢ Go over practice midterms

Questions?

Midterm Review CR246FallQ6 1



» Today:
» Quickrun-through of the materialveQe coveredsofar

» The selection of slides in tod@yecture does®@ mean that
you dorf®need to look at the rest when prepping for the
exam!

m Slides are from previous lectures
¢ 19 not go in to the details
¢ Slides chosen might be not completely coherent
¢ The goal is to remind you what we did and solicit questions
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¢ Closed book exam

¢ All lectures until today

¢ Intro. to ML / Decision Trees / Online learning / COLT /NN/
Boosting/SVM

A Lectures / Problem sets

¢ Cheating?
A No.
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» Question types:
4~5 question sets including a set of shguestions

m Previougnidterm exams / solutions:

m http://l 2r.cs.illinois.edu/danr/Teachinq/C&6-
16/handout.html

Midterm Review C246FallQ6



(a) [6 points] Consider a concept space H of two nested circles centered on the origin
(see figure below). Formally, a concept h € H is defined by 2 non-negative real
parameters a,b € R* such that a < b. An example (z,y) € R? is labeled +1 if
and only if a® < 2% + y* < b? ie. (z,y) is within the band of the two nested
circles of radius a and b respectively.

......
..........
,,,,,,,,,
.....

", -*
...........
ECEP S

State the VC-dimension of H. Prove that your answer is correct.
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Perceptrons [25 points]

In this question, we will be asking you about Perceptrons and their variants.
Let D = {(xD, 41 ... (x™ 3™} where the j-th example x'7) is associated with
the label y9) € {—1,+1}. Each example x'7) is a bit-vector of length n, i.e. x\U) ¢

{0,1}™, with the interpretation that the i-th bit of the vector (:-:_Eﬂ} is 1 if the element
described by x'7) has the i-th attribute on.

(a) [7 points| Let us first consider a Perceptron where the positive example x satisfies
w-x > #, where w € R", # € R and x is some example x") from D.

1. [3 points| Suggest an equivalent representation of this Perceptron in the form
of w'-x' = 0 given an example x7), where x’ € {0, 1}“‘: for some suitable
integer n'.

Define n' =

Define w' =

Define x' =
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Perceptrons [25 points]

In this question, we will be asking you about Perceptrons and their variants.
Let D = {(xD, 41 ... (x™ 3™} where the j-th example x'7) is associated with
the label y9) € {—1,+1}. Each example x'7) is a bit-vector of length n, i.e. x\U) ¢

{0,1}™, with the interpretation that the i-th bit of the vector (I,Ej]) is 1 if the element
described by x'7) has the i-th attribute on.

2. [4 points| In the following table, we describe a specific data set S. Using an
mitialization of w' = 0, 1.e. the zero vector, and a learning rate of R = 1,
complete the columns under (a) of the table using the Perceptron learning |

algorithm.
S (a) (b)
7 xij} xé‘ﬂ yl) M,’E;k‘g? Updated w' M;s::%ke? Updated w'
Initialization —_— 0 — 0

1] 1]1 [+
2 110 |[—1
Mi | 3]0 | 1 |[+1 7




Perceptrons [25 points]

In this question, we will be asking you about Perceptrons and their variants.
Let D = {(xD, 41 ... (x™ 3™} where the j-th example x'7) is associated with
the label y9) € {—1,+1}. Each example x'7) is a bit-vector of length n, i.e. x\U) ¢

{0,1}™, with the interpretation that the i-th bit of the vector (:-:_Eﬂ] is 1 if the element
described by x'7) has the i-th attribute on.

(b) [7 points| Using the same data set used above, we now consider a Perceptron with
margin v > 0. We can also represent this with w'- x" > 0 like in Perceptron but
using a different update rule for the weights.

1. [3 points| Let the margin v > 0 and learning rate R > 0. For a given
(x4, write down the update rule for the Perceptron with margin.

If < then w' =
otherwise w' =
2. [4 points| We described a specific data set S in a table earlier. Using an
initialization of w' = 0, that is, the zero vector, a learning rate of R = 1

and margin v = 1.5, complete the columns under (b) of the table using the
Perceptron with margin learning algorithm. 3



m Introduction: Basic problems and questions
m A detailed example: Linear threshold units

m Two Basic Paradigms:

¢ PAC (Risk Minimization)

¢ Bayesian theory
m Learning Protocols:

¢ Supervisediynsupervised; Sersupervised
m Algorithms

¢ DecisionTrees (C4.5)

¢ [Rules and ILP (Ripper, Foil)]

C Linear Threshold Units\(innow; Perceptron Boosting; SVMs; Kernels)
A Gradient Descent

¢ NeuralNetworks (Backpropagation
¢ Probabilistic Representations (naiBayes; Bayesidrees; Densitie$
C Unsupervised /Semi supervisd€ivi

m  Clustering; Dimensionality Reduction
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» Modeling

¢ How to formulate application problems as machine
learning problems ? How to represent the data?

¢ Learning Protocols (where is the data & labels coming
from?)

» Representation
¢ What are good hypothesis spaces ?
¢ Any rigorous way to find these? Any general approach?

m Algorithms

What are good algorithms?
How do we define success?
Generalization Vs. over fitting
The computational problem

G
G
G
G
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» What is ournnstance space?
¢ Gloss: What kind of features are we using?

» What is ourabel space?
¢ GlossWhat kind of learning task are we dealing with?

» What is ournypothesis space?
¢ GlossWhat kind of model are we learning?

» Whatlearning algorithndo we use?
¢ GlossHow do we learn the model from the labeled data?

(Whatis ourloss functiofevaluation metric?)
¢ GlossHow do we measure success?
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Target function (concept)fhe true function f 89 X[ I 6 S 2

Concept:Boolean function. Example for which f (x)= 1 are
positiveexamples; those for which f (x)= O aregative
examples (instances)

HypothesisA proposed function h, believed to be similar to f.
The output of our learning algorithm.

Hypothesis spac&:he space of all hypotheses that can, in
principle, be output by the learning algorithm.

ClassifierA discrete valued function produced by the learning
Ff 3Z2ZNAUKYDP ¢KS LlZ2aaAiAotsS Ot d:
class labels(In most algorithms the classifier will actually
NBudzNYy | NBFt It dz=SR Tdgy Ou A 2

Training examplesA set of examples of the form {(x, f (x))}



Protocol: Supervised learning

N

Input ,1 ............. (‘ Output

XN X

An itemx

drawn from an

: Target function ™

y = f(x)

L 4
*
[ | L 4
[ L 4
[ | .‘
lllllll ‘lllllllllllll{lll &
L 4
*

| earned Model
Y = di)

W Y

An itemy

drawn from alabel

Instance spacX

/ "
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» Training and test items atadependently and
identically distributedi(i.d.):

¢ There is a distributio®(X,Y) from which the data
D ={, y)} Is generated.

A{2YSUAYSEA AlQBXMaSRREHAX) 62 NB G
UsuallyP(X, Y) is unknown to us (we just know it exists)

¢ Trainingand test data arsamples drawifrom the
sameP(X,Y): they areidentically distributed

¢ Each(x, y) is drawnndependentlyfrom P(X,Y)
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Supervised learning: Training

"Labeled Trainin\g

Data
D train
(%12 Y1)

f)_(g_:_\lg)
X

L earned
model

ax)

L earning
Algorithm

= -()_(NJ_YN) /

Give the learner examples D ran
The learner returns a modebg(
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Supervised learning: Testing

Apply the model to the raw testata

[ Raw Tesf

| earned

- — J

Midterm Review

model

ax)

‘Predicted
abels

0 ()( test)
axe)

a(xQ)
X ®

A,

C346FallQ6
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Test

Y test
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Supervised learning: Testing

Evaluate the model by comparing the predicted
labels against the test labels

i Raw Tesf

| earned

- J

Midterm Review

model

ax)

‘Predicted
abels

0 ()( test)
axe)

a(xQ)
X ®

A,
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» Machine Learning is an Experimental Field and we
will spend some time (in Problem sets) learning how
to run experiments and evaluate results

¢ First hint: be organized; write scripts

» Basics:
¢ Split your data into two (or three) sets:
A Training data (often 790%)
A Test data (often 120%)
A Development data (120%)

» You need to report performance on test data, but you

are not allowed to look at it.
¢ You are allowed to look at the development data (and use it
to tweak parameters)
18



train

» Instead of a single tedtaining split:

m Split data into N equadized parts

_INEN[E NN

the accuracy

Midterm Review

il i

C346FallQ6

[N

» Train and test N different classifiers
» Report average accuracy and standard deviation of

[T
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A hierarchical data structure thatpresents datdy
Implementing a divide and conquer strategy

m Can be used as a ngarametric classification and
regression method

m Given a collection of exampldsarn a decision tree
that represents It.

m Use this representation tolassify new examples

P =
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S
B A
C
d
[
«"'Q
A Evaluation of a Color
R .
) \;,,\° Decision Tree Learning a
& Decision Tree

lov
lov
1>

A c
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High Entropyc High level of

Uncertainty I nfo rm a.tl O n G aip/ouﬂOOk

Low Entropyc No Uncertainty.

_ _ _ _ Sunny Overcast Rain
The information gain of an attribute a Is the expected

reduction in entropy caused by partitioning on this
attribute

Gain(Sa)=Entropy(S) Q S, |Entropy($)

v values(a)

where S, is the subset o6for which attributea has
valuev, and the entropy of partitioning the data is
calculated by weighing the entropy of each partition
by its size relative to the original set

Partitions of low entropy (imbalanced splits) lead to high
gain

Go back to check which of the A, B splits is better
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wNot the most general setting
for on-line learning
wNote: online learning protocal

O Model:protocol v.s online learning algorithm
¢ Instancespace: X (dimensionalityn)
b°\ c Target f: X- {0,1}, fl C, conceptlass (parameterizedy n)
o
S = Protocol
& o .

& ¢ learneris givenx| X
O

¢ learnerpredicts h(x), and is then given f(x) (feedback)

» Performancelearner makes a mistake when h({xf(x)

¢ numberof mistakes algorithm A makes on sequenad S
examples for the target function f.

M A(C) =max ;. s MA(T,5)
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» We want to be able to say something rigorous about
the performance of our learning algorithm.

» Evaluating a learning algorithm:

¢ Experiments

c COLT
A E.g PAC theory, VC theory, Mistake bound
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m Issues:
¢ Importanceof Representation
¢ Complexity of Learning
¢ ldea of Kernel Basddethods
¢ More about features

Midterm Review [ {nnc CI ¢t

» learn a linear function over the featuspace
¢ Perceptron (+ many variations)
¢ Winnow
¢ General Gradient Descent view

QmMmcC
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LetC be a concept class. LearnG
Halving

Inthe ith stage of thealgorithm:

¢ C. allconcepts in Consistentwith all 1 previously seen
examples

Givenan examplee consider the valuege)  fof,allC
and predict by majority.

Predictlif [{f, | C; fi(e)=0<I{f, | C; fi(e)=1]
ClearlyC.,, 1 C, and if a mistake is made iitlthe
examplethen |C,, < 5|Ci |

TheHalving algorithm makes at most log(|C|)
mistakes
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» Online, mistake driven algorithm.

» Rosenblat{1959) suggestethat when a target
output value igrovidedfor a single neuron with
fixed input, it canncrementallychange weights and
learn to produce theutput using thePerceptron

learningrule
$ m (Perceptron== Linear Thresholdnit)
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» We learn f:X {-1,+1} representedas f=sgr{wix)
» WhereX={0,1P or >R andw R
» Given Labeled example&x, v1), (%, y,0 2xX% ¢.)}

1. Initialize w=0 R"
& 2. Cycle through all examples
ég? a. Predict the label of instance x to ®8eQsgr{w{x)
b. Ife . § updatethe weight vector:
w=w+ryx (r-aconstant, learning rate)
hiKSNBAASSE AT eQreées ff
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PerceptronConvergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e, the data is linearly separab)e¢he
perceptronlearning algorithnwill converge

¢ Howlong would it take to converge

m PerceptronCycling Theorem:

& » If the training data is nolinearly separable the
& perceptron learning algorithm will eventually repeat
N -
N the same set of weights and therefore enter an
Infinite loop.

¢ Howto provide robustness, more expressivity ?
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Maintains a weight vectowl RN, w,=(0,X,0).
Upon receiving an examplel R\

» Predicts according to the linear threshold function
wox ? 0.

m Theorem[Novikoff, 1963 Let(x;; y1).X,: %; V), be a
sequence of labeled examples with <'\| || Rahd

| {-1,1 for alli.Letul <N, g>0be such that,
|| ul| = 1and y. uwx 2 gfor all i. Complexity Parameter

Then Perceptron makes most R/ g2 mistakes on
this example sequence

(see additional notes)
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Initialize:g=n; w, =1

Prediction is 1 iff w{x2qg

If no mistake:do nothing

If f(x)=1 but wfx<g, w,« 2w, (if x, =1) (promotion)
If f(x)=0 but wix2g¢qg, w,« w/2 (if x,=1)(demotion)

» TheWinnow Algorithm learns Linear Threshold
Functions.

S

S
S

m Forthe class oflisjunctions:
¢ Insteadof demotionwe can useslimination
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» Claim Winnow makes O(k log n) mistakes en k
disjunctions

Initialize :qg =n; w, =1

Prediction is 1 iff w {x 2 qg

If no mistake :do nothing

If f(x) =1 but wix<g , w,« 2w, (if x, =1) (promotion)
If f(x) =0 but wix2¢qg , w,« w./2 (if x, =1)(demotion)

= U -# of mistakes on positive examples (promotions)
u_V-# of mistakes on negative examples (demotjons

S
&

&
# of mistakes: u+v<3u+2=0(klogn)
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A

New discriminator in functionally simpler

XX X5 UX X, X5 UX XX y, Uy, Uy,
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Given example&=(,y)}, ,,from a distribution oveXy, we are
trying to learn a linear unctlon parameterized by a weight veato
sothat expected risk function

Jw) £ Qe.w) ~=~Um a, , Q@, w)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

Wi =W, G Iy G, Q@ Wy) =W, G Ty G
Whereg_t=g, Q&, w,) is the gradient with respect to at timet.

The difference between algorithms now amounts to choosing a
different loss functiorQ(z w)
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Wi =W, G 1 6, Q@, Wy) =W, Q1 G,

LMS:Q((X, y)w) =172 (y ¢ W ¢X)
leads to the update rule (Also calledA R NRAdalDE:
Wipg =W, + 1 QW EX) %
m Here, even though we make binary predictions basedign (wex)
we do not take thesignof the dotproduct into account in the loss.

E(z)

Another common loss function is:
Hinge loss:

Q((X, y)w) =max(0, 1-y w ¢x)
m This leads to th@erceptronupdate rule:

> 2
-2 =1 0 1 2

Ify;w; ¢x > 1 (No mistake, by a margin): No update
m Otherwise  (Mistake, relative to margin w,, =W, +ry, X
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Wi =W, G 1 6, Q@, Wy) =W, Q1 G,

(notice that this is a vector, each coordinate (feature) has its wy}jrandgt j)

So far, we used fixed learning ratesr,, but this can change.

AdaGracaaltersthe update to adapt based on historical informatior
so that frequently occurrinfeatures inthe gradients get small
Iearnlng rates and mfrequent features get hlgher ones.

¢f,<S ARSI A a FTINR Yo { TONBAYdzSiyipa®y 6T Sl ¢
u )/u)\zya G2 NI NB odzi Ay T2N)

0S
éT)\y I G LISNJ FSI (dzNBjéas:t S| Ny 2
rej = 1G>

whereG; =&,- ; &% the sum of squares of gradients at featyre
until timet.

Overall, the update rule fohdagrads:
Wipq =W - G I1(G )2

This algorithm is supposed to update weights faster than Percep
or LMS when needed.
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The more general formalism addsegularizationterm to the risk
function, and attempts to minimize:

. Jw) =, 1, Qg W) +TT R (w;) .
2 KSNBE w A& dzaSR (2 SyFT2NDS a4z

LMS caseQ((x, yyw) =(yc w ¢x)

¢ R(w) 94 w] %gives the optimization problem called Ridge Regression.
¢ R(w) q w] , gives the problem call the LASSO problem

Hinge Loss cas&)((X, y)w) =max(0, 1- y w ¢X)
¢ R(w) 94 w] 2, gives theproblemcalledSupport Vector Machines

Logistics Loss cas@((x,y),w) = log(1l+expfy wex})

¢ R(W =] w] 3 givesthe problem called.ogistics Regression

These are convex optimization problems and, in principle, the same gra
descent mechanism can be used ip all cases. X

2 S gAaft asSSsS tIFr0SNIgKe A0 YI{1Sa 3
OZ2YUNRE GaqaAYLIX AOAUEED
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m Multi-layer network were designed to overcome the
computational éxpressivity limitation of a single

threshold element. —
activation
» The idea is tetackseveral )
layers of threshold elements,
each layer using the output of
the previous layer as input.

Output

» Multi-layernetworkscan represent arbitrary
functions, but buildingeffective learning methods for
such networkwas [thought to be] difficult.
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» Neuron i ; cby
weighte The parameters so far” -
The set of connective weights
& | The threshold valueY
® ) 1_
(b Il +e~* r
) 5 » €
.{\.\OQ 00 _
(\\Q W
QQ/
0@*‘ ¢ Use a nodinear, differentiable output function such as the
¢ sigmoid or logistic function
c Netinputto aunitisdefinedas: T A OBUO 8b
P

¢ Output of a unit is defined asg

p Adb1 AO"Y)
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= Weights of output units:
c U is changed by:
30 'Y(c‘) € )e (p € )co
'W d)
where

(0 €)(p ¢)
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m Create a fully connected three layer network. Initialize weights.

»  Until all examples produce the correct output withiror other
criteria)

Foreach example in the training set do:
1. Computethe network output for this example
2. Computethe error between the output and targetalue
1 © €)@ ¢£)
1. Foreach output unitk, compute error term

1 ¢(p ¢£)8 10
N ()
1. Foreach hidden unit, compute error term
30 N w
1. Updatenetwork weights

Endepoch
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» What general laws constrain inductive learnihg

¢ What learning problems can be solved ?
¢ Whencan we trust the output of a learning algorithm ?

m  We seek theory toelate
¢ Probabilityof successfulearning
¢ Numberof trainingexamples
¢ Complexityof hypothesisspace
¢ Accuracyto which target concept iapproximated
¢ Mannerin which training examples are presented
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m Assume the data is linearly separable.

m  Sample complexity:
Cc Suppose we want to ensure that our LTU has an error(catenew

o examples) of less thamwith highprobability @t least (-d))
,,;9& ¢ How large does (the number of examples) must be in orderachieve
q§\ this ? It can be shown that fordimensional problems
N
\g m = O(1/e[In(1/ d) + (n+1)n(1/ e)].

m Computationacomplexity:Whatcan be said?

¢ It can be shown that there exists a polynomial time algorithnfifading
consisteniLTU (by reduction from linear programming).

¢ [Contrast with the NP hardness forldoss optimization]
¢ (Online algorithms have inverse quadratic dependence on the margin)
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Consider a concept cla€slefined over an instance spae
(containing instances of lengtf), and a learnekLusing a
hypothesis spaceil.

CisPAC learnablby LusingH if
c forallfl G
¢ for all distributionD over X and fixedO<e, d <1,

L, given a collection ah examples sampled independently
according taD produces

¢ with probability at leas{1- d) a hypothesi$ | Hwith error at
moste, (ErrorD=Prf(x) : = h(x)])

where m is polynomial it/ e, 1/ d, n andsize(H)

Cisefficiently learnablef Lcan produce the hypothesis time
polynomial inl/ e, 1/ d, n andsize(H)
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We want this probability to be smaller thdinat is:

m
H|(te) <d

IN(H|) + nin(1-€) < In(d)

What do we know now
about theConsistent
Learner scheme?

(with = Ix+¥/ 2 + > 1x;in (1-e) <- € gives a safed)

m>§{ln(| H )+ In(1/ )}

(gross over estimate)

We showed that a
m-consistent hypothesis
generalizes wellerr<®)
(Appropriate mis a
function of|H|, °, )

|t i s call ed Occamoprefareacavargs smat c a u s

hypothesis spaces

What kind of hypothesis spaces do we want ?

To guarantee consistency we nedeiC. But do we want the smallégpossible ?

Large ? Small ?
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Consistent Learners

Immediately from the definition, we get the following general scheme
for PAC learning

Givena sample D afn examples

Findsomeh | H that isconsistentwith allm examples

We showed thatf mis large enough, a consistent hypothesis must be close
enough tof

Check tham is not too large (polynomial in the relevant parameters) : we
showed that thedclosenes§guarantee requires that

m>1/° (In|H|+In1/")
Showthat the consistenthypoth, —iL_Hcan be computed efficiently

_ _ We need to show that m is polynomial in n when |H| is &
Inthe case of conjunction function of n. That is, showirg| H| is polynomial in n

We used the Elimination algorithm to find a hypothesithht isconsistent
with the training set (easy to compyte

We showeddirectlythat if we have sufficiently many examplgs{ynomial
in the parameters), than h is close to the target function.
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The previous analysis was restricted to finite
hypothesis spaces

Some infinite hypothesis spaces are more expressive
than others

¢ E.g., Rectangles, vs.-Brdes convex polygons vs. general
convex polygons

¢ Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite
hypothesis space other than its size

TheVapnikChervonenkisdimension YVC dimension
provides such a measure.

Analogous tdH| , there are bounds for sample
complexity usin¢y C(H)
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AWe say thatset S of examplesshattereoly aset of functionsfH
for every partitiohthe examples in S into positive and negative
there is a functimnH that gives exactly these labels to the exam

Halfispaces in the plane:

/1. If the 4 points\

form a convex
polygorX O A ¥
2. If one point is

sets of one, two or three points can be shattez\inside the convex

All sets of
three?

i : hull defined by th
but there isoset offourpoints that can be shatte’ other freot

(if not?)
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VC Dimension

AWe say thatset S of examplesshattereoly aset of functionsfH
for every partitiohthe examples in S into positive and negative
there is a functionH that gives exactly these labels to the exam

ATheVC dimensi@f hypothesis spadever instance spate
IS the size of thergest finite subset of X that is shattered by H.
[ Even if only one subset of this size doe§ it!
Alf there exists subset of sidéhat can be shattered, WéH) >=d
Alf d aherVC(H) < d

—

VC(Half intervals] (nosubset of siZ&can be shattered)
VC( Intervalsy= (nosubset of siZ&can be shattered)
VC(Hal§paces in the plang&) Hnosubset of sizecan be shattered)

_ [ Some are shattered, but some z;re
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Sample Complexity & VC Dimensi

AUsing VC(H) as a measure of expressiveness w® beam ahgorithn
for infinite hypothesis spaces.

A Given a sample Drofxamples
A Find somkl H that izonsisterwith alinexamples
A If
A m>1{8VC(H)Iog£3+4Iog(g)}
e~ € a

A Then with probability at i@ad)t h ha

What if H is
(that Is, his polynomial we havA&learning algorithm;| finite? }
to be efficient, we need to produce the hypetthesstly.

ANotice that to shatteexamples it must be #{t2™ solog(|H|) VC(H)
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= No Distributional Assumption

m Training Distribution is the same as the Test
Distribution

» Generalization bounds depend
on this view and affects
model selection
Ery(h) <Erggh) +
P(VC(H), lod{ ),1/m)

m This is also called the

error

Structure

A underfiming besrmodel overfimng

bound on test error

capacity term

training error

&>

OStructural Risk Minimizati@mprinciple

Midterm Review [ {nnc
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m OStrong PACalgorithm:
¢ for anydistribution
c 8° >0
¢ Given polynomiallynany randonmexamples
¢ Findshypothesis with error ° with probability, (1-)

m OWeale PAGalgorithm
¢ Same but only for° - %-®

» [Kearns & ValianB8|:

¢ Doesweak learnability imply strong learnability

¢ Anecdote: the importance of the distribution free assumption
A 1t does not hold if PAC is restricted to only the uniform distribution, say
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m Giventraining set(x;, y;0 2 x..%§.,) O
m y; 2 {-1, +1} is the correct label of instance&xX
mC2NJ 0 ' mZ XZI ¢

¢ Construct aistributionD,2y 9 MZ XYY
¢ Findweak hypothesi® a NXzf S 2 F (G KdzY o€ 0
h,: X! {-1, +1}
with small error®, on Q:
=P [h (%) =Y]
m Output:final hypothesi;
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¢ Dy(i)=1/m
¢ GivenD, and h, :
¢ Dy = D)z £ et

D(i)/z £ €

Think about unwrapping it all
Constructing), 2y dmMI XY the way to 1/m

ify, =h,(xi) —— <1; smaller weight

ity =h(x) —— >1, larger weight

- @z £ exp(-—, y; hy (%))
where z, = normalization constant
and

~=Yen{@e)/e}

Notes about-,:

¢
¢
¢

Positivedue to the weak learning
assumption

Exampleshat we predictedcorrectlyare
demoted others promoted

Sensible weighting schemebetter
hypothesis (smaller errdy larger weight

m Final hypothesigt, , (X) = signd; - h(x) )
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m A separatindiyperplanew’x+b=0

Assumptiondata is linear
separable
B « Distance between
o I|[x X . w' x+b=+1and-1is 2/ [|w]
o ® IS XX ¢ ldea:
.l:i lexxxx '.: . .
®e |l X gxX ot 1. Consider all possible
Lt | Xxxx te L with different angles
*le S xx X": *le 2. Scalew such that the
AR RIOE g™ e constraints are tight
il h L 3. Pick the one with largest
' i margin
whx +b, 1 if y;=1 _
wrx +b- -1 if y,=-1 w'x+b=1
3 w' x+b=0
=>wWULU w w T - -
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® x
| 1%
'. %X xX : :
e e 1L X X x The margin of a linear separatot
. o0 ! !x XX x T —
.I. N % xxx W X+b—0
* & o :
el T XX Is2/ ||
et il xX
* o X oy X .
SOl x max 2/ |jwj| = min |||
o =minY¥2w'w
** | h
rh J

st Ux @ w phH (o)~ "Y
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m This, and other properties of Support Vector
Machines are shown by moving to tdeal problem

» Theorem:Letw* be the minimizer of
the SVM optimization problerft**)
for S = ¥; y)}-

Letl={:y, (W % +b)=1}.
Then there exists coefficientg >0
such that:

W =a, Y X
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08-LecSvm-dual.pdf

Examples:x | {0,1}"; Nonlinear mapping:x - t(x),t(x)I R"

Hypothesis:w Il R™;Decision function: f(x) =sgn(g§ :l'lwit(x)i) =sgn(w Tt(x)

If fx®), y®, w « w + ry®x®)

» LT yQ Aa | NHSWZEexgi&ly. Bdwgvgr2heveiphbveddiia S v
can bewritten asa linear combination of examples:

m . .
w =g raytx")
ji=1

= Where| isthenumber of mistakesnade onw
m Then we can compute f(x) based ab  and)

f(x) = sgn(w Tt(x)) = sgn(& ra,y®t(x?)1t(x)) = sgn(A ra,y?K (x?,x))

j=1 j=1
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Examples:x | {0,1}"; Nonlinear mapping:x - t(x),t(x)I R"

Hypothesis:w i R";Decision function: f(x) = sgn(w ft(x))
= In the training phase, we initializeto be an alzerosvector.

= For training sample® ho  hinstead of using the original Perceptron
update rule in theY space

If fx®), y®, w « w +r y®t(x®)

we maintains by

if f(x“)=sgn(Gray?kx?,x%)), y¥ then a,« a, +1
i=1

based on the relationship betweenand) :

w =g ra,yt(x?)
j=1
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A

New discriminator in functionally simpler

XX X5 UX X, X5 UX XX y, Uy, Uy,
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Original feature space

X2

-2 -1.5 -1 -05 O 05 1 15 2
x1

f(x) = 1iff X2+ x,2 O 1
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In order to deal with this, we

Introduce two new Concepts: | Transformed feature space
m Dual Representation

X % Ky K % % %
XX Ty ¥ X ox x X % ¥ Kx *
H KX ™ X x ~
» Kernel (& the kernel trick) | " % . PR T
¥t x & « « * ¥
* * % X % * *
R ol yé??:(&* x * * %* «
X R Ty ox X *, X xe *
Lo R x
ev x ’i‘;‘,@( I I L A B T RV
Al & %( LT e ¥ X xx ¥ K §ox %
Al A Fee ¥ X * *
% * * * %
X v B x%g 3 X *x%:i )é:‘ o X ¥
oK * X a)éé * £ *
* * * % * * Xy *
X *

Transform datax =(xX;, %) =>XC= (X2, %2)

f(xQ=1iff xQ+>xQ XK1
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) m Kernel TrickYouwant to work with degree 2 polynomial features(x).
Then, your dot product will be in a space of dimensionaility+1)/2 The
kernel trick allows you to save and compute dot products iman
dimensional space.

m Can we use any K(.,.)?

¢ Afunction Kg,2 is a valid kernef it corresponds to an inner product in some
(perhapsnfinite dimensiongl feature space.

m Takethe quadratic kernelk(x,2 = &™2)?
m Example: Direct construction (2 dimensional, for simplicity):
 KX,2 = (42 +%2)° = X222+2% Z; X, Zy + %2 2,2

4 8 = (%2, sar{2} X%, %2) (72, sari{2} zz,, z?)
O
|
|

=©(X)"'©(z) A A dot product in an expanded space.
It is not necessary to explicitly show the feature functgn

Generalcondition: construct the Gram matrix{x ,z); OKSO1 U K|
positivesemi definite.
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