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Why does it work?

We have not addressed the question of why does this 
classifier performs well, given that the assumptions 
are unlikely to be satisfied.

The linear form of the classifiers provides some hints.
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•In the case of two classes we have that:

•but since

•We get (plug in (2) in (1); some algebra): 

•Which is simply the logistic (sigmoid) function
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Naïve Bayes: Two Classes

We have: 
A = 1-B; Log(B/A) = -C. 
Then:
Exp(-C) = B/A = 
= (1-A)/A = 1/A – 1 
=   + Exp(-C) = 1/A 

A  = 1/(1+Exp(-C))
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Why Does it Work? 
Learning Theory 

 Probabilistic predictions are done via Linear [Statistical Queries] Models [Roth’99]

 The low expressivity explains Generalization + Robustness

Expressivity (1: Methodology) 

 Why is it possible to (approximately) fit the data with these models? Is there a 

reason to believe that these hypotheses minimize the empirical error?

 In General, No. (Unless it some probabilistic assumptions happen to hold).    

 But: if the hypothesis does not  fit the training data, augment set of features  

 But now, you actually follow the Learning Theory Protocol: 

 Try to learn a hypothesis that is consistent with the data

 Generalization will be a function of the low expressivity

Expressivity (2: Theory) [Garg&Roth (ECML’01)]: 

 Product distributions are “dense” in the space of all distributions. Consequently, 
for most generating distributions the resulting predictor’s error is close to 
optimal classifier (that is, given the correct distribution)

|S| /|} lh(x)|Sx  {|(h)ErrS 
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What’s Next? 
(1) If probabilistic hypotheses are actually like other linear 
functions, can we interpret the outcome of other linear learning 
algorithms probabilistically?
 Yes

(2) If probabilistic hypotheses are actually like other linear 
functions, can you train them similarly (that is, 
discriminatively)?
 Yes.

 Classification: Logistics regression/Max Entropy

 HMM: can be learned as a linear model, e.g., with a version of 
Perceptron (Structured Models class)
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Recall: Naïve Bayes, Two Classes
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In the case of two classes we have:

but since

We get (plug in (2) in (1); some algebra): 

Which is simply the logistic (sigmoid) function used in the 

neural network representation.
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Conditional Probabilities

(1) If probabilistic hypotheses are actually like other linear 
functions, can we interpret the outcome of other linear 
learning algorithms probabilistically?
 Yes

General recipe
 Train a classifier f using your favorite algorithm (Perceptron, SVM, 

Winnow, etc). Then:

 Use Sigmoid1/1+exp{-(AwTx + B)} to get an estimate for  P(y | x)

 A, B can be tuned using a held out that was not used for training.

 Done in LBJava, for example
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(2) If probabilistic hypotheses are actually like other linear 
functions, can you actually train them similarly (that is, 
discriminatively)?

The logistic regression model assumes the following model:

P(y= +/-1 | x,w)= [1+exp(-y(wTx + b)]-1

This is the same model we derived for naïve Bayes, only that 
now we will not assume any independence assumption. We 
will directly find the best w. 

Therefore training will be more difficult. However, the weight 
vector derived will be more expressive.
 It can be shown that the naïve Bayes algorithm cannot represent all 

linear threshold functions.

 On the other hand, NB converges to its performance faster. 

Logistic Regression
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Logistic Regression (2)

Given the model:

P(y= +/-1 | x,w)= [1+exp(-y(wTx + b)]-1

The goal is to find the (w, b) that maximizes the log likelihood of the data: 
{x1,x2… xm}.

We are looking for (w,b) that minimizes the negative log-likelihood

minw,b 1
m log P(y= +/-1 | x,w)= minw,b 1

m log[1+exp(-yi(w
Txi + b)]

This optimization problem is called Logistics Regression

Logistic Regression is sometimes called the Maximum Entropy model in the 
NLP community (since the resulting distribution is the one that has the 
largest entropy among all those that activate the same features).
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Logistic Regression (3)

Using the standard mapping to linear separators through the origin, we 
would like to minimize: 

minw 1
m log P(y= +/-1 | x,w)= minw, 1

m log[1+exp(-yi(w
Txi)]

To get good generalization, it is common to add a regularization term, and 
the regularized logistics regression then becomes:

minw f(w) = ½ wTw + C 1
m log[1+exp(-yi(w

Txi)], 

Where C is a user selected parameter that balances the two terms. 
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Comments on discriminative Learning

minw f(w) = ½ wTw + C 1
m log[1+exp(-yiw

Txi)], 

Where C is a user selected parameter that balances the two terms. 

Since the second term is the loss function

Therefore, regularized logistic regression can be  related to other learning 
methods, e.g., SVMs. 

L1 SVM solves the following optimization problem:

minw f1(w) = ½ wTw + C 1
m max(0,1-yi(w

Txi) 

L2 SVM solves the following optimization problem: 

minw f2(w) = ½ wTw + C 1
m (max(0,1-yiw

Txi))
2
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Optimization: How to Solve
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All methods are iterative methods, that generate a sequence wk that 
converges to the optimal solution of the optimization problem above.

Many options within this category: 
 Iterative scaling: Low cost per iteration, slow convergence, updates                              

each w component at a time
 Newton methods: High cost per iteration, faster convergence

 non-linear conjugate gradient; quasi-Newton methods; truncated Newton 
methods; trust-region newton method.

 Limited memory BFGS is very popular 

 Stochastic Gradient Decent methods

 The runtime does not depend on n=#(examples); advantage when n is very large. 

 Stopping  criteria is a problem: method tends to be too aggressive at the beginning 
and reaches a moderate accuracy quite fast, but it’s convergence becomes slow if 
we are interested in more accurate solutions.
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Summary

(1) If probabilistic hypotheses are actually like other linear 
functions, can we interpret the outcome of other linear 
learning algorithms probabilistically?
 Yes

(2) If probabilistic hypotheses are actually like other linear 
functions, can you train them similarly (that is, 
discriminatively)?
 Yes.

 Classification: Logistic regression/Max Entropy

 HMM: can be trained via Perceptron (Structured Learning Class: Spring 
2016)
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Conditional Probabilities
Data: Two class (Open/NotOpen Classifier)
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The plot shows a 
(normalized) histogram 
of examples as a 
function of the dot 
product 

act = (wTx + b) 

and a couple other 
functions of it.

In particular, we plot 
the positive Sigmoid:

P(y= +1 | x,w)= [1+exp(-(wTx + b)]
-1

Is this really a probability distribution? 
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Mapping Classifier's activation to Conditional 

Probability
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Plotting: For example z:

y=Prob(label=1 | f(z)=x)

(Histogram:  for 0.8, # (of examples 

with f(z)<0.8))

Claim: Yes; If Prob(label=1 | f(z)=x) = x

Then f(z) = f(z) is a probability dist.

That is, yes, if the graph is linear.

Theorem: Let X be a RV with 

distribution F. 

(1) F(X) is uniformly distributed in (0,1). 

(2) If U is uniform(0,1), F-1(U) is 

distributed F, where F-1(x) is the value 

of y s.t. F(y) =x. 

Alternatively:

f(z) is a probability if:  ProbU {z| Prob[(f(z)=1 · y]} = y

Conditional Probabilities
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Plotted for SNoW (Winnow). 
Similarly, perceptron; more tuning 
is required for SVMs.


