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f:XV,  finite set of values

Instances xX can be described as a collection of features 

x = (x1, x2, … xn)    xi 2 {0,1} 

Given an example, assign it the most probable value in V 

Bayes Rule:  

Notational convention: P(y) means P(Y=y)

)x,...,x,x|P(vargmax x)|P(vargmax v n21jVvjVvMAP jj  

  



vMAP   argmaxv j V

P(x1 ,x2,...,xn | v j)P(v j)

P(x1,x2 ,...,xn )
 

         argmaxv j VP(x1 ,x2,...,xn | v j)P(v j)

Bayesian Classifier
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Bayesian Classifier

VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Given training data we can estimate the two terms.

Estimating  P(v) is easy. E.g., under the binomial distribution 
assumption, count the number of times v appears in the training data. 

However, it is not feasible to estimate P(x1, x2, …, xn | v )

In this case we have to estimate, for each target value,  the probability 
of each instance (most of which will not occur).

In order to use a Bayesian classifiers in practice, we need to make 
assumptions that will allow us to estimate these quantities.
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VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target value

Naive Bayes

3



Bayesian Learning CS446 –Spring ‘17

Naive Bayes (2)
VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target 
value

P(x1 = b1, x2 = b2,…,xn = bn | v = vj ) = ¦1
n P(xn = bn | v = vj )

Generative model:

First choose a value vj V                        according to P(v)

For each vj :  choose x1 x2, …, xn according to P(xk |vj )

4
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Naive Bayes (3)
VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target value

P(x1 = b1, x2 = b2,…,xn = bn | v = vj ) = ¦1
n P(xi = bi | v = vj )

Learning method: Estimate n|V| + |V| parameters and use them to make 
a prediction.  (How to estimate?)

Notice that this is learning without search. Given a collection of training 
examples, you just compute the best hypothesis (given the assumptions). 

This is learning without trying to achieve consistency or even approximate 
consistency.

Why does it work?
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• Notice that the features values are conditionally independent 
given the target value, and are not required to be independent.

• Example: The Boolean features are x and y. 
We define the label to be  l = f(x,y)=xy
over the product distribution:     p(x=0)=p(x=1)=1/2 and    p(y=0)=p(y=1)=1/2 
The distribution is defined so that x and y are independent:   p(x,y) = p(x)p(y)  

That is:   

• But, given that l =0:
p(x=1| l =0) = p(y=1| l =0) = 1/3

while:             p(x=1,y=1 | l =0) = 0
so x and y are not conditionally independent.

Conditional Independence

6

X=0 X=1

Y=0 ¼ (l = 0) ¼ (l = 0)

Y=1 ¼ (l = 0) ¼ (l = 1)
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• The other direction also does not hold. 
x and y can be conditionally independent but not independent.

Example: We define a distribution s.t.:
l =0:   p(x=1| l =0) =1,  p(y=1| l =0) = 0
l =1:   p(x=1| l =1) =0,  p(y=1| l =1) = 1  
and assume, that:    p(l =0) = p(l =1)=1/2

• Given the value of l,      x and y are independent (check)

• What about unconditional independence ?
p(x=1) = p(x=1| l =0)p(l =0)+p(x=1| l =1)p(l =1) = 0.5+0=0.5 
p(y=1) = p(y=1| l =0)p(l =0)+p(y=1| l =1)p(l =1) = 0+0.5=0.5
But,
p(x=1, y=1)=p(x=1,y=1| l =0)p(l =0)+p(x=1,y=1| l =1)p(l =1) = 0 

so x and y are not independent.

Conditional Independence
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X=0 X=1

Y=0 0 (l= 0) ½   (l= 0)

Y=1 ½ (l= 1) 0    (l= 1)



Bayesian Learning CS446 –Spring ‘17

Day    Outlook    Temperature      Humidity    Wind PlayTennis

1       Sunny            Hot              High          Weak            No

2       Sunny            Hot              High         Strong           No

3       Overcast        Hot              High          Weak            Yes

4       Rain              Mild              High          Weak            Yes

5       Rain              Cool             Normal       Weak            Yes

6       Rain              Cool             Normal      Strong           No

7       Overcast        Cool             Normal      Strong          Yes 

8       Sunny            Mild             High          Weak             No

9       Sunny            Cool             Normal      Weak            Yes

10      Rain              Mild              Normal      Weak            Yes 

11      Sunny            Mild              Normal     Strong           Yes

12      Overcast        Mild              High         Strong           Yes

13      Overcast         Hot              Normal     Weak             Yes

14      Rain               Mild              High        Strong            No 


i jijVvNB )v|P(x)P(vargmax v

j

Naïve Bayes Example
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• How do we estimate                                 ?

   i ino}{yes,vNB v)|nobservatioP(xP(v)argmax v

 v)|ionP(observat

Estimating Probabilities
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• Compute P(PlayTennis= yes);  P(PlayTennis= no)

• Compute P(outlook= s/oc/r      | PlayTennis= yes/no) (6 numbers)

• Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)

• Compute P(humidity= hi/nor    | PlayTennis= yes/no) (4 numbers)

• Compute P(wind= w/st            | PlayTennis= yes/no) (4 numbers)


i jijVvNB )v|P(x)P(vargmax v

j

Example
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• Compute P(PlayTennis= yes);  P(PlayTennis= no)

• Compute P(outlook= s/oc/r      | PlayTennis= yes/no) (6 numbers)

• Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)

• Compute P(humidity= hi/nor    | PlayTennis= yes/no) (4 numbers)

• Compute P(wind= w/st            | PlayTennis= yes/no) (4 numbers)

•Given a new instance:
(Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

• Predict: PlayTennis= ?


i jijVvNB )v|P(x)P(vargmax v

j

Example
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•Given: (Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

P(PlayTennis= yes)=9/14=0.64            P(PlayTennis= no)=5/14=0.36

P(outlook = sunny | yes)= 2/9         P(outlook = sunny | no)= 3/5 

P(temp = cool | yes)    = 3/9             P(temp = cool | no)  = 1/5

P(humidity = hi |yes)    = 3/9             P(humidity = hi | no)  =  4/5

P(wind = strong | yes)  = 3/9            P(wind = strong | no)= 3/5

P(yes, …..) ~ 0.0053                          P(no, …..) ~ 0.0206 


i jijVvNB )v|P(x)P(vargmax v

j

Example
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•Given: (Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

P(PlayTennis= yes)=9/14=0.64            P(PlayTennis= no)=5/14=0.36

P(outlook = sunny | yes)= 2/9         P(outlook = sunny | no)= 3/5 

P(temp = cool | yes)    = 3/9             P(temp = cool | no)  = 1/5

P(humidity = hi |yes)    = 3/9             P(humidity = hi | no)  =  4/5

P(wind = strong | yes)  = 3/9            P(wind = strong | no)= 3/5

P(yes, …..) ~ 0.0053                          P(no, …..) ~ 0.0206 

P(no|instance) = 0.0206/(0.0053+0.0206)=0.795

What if we were asked about Outlook=OC ?


i jijVvNB )v|P(x)P(vargmax v

j

Example
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• How do we estimate                          ?

• As we suggested before, we made a Binomial assumption; then:

• Sparsity of data is a problem

-- if       is small, the estimate is not accurate

-- if       is 0, it will dominate the estimate: we will never predict 

if a  word that never appeared in training (with    ) 

appears in the test data 

 
n

n

documents) (v#

documents) v in training in appears (word #
  v)|P(word kk

k 

n 

kn v 

v 

   i iidislike}{like,vNB v)|wordP(xP(v)argmax v

 v)|P(word k

Estimating Probabilities
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• This process is called smoothing.

• There are many ways to do it, some better justified than others;

• An empirical issue.

Here:  

• nk is # of occurrences of the word in the presence of  v

• n is # of occurrences of the label v

• p is a prior estimate of v (e.g., uniform)

• m is equivalent sample size (# of labels)

• Is this a reasonable definition?

 
mn

mpn
  v)|P(x k

k





   i iidislike}{like,vNB v)|wordP(xP(v)argmax v

Robust Estimation of Probabilities

15



Bayesian Learning CS446 –Spring ‘17

Smoothing: 

Common values: 

Laplace Rule: for the Boolean case, p=1/2 , m=2 

Learn to classify text:     p = 1/(|values|)   (uniform)

m= |values|

 
2n

1n
  v)|P(x k

k





 
mn

mpn
  v)|P(x k

k





Robust Estimation of Probabilities
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Robust Estimation

17

Assume a Binomial r.v.:         
 p(k|n,µ) =  Cn

k µk (1- µ)n-k

We saw that the maximum likelihood estimate is µML = k/n

In order to compute the MAP estimate, we need to assume a prior. 
It’s easier to assume a prior of the form: 
 p(µ) = µa-1 (1- µ)b-1 (a and b are called the hyper parameters)
 The prior in this case is the beta distribution, and it is called a conjugate prior, 

since it has the same form as the posterior. Indeed, it’s easy to compute the 
posterior:

 p(µ|D) ~= p(D|µ)p(µ) =  µa+k-1 (1- µ)b+n-k-1

Therefore, as we have shown before (differentiate the log posterior) 
µmap = k+a-1/(n+a+b-2) 

The posterior mean: 
E(µ|D) = s0

1 µp(µ|D)dµ = a+k/(a+b+n)
Under the uniform prior, the posterior mean of observing (k,n) is: k+1/n+2 
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• Notice that the naïve Bayes method gives a method for predicting 

rather than an explicit classifier.

• In the case of two classes,  v{0,1} we predict that v=1 iff:


i jijVvNB )v|P(x)P(vargmax v

j

1
0)v|P(x0)P(v

1)v|P(x1)P(v

n

1i jij

n

1i jij














Naïve Bayes: Two Classes
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• Notice that the naïve Bayes method gives a method for predicting 

rather than an explicit classifier.

• In the case of two classes,  v{0,1} we predict that v=1 iff:


i jijVvNB )v|P(x)P(vargmax v

j
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Naïve Bayes: Two Classes
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•In the case of two classes,  v{0,1} we predict that v=1 iff:

1
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Naïve Bayes: Two Classes
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•In the case of two classes,  v{0,1} we predict that v=1 iff:

Naïve Bayes: Two Classes
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•In the case of two classes,  v{0,1} we predict that v=1 iff:

• We get that naive Bayes is a linear separator with 
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if pi  qi  then w i  0 and the feature is irrelevant

Naïve Bayes: Two Classes
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• In the case of two classes we have that:

• but since

• We get: 

• Which is simply the logistic function.

• The linearity of NB provides a better explanation for why it works.

bxw
)x  |0P(v

)x  |1P(v
log ii i

j

j

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
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1
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




Naïve Bayes: Two Classes
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We have: 
A = 1-B; Log(B/A) = -C. 
Then:
Exp(-C) = B/A = 
= (1-A)/A = 1/A – 1 
= 1  + Exp(-C) = 1/A 

A  = 1/(1+Exp(-C))

09-LecBayes-NB2.pptx
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A few more NB examples

24
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• Instance space X: Text documents

• Instances are labeled according to f(x)=like/dislike

• Goal: Learn this function such that, given a new document

you can use it to decide if you like it or not

• How to represent the document ? 

• How to estimate the probabilities ? 

• How to classify?


i iVvNB v)|P(xP(v)argmax v

Example: Learning to Classify Text

25
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• Instance space X: Text documents

• Instances are labeled according to y = f(x) = like/dislike

• How to represent the document ? 

• A document will be represented as a list of its words 

• The representation question can be viewed as the generation question   

• We have a dictionary of n words  (therefore 2n parameters)

• We have documents of size N: can account for word position & count

• Having a parameter for each word & position may be too much: 

• # of parameters: 2 x N x n (2 x 100 x 50,000 ~ 107) 

• Simplifying Assumption:
• The probability of observing a word in a document is independent of its location

• This still allows us to think about two ways of generating the document

Document Representation

26
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• We want to compute 
argmaxy P(y|D)  = argmaxy P(D|y) P(y)/P(D) = 

= argmaxy P(D|y)P(y) 

• Our assumptions will go into estimating P(D|y):
1. Multivariate Bernoulli

I. To generate a document, first decide if it’s good (y=1) or bad (y=0).
II. Given that, consider your dictionary of words and choose w into your 

document with probability p(w |y), irrespective of anything else. 
III. If the size of the dictionary is |V|=n, we can then write         

P(d|y) = ¦1
n P(wi=1|y)b

i P(wi=0|y)1-b
i

• Where: 
p(w=1/0|y): the probability that w appears/does-not in a y-labeled document. 
bi {0,1} indicates whether word wi occurs in document d

• 2n+2 parameters: 
Estimating P(wi =1|y) and P(y) is done in the ML way as before (counting).

Classification via Bayes Rule (B)

27

Parameters:
1. Priors: P(y=0/1) 
2. 8 wi 2 Dictionary

p(wi =0/1 |y=0/1)
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• We want to compute 
argmaxy P(y|D)  = argmaxy P(D|y) P(y)/P(D) = 

= argmaxy P(D|y)P(y) 

• Our assumptions will go into estimating P(D|y):
2. Multinomial

I. To generate a document, first decide if it’s good (y=1) or bad (y=0).
II. Given that, place N words into d, such that wi is placed with probability           

P(wi|y), and i
N P(wi|y) =1.

III. The Probability of a document is: 
P(d|y) N!/n1!...nk!  P(w1|y)n1…p(wk|y)nk

• Where ni is the # of times wi appears in the document.
• Same # of parameters: 2n+2, where n = |Dictionary|, but the estimation is 

done a bit differently. (HW).

A Multinomial Model 

28

Parameters:
1. Priors: P(y=0/1) 
2. 8 wi 2 Dictionary

p(wi =0/1 |y=0/1)
N dictionary items are  
chosen into D
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• The generative model in these two cases is different

label

AppearDocuments d

µ ¯

Words w

Bernoulli: A binary variable corresponds 
to a document d and a dictionary word 
w, and it takes the value 1 if w appears in 
d. Document topic/label is governed by a 
prior µ, its topic (label), and the variable 
in the intersection of the plates is 
governed by µ and the Bernoulli 
parameter ¯ for the dictionary word w  

label

Appear (d)Documents d

µ ¯

Position p

Multinomial: Words do not correspond 
to dictionary words but to positions 
(occurrences) in the document d. The 
internal variable is then W(D,P). These 
variables are generated from the same 
multinomial distribution ¯, and depend 
on the topic/label. 

Model Representation

29
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• We assume a mixture probability model, parameterized by µ.

• Different components {c1,c2,… ck} of the model are parameterize by disjoint 

subsets of µ.

The generative story: A document d is created by 
(1) selecting a component according to the priors, P(cj |µ), then 
(2) having the mixture component generate a document according to its 

own parameters, with distribution P(d|cj, µ)
• So we have: 

P(d|µ) = 1
k P(cj|µ) P(d|cj,µ)

• In the case of document classification, we assume a one to one 
correspondence between components and labels.

General NB Scenario

30
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• Xi can be continuous

• We can still use 

• And

Naïve Bayes: Continuous Features

31
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• Xi can be continuous

• We can still use 

• And

• Naïve Bayes classifier:

Naïve Bayes: Continuous Features

32
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• Xi can be continuous

• We can still use 

• And

• Naïve Bayes classifier:

• Assumption: P(Xi|Y) has a Gaussian distribution  

Naïve Bayes: Continuous Features

33
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The Gaussian Probability Distribution

  

p(x) 
1

 2
e


(x )2

2
2

gaussian

x

• Gaussian probability distribution also called normal distribution.

• It is a continuous distribution with pdf:

= mean of distribution

2 = variance of distribution

x is a continuous variable (-∞x ∞

• Probability of x being in the range [a, b] cannot be evaluated

analytically (has to be looked up in a table)

2

2

2

)(

2

1
)( 










x

exp
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• P(Xi|Y) is Gaussian

• Training: estimate mean and standard deviation

Naïve Bayes: Continuous Features

35

Note that the following slides abuse notation significantly. 
Since P(x) =0 for continues distributions, we think of 
P (X=x| Y=y), not as a classic probability distribution, but 
just as a function f(x) = N(x, ¹, ¾2).

f(x) behaves as a probability distribution in the sense that 
8 x, f(x) ¸ 0 and the values add up to 1. Also, note that 

f(x) satisfies Bayes Rule, that is, it is true that: 
fY(y|X = x) = fX (x|Y = y) fY (y)/fX(x)
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• P(Xi|Y) is Gaussian

• Training: estimate mean and standard deviation

X1 X2 X3 Y

2         3         1         1

-1.2        2        .4         1

2       0.3        0         0

2.2      1.1        0         1     

Naïve Bayes: Continuous Features

36
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•In the case of two classes we have that:

•but since

•We get: 

• Which is simply the logistic function (also used in the neural network

representation)

• The same formula can be written for continuous features

bxw
)x  |0P(v

)x  |1P(v
log ii i 






)x  |0P(v-1)x  |1P(v 

b)xwexp(-1

1
)x  |1P(v

ii i 




Recall: Naïve Bayes, Two Classes

38
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• Logistic function for Gaussian features

Logistic Function: Continuous Features

39

Note that we are 
using ratio of 

probabilities, since x 
is a continuous 

variable.
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Hidden Markov Model (HMM)
A probabilistic generative model: models the generation of an observed sequence.

At each time step, there are two variables: Current state (hidden), Observation

Elements
 Initial state probability P(s1)                           (|S| parameters)

 Transition probability P(st|st-1) (|S|^2 parameters)

 Observation probability P(ot|st)                    (|S|x |O| parameters) 

As before, the graphical model is an encoding of the independence 
assumptions:
 P(st|st-1, st-2,…s1) =P(st|st-1) 

 P(ot| sT,…,st,…s1, oT,…,ot,…o1 )=P(ot|st) 

Examples: POS tagging, Sequential Segmentation

s1

o1

s2

o2

s3

o3

s4

o4

s5

o5

s6

o6
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HMM for Shallow Parsing

States:
 {B, I, O}

Observations:
 Actual words and/or part-of-speech tags

s1=B

o1

Mr.

s2=I

o2

Brown

s3=O

o3

blamed

s4=B

o4

Mr.

s5=I

o5

Bob

s6=O

o6

for
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HMM for Shallow Parsing

Given a sentences, we can ask what the most likely 
state sequence is

Initial state probability:
P(s1=B),P(s1=I),P(s1=O)

Transition probabilty:
P(st=B|st-1=B),P(st=I|st-1=B),P(st=O|st-1=B),
P(st=B|st-1=I),P(st=I|st-1=I),P(st=O|st-1=I),
…

Observation Probability:
P(ot=‘Mr.’|st=B),P(ot=‘Brown’|st=B),…,
P(ot=‘Mr.’|st=I),P(ot=‘Brown’|st=I),…,
…

s1=B

o1

Mr.

s2=I

o2

Brown

s3=O

o3

blamed

s4=B

o4

Mr.

s5=I

o5

Bob

s6=O

o6

for
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Three Computational Problems

 Decoding – finding the most likely path

 Have:  model, parameters, observations (data)

 Want: most likely states sequence

 Evaluation – computing observation likelihood   

 Have: model, parameters, observations (data)

 Want: the likelihood to generate the observed data

 In both cases – a simple minded solution depends on |S|T steps 

 Training – estimating parameters 

 Supervised:       Have: model, annotated data(data + states sequence)

 Unsupervised:   Have: model, data

 Want: parameters

1 2 1 2

* * *

1 2 1 2 1 2
... ...

... arg max ( ... | ) arg max ( ... , )
T T

T T T
S S S S S S

S S S p S S S O p S S S O 

1 2

1 2 1 2

...

( | ) ( | ... ) ( ... )
T

T T

S S S

p O p O S S S p S S S  

a

B I BII

ddc

0.5
0.2 0.50.50.5

0.40.250.250.250.25

a
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Finding most likely state sequence in HMM (1)

P (sk; sk¡1; : : : ; s1; ok; ok¡1; : : : ; o1)
= P(ok

jok¡1; ok¡2; : : : ; o1; sk; sk¡1; : : : ; s1)
¢P (ok¡1; ok¡2; : : : ; o1; sk; sk¡1; : : : ; s1)

= P(ok
jsk) ¢ P (ok¡1; ok¡2; : : : ; o1; sk; sk¡1; : : : ; s1)

= P(ok
jsk) ¢ P (skjsk¡1; sk¡2; : : : ; s1; ok¡1; ok¡2; : : : ; o1)

¢P (sk¡1; sk¡2; : : : ; s1; ok¡1; ok¡2; : : : ; o1)
= P(ok

jsk) ¢ P (skjsk¡1)
¢P (sk¡1; sk¡2; : : : ; s1; ok¡1; ok¡2; : : : ; o1)

= P(okjsk) ¢ [
k¡1Y

t=1

P (st+1jst) ¢ P(otjst)] ¢ P(s1)
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Finding most likely state sequence in HMM (2)

argmax
sk ;sk¡1;:::;s1

P (sk; sk¡1; : : : ; s1jok ; ok¡1; : : : ; o1)

= argmax
sk;sk¡1;:::;s1

P (sk; sk¡1; : : : ; s1; ok; ok¡1; : : : ; o1)

P (ok; ok¡1; : : : ; o1)
= argmax

sk;sk¡1;:::;s1
P (sk; sk¡1; : : : ; s1; ok; ok¡1; : : : ; o1)

= argmax
sk;sk¡1;:::;s1

P (ok
jsk) ¢ [

k¡1Y

t=1

P(st+1
jst) ¢ P (otjst)] ¢ P (s1)
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Finding most likely state sequence in HMM (3)
A function of sk

= max
sk

P(ok
jsk) ¢ max

sk¡1;:::;s1
[
k¡1Y

t=1

P(st+1
jst) ¢ P (otjst)] ¢P (s1)

= max
sk

P(okjsk) ¢max
sk¡1

[P(skjsk¡1) ¢ P(ok¡1jsk¡1)]

¢ max
sk¡2;:::;s1

[
k¡2Y

t=1

P(st+1jst) ¢P (otjst)] ¢ P(s1)

= max
sk

P(ok
jsk) ¢max

sk¡1
[P(sk

jsk¡1) ¢ P(ok¡1jsk¡1)]

¢max
sk¡2

[P(sk¡1jsk¡2) ¢P(ok¡2jsk¡2)] ¢ : : :
¢max

s1
[P(s2js1) ¢ P(o1js1)] ¢ P(s1)

max
sk;sk¡1;:::;s1

P (ok
jsk)¢[

k¡1Y

t=1

P (st+1
jst)¢P(otjst)]¢P(s1)
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Finding most likely state sequence in HMM (4)

Viterbi’s Algorithm
 Dynamic Programming

max
sk

P(okjsk) ¢max
sk¡1

[P (skjsk¡1) ¢ P(ok¡1jsk¡1)]
¢max
sk¡2

[P(sk¡1jsk¡2) ¢ P(ok¡2jsk¡2)] ¢ : : :
¢max

s2
[P(s3js2) ¢P (o2js2)] ¢

¢max
s1

[P(s2js1) ¢P (o1js1)] ¢ P(s1)
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Learning the Model

Estimate
 Initial state probability P (s1)

 Transition probability P(st|st-1) 

 Observation probability P(ot|st)

Unsupervised Learning (states are not observed)
 EM Algorithm

Supervised Learning (states are observed; more 
common)
 ML Estimate of above terms directly from data

Notice that this is completely analogues to the case 
of naive Bayes, and essentially all other models.


