f:X—V, finite set of values

m Instances xeX can be described as a collection of features
X = (Xq, Xy, ... X,) % €{0,1}

w Given an example, assign it the most probable value in V

=m Bayes Rule:

VMAP = argmaxvjevp(vj | X) — argmaxvjevp(vj | Xl’XZ 1%t Xn)

P(X1: X5, X, [ V;)P(V;)
P(X{; Xy, X))
— argmaxvjEVP(Xl,XZ,...,Xn | v;)P(v;)

» Notational convention: P(y) means P(Y=y)

Vivap = argmax,
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Viap = argmax, P(xy, X,, ..., X, | vV )P(V)
m Given training data we can estimate the two terms.

m Estimating P(v) is easy. E.g., under the binomial distribution
assumption, count the number of times v appears in the training data.

m However, it is not feasible to estimate P(xy, X,, ..., X, | V)

® In this case we have to estimate, for each target value, the probability
of each instance (most of which will not occur).

w In order to use a Bayesian classifiers in practice, we need to make
assumptions that will allow us to estimate these quantities.
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Viap = argmax, P(xy, X,, ..., X, | vV )P(v)

P(Xl,xzy---’xn | VJ) —
= P(Xy [ Xg 1000 Xy V)P (X000 X, | V)

= P(X1 |X2,...,Xn,Vj)P(X2 |X3,---,Xn,Vj)P(X31""Xn | Vj)

= P(x, |X2,...,Xn,Vj)P(X2 |X3,---,Xn,Vj)P(X3 |X4""!Xnivj)"'P(Xn |Vj)

m Assumption: feature values are independent given the target value
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Viap = argmax, P(xy, Xy, ..., X, | vV )P(V)

= Assumption: feature values are independent given the target
value

P(x;=by, X, =by,...x, =by [ v=v;) = 11,"P(x,=b | v=v;)

m Generative model:
= First choose a value v; eV according to P(v)
= Foreach v;: choose x; Xy, ..., X, according to P(x, |v;)
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Viap = argmax, P(xy, Xy, ..., X, | vV )P(V)

Assumption: feature values are independent given the target value

P(x;= Dby, X, = by, X, =bp [ v=vy) = 11" P(x;=b; [ v=v)

®m Learning method: Estimate n|V| + |V| parameters and use them to make
a prediction. (How to estimate?)

m Notice that this is learning without search. Given a collection of training
examples, you just compute the best hypothesis (given the assumptions).

w  Thisis learning without trying to achieve consistency or even approximate
consistency.

w  Why does it work?
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* Notice that the features values are conditionally independent

given the target value, and are not required to be independent.

e Example: The Boolean features are x and y.
We define the label to be ¢ = f(x,y)=xAy

over the product distribution: p(x=0)=p(x=1)=1/2 and p(y=0)=p(y=1)=1/2
The distribution is defined so that x and y are independent: p(x,y) = p(x)p(y)

Y=0 % (¢ =0) Va (¢=0)
Y=1 % (¢=0) % (¢=1)

e But, given that ¢ =0:
p(x=1| ¢=0) = p(y=1| ¢=0)=1/3
while: p(x=1,y=1]¢=0)=0
so x and y are not conditionally independent.
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e The other direction also does not hold.

x and y can be conditionally independent but not independent.

Example: We define a distribution s.t.: -m

¢=0: p(x=1]| ¢=0)=1, p(y=1| ¢=0)=0 Y=0 0 (=0) % (6= 0)
¢=1: p(x=1| ¢=1) =0, p(y=1] ¢=1)=1 Ve (g -
and assume, that: p(¢=0) = p(¢ =1)=1/2 =1 %= o

 Giventhevalueof¢ xandy areindependent (check)

e What about unconditional independence ?

p(x=1) = p(x=1| ¢=0)p(¢ =0)+p(x=1| ¢ =1)p(¢ =1) = 0.5+0=0.5
p(y=1) = p(y=1| ¢=0)p(¢ =0)+p(y=1]| ¢ =1)p(¢ =1) = 0+0.5=0.5
But,

p(x=1, y=1)=p(x=1,y=1] ¢=0)p(¢ =0)+p(x=1,y=1| ¢=1)p(¢=1) =0

so x and y are not independent.
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Day Outlook Temperature Humidity Wind  PlayTennis
1 Sunny Hot High Weak No
2  Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4  Rain Mild High Weak Yes
5 Rain Cool Normal  Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8  Sunny Mild High Weak No
9  Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast  Mild High Strong Yes
13  Overcast Hot Normal Weak Yes
14  Rain Mild High _ Strong No 8

Bayesian Learning
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Vs =argmax

P()] . P(x; = observation | v)

ve{yes,no}

* How do we estimate P(observation|v) ?
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Ve = argmaxvjevp(vj)HiP(Xi | Vj)

« Compute P(PlayTennis= yes); P(PlayTennis= no)

« Compute P(outlook= s/oc/r | PlayTennis= yes/no) (6 numbers)
» Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
« Compute P(humidity= hi/nor | PlayTennis= yes/no) (4 numbers)
« Compute P(wind= wist | PlayTennis= yes/no) (4 numbers)
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Example
Vi = argmaxvjevp(vj)HiP(Xi | Vj)

» Compute P(PlayTennis= yes); P(PlayTennis= no)

» Compute P(outlook= s/oc/r | PlayTennis= yes/no) (6 numbers)
» Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
» Compute P(humidity= hi/nor | PlayTennis= yes/no) (4 numbers)
» Compute P(wind= w/st | PlayTennis= yes/no) (4 numbers)

*Given a new instance:
(Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)

- Predict: PlayTennis=?
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VB :argmaxvjevp(vj)HiP(Xi |Vj)

Given: (Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)

P(PlayTennis= yes)=9/14=0.64 P(PlayTennis= no)=5/14=0.36
P(outlook = sunny | yes)= 2/9 P(outlook = sunny | no)= 3/5
P(temp = cool | yes) =3/9 P(temp = cool | no) =1/5
P(humidity = hi [yes) =3/9 P(humidity = hi | no) = 4/5
P(wind = strong | yes) =3/9 P(wind = strong | no)= 3/5

P(yes, .....) ~ 0.0053 P(no, .....) ~ 0.0206
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Example
Ve = argmaxvjevp(vj)HiP(Xi | Vj)

*Given: (Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)
P(PlayTennis= yes)=9/14=0.64 P(PlayTennis= no)=5/14=0.36

P(outlook = sunny | yes)= 2/9 P(outlook = sunny | no)= 3/5

P(temp = cool | yes) =3/9 P(temp = cool | no) =1/5
P(humidity = hi |[yes) =3/9 P(humidity = hi | no) = 4/5
P(wind = strong | yes) =3/9 P(wind = strong | no)= 3/5
P(yes, .....) ~0.0053 P(no, .....) ~0.0206

P(nolinstance) = 0.0206/(0.0053+0.0206)=0.795
What if we were asked about Outlook=0C ?
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Estimating Probabilities

Ve :argmaXVE{Iike,diinke}P(V)Hi P(x; = word; | V)

» How do we estimate P(word , | v) ?
* As we suggested before, we made a Binomial assumption; then:

P(word, | V) = # (word, appears In training in v documents) n,
“ # (v documents) n

* Sparsity of data is a problem
-- if N is small, the estimate is not accurate
-- if Ngis 0, it will dominate the estimate: we will never predict Vv
if a word that never appeared in training (with v)
appears in the test data
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Robust Estimation of Probabilities
Vs :argmaXVE{Iike,diinke}P(V)Hi P(x; =word; | v)
* This process is called smoothinag,.

* There are many ways to do it, some better justified than others;
* An empirical issue.

n, +mp

P(Xk |V) — n+m

Here:
* n, is # of occurrences of the word in the presence of v
* n is # of occurrences of the label v
* pis a prior estimate of v (e.g., uniform)
* m is equivalent sample size (# of labels)
* |s this a reasonable definition?
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Smoothing: 5 N +mp

Common values:

Laplace Rule: for the Boolean case, p=1/2 , m=2
n,+1
n+2

P(X, [ v) =

Learn to classify text: p =1/(|values|) (uniform)
m= |values|
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Assume a Binomial r.v.:
O p(k|n,0) = CF O%(1- )™k

We saw that the maximum likelihood estimate is 8,, = k/n

In order to compute the MAP estimate, we need to assume a prior.
It’s easier to assume a prior of the form:
0 p(0) = 6>1(1- )P (a and b are called the hyper parameters)
-1 The prior in this case is the beta distribution, and it is called a conjugate prior,
since it has the same form as the posterior. Indeed, it’s easy to compute the
posterior:

Q p(9| D) ~= p(D|0)p(9) = fatkl (1- 9)b+n-k-1

Therefore, as we have shown before (differentiate the log posterior)
0 __ =k+a-1/(n+a+b-2)

map
The posterior mean:

E(0|D) = [,* Op(f|D)dO = a+k/(a+b+n)

Under the uniform prior, the posterior mean of observing (k,n) is: k+1/n+2
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Ve :argmaxvjevp(vj)ni P(Xi |Vj)

* Notice that the naive Bayes method gives a method for predicting
rather than an explicit classifier.
* In the case of two classes, ve{0,1} we predict that v=1 iff:

P(v; =1 e[ [.,P(x; Iv; =1)
— >
P(v; =0)e] ], P(x|v;=0)

1
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Naive Bayes: Two Classes
Vs :argmaxvjevp(vj)Hi P(X; |Vj)

* Notice that the naive Bayes method gives a method for predicting
rather than an explicit classifier.
* In the case of two classes, ve{0,1} we predict that v=1 iff:

P(v; =1)e] [ P(X;|v,=1) 3

P(v;=0)e] ]  P(x |v;=0)
Denote:p, =P(x;, =1|v=1), q,=P(X; =1|v=0)

P(v; =D e[ P (A-p)™

_ " Xi 1-x;
P(v; —O)’Hi:1Qi (1-q)
Bayesian Learning CS446 —Spring ‘17 19
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°In the case of two classes, ve{0,1} we predict that v=1 iff:

Pi ¥

p(v, 1)o7, p -py TV =D LI @-pO G

>

P(v; =O)’1_Ln:1qixi (1-g;)™ ) P(v; :O).H:Ll(l-qi)(l?a_ )%
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‘In the case of two classes, ve{0,1} we predict that v=1 iff:

— ° 4 -Nn. pi X
P(Vj :1).H?=1pi)(i (1_pi)1'xi B P(Vj _1) Hi=1(1 pu)(l_pi) o

_ ° : Xif1 o )X - n i X.
P(v;=0)e]]_a"(1-q;) P(V, :O).Hi—l(l-qi)(l(_:lq_) .
Take logarithm; we predictv =1 iff : |

Piv. =1) 1-p. D.
lo ’ lo | I I 0
o, 0y 29 g, 095 1095 %>
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Naive Bayes: Two Classes

‘In the case of two classes, ve{0,1} we predict that v=1 iff:

— ° n -Nn. pi X;
o, = eI a-py P =D TP

>1

P(VjIO)‘HiﬂQiXi(l-Qi)l_ P(v; —()).Hll(]_ q‘)(lqi )%
Take logarithm; we predictv =1 Iff : i
Piv. =1) 1-p.
lo ’ + L+ ) (lo —lo X. >0
Op, =0y %1 g, 209y 09y e
* We get that naive Bayes is a linear separator with
— log Pi _log o — log P 1-q

1'pi 1'Qi qil'pi

If p. =q; then w, =0 and the feature is irrelevant
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* In the case of two classes we have that:
P(v;, =1]x)

0g => wx, b
« but since P(v; =0[x)

P(v,=1|x)=1-P(v; =0]x)
* We get:
1

We have:

A = 1-B; Log(B/A) = -C.

Then:

Exp(-C) = B/A =
=(1-A)/A=1/A-1
=1 + Exp(-C) =1/A

A =1/(1+Exp(-C))

P(v,=1]|x)=

* Which is simply the logistic function.

1+exp(-) W, +b)

 The linearity of NB provides a better explanation for why it works.

Bayesian Learning CS446 —Spring ‘17

23



09-LecBayes-NB2.pptx

Bayesian Learning CS446 =Spring ‘17 24



Example: Learning to Classify Text
Vs :argmaXvaP(V)Hi P(X; | V)

* Instance space X: Text documents
* Instances are labeled according to f(x)=like/dislike

* Goal: Learn this function such that, given a new document
you can use it to decide if you like it or not

* How to represent the document ?

* How to estimate the probabilities ?
* How to classify?
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Document Representation

* Instance space X: Text documents
* Instances are labeled according to y = f(x) = like/dislike

* How to represent the document ?

*  Adocument will be represented as a list of its words
» The representation question can be viewed as the generation question

* We have a dictionary of n words (therefore 2n parameters)
 We have documents of size N: can account for word position & count
* Having a parameter for each word & position may be too much:
o # of parameters: 2x N x n (2 x 100 x 50,000 ~ 107)
* Simplifying Assumption:
* The probability of observing a word in a document is independent of its location
* This still allows us to think about two ways of generating the document
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* We want to compute
argmax, P(y|D) =argmax, P(D|y) P(y)/P(D) =
= argmax, P(D|y)P(y)

Parameters:
1. Priors: P(y=0/1)
2. Vw, € Dictionary
* QOur assumptions will go into estimating P(D|y): p(Wi =0/1 |y=0/1)
1. Multivariate Bernoulli
|.  To generate a document, first decide if it’s good (y=1) or bad (y=0).
Il. Given that, consider your dictionary of words and choose w into your
document with probability p(w |y), irrespective of anything else.
lIl. If the size of the dictionary is |V |=n, we can then write
P(d]y) = H1n P(Wi=1 |y)bi P(Wizoly)l_bi
* Where:
p(w=1/0]y): the probability that w appears/does-not in a y-labeled document.
b, €{0,1} indicates whether word w, occurs in document d
* 2n+2 parameters:
Estimating P(w, =1|y) and P(y) is done in the ML way as before (counting).
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Parameters:
* We want to compute 1. Priors: P(y=0/1)

argmax, P(y|D) =argmax, P(D|y) P(y)/P(D) =

2. Vw, € Dictionary
= argmax, P(D|y)P(y)

p(w; =0/1 |y=0/1)
N dictionary items are

e QOur assumptions will go into estimating P(D|y): _
chosen into D

2. Multinomial

|.  To generate a document, first decide if it’s good (y=1) or bad (y=0).
Il.  Given that, place N words into d, such that w; is placed with probability
P(w;|y), and ZiN P(w;|y) =1.
lll. The Probability of a document is:
P(d]y) N!/n;l...n ! P(w,|y)"...p(w,|y)"k

* Where n, is the # of times w, appears in the document.

 Same # of parameters: 2n+2, where n = | Dictionary|, but the estimation is
done a bit differently. (HW).
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e The generative model in these two cases is different

? [¢
=

Documents d

Words w

?
]

Documents d -

Position p

Bernoulli: A binary variable corresponds
to a document d and a dictionary word
w, and it takes the value 1 if w appears in
d. Document topic/label is governed by a
prior 6, its topic (label), and the variable
in the intersection of the plates is
governed by # and the Bernoulli
parameter 3 for the dictionary word w

Multinomial: Words do not correspond
to dictionary words but to positions
(occurrences) in the document d. The
internal variable is then W(D,P). These
variables are generated from the same
multinomial distribution (3, and depend
on the topic/label.
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® \We assume a mixture probability model, parameterized by J.

¢ Different components {c,,c,,... ¢,} of the model are parameterize by disjoint
subsets of L.

The generative story: A document d is created by

(1) selecting a component according to the priors, P(c; [u), then

(2) having the mixture component generate a document according to its
own parameters, with distribution P(d/c, )
e So we have:

P(d|p) = 24 P(c;| 1) P(d ;1)

e In the case of document classification, we assume a one to one
correspondence between components and labels.
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» X; can be continuous
* We can still use

P(X1,..., X, V) = [T, P(X,]Y)

* And
P(Y=y)][, P(XilY=y)
Z:j P(Y=y;) | [, P(XilY=y;)

PY = y|X1,...,X,) =
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» X, can be continuous
* We can still use

P(X1,..., XaY) = [1, P(X,|Y)

* And
P(y=y)[], P(XilY=y)

PY =y|X,....X,) = S Py=y,) [ [, PV =y,)

* Naive Bayes classifier:

VY — argmaXP(Y = y) HP(XHY — y)
Y i
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» X; can be continuous
* We can still use

P(X1,..., X, V) = [T, P(X:]Y)

* And
P(Y=y) ][, P(XilY=y)
Z:j P(Y=y;) | [, P(XilY=y;)

PY = y|X1,...,X,) =

* Naive Bayes classifier:

Y = argmax P(Y = y) HP(Xi‘Y =y)
Y i

 Assumption: P(X;|Y) has a Gaussian distribution
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The Gaussian Probability Distribution

* Gaussian probability distribution also called normal distribution.

* [t is a continuous distribution with pdf:
1 _(X_,U)z
e 2(72

1 = mean of distribution p(x) =
o? = variance of distribution
x is a continuous variable (- < x < «)
* Probability of x being in the range [a, b] cannot be evaluated
analytically (has to be looked up in a table)

mode=median=mean = I

O~N27

(x=p)?

7 .
°"  gaussian

(X)=——e
P = on

F=gtandard deviation
63 % of area within +1o
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* P(Xi[Y) is Gaussian

» Training: estimate mean and standard deviation
pi = E1XG|Y =y
of = E[(Xi — p:)?|Y =y

Note that the following slides abuse notation significantly.
Since P(x) =0 for continues distributions, we think of
P (X=x| Y=y), not as a classic probability distribution, but
just as a function f(x) = N(x, u, o2).
f(x) behaves as a probability distribution in the sense that
v X, f(x) > 0 and the values add up to 1. Also, note that
f(x) satisfies Bayes Rule, that is, it is true that:

fuly|X = x) = fy (X|Y =y) fy (y)/fx(x)
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* P(Xi]Y) is Gaussian

» Training: estimate mean and standard deviation

pi = ELXG[Y =y

2

E[(X; — p)?]Y = y]

o; =
X, X, Xy |Y
2 3 1 |1

12 2 4 |1
2 03 0 |0

22 11 0 | 1

Bayesian Learning

CS446 —Spring ‘17
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* P(Xi]Y) is Gaussian

» Training: estimate mean and standard deviation
pi = E[XG[Y =y

07 = E[(X; — p13)*|Y =y
X X, X Y
2 3 1 1
-1.2 2 4 1
2 03 0 0
22 1.1 0 1

u = E[X)|Y = 1] = 2+(— 132)+2 2 _

o} = B(X) — )|y =1] = E=HEL2 @20 9 g3
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*In the case of two classes we have that:

P(v 1|x) Z
*but since P(V 01x)
Piv=1|x)=1-P(v=0]|x)
‘We get:

1

1+exp(-) WX, +b)

* Which is simply the logistic function (also used in the neural network
representation)
 The same formula can be written for continuous features

Piv=1|x)=
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* Logistic function for Gaussian features

P(v=1|x)

Note that we are
using ratio of
probabilities, since x
is a continuous
variable.

N\

P(x;|lv=0)

> .. log

Bayesian Learning

1

1+exp(log PEE:‘E}B)
1

1+exp(log PEU—?;IIEEZ

’UIO) )

v=1)

9P v=1) —

-t e (ot
=

V= P(x;|v=0
1+exp(log P( 0) —|—Z log Pnglvzli)

1 e:cp(_(wi—gz'o)z)
\/27r02 20
> log d -

2
—_— a:‘._ »
1 exp (; g‘zl)
271'0.2 2013

‘ —Mo)z)

2 2
i1 —Hig
201.2

I«Lzl

i+
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A probabilistic generative model: models the generation of an observed sequence.

At each time step, there are two variables: Current state (hidden), Observation

» » »
» »

oL
04 0, O3 O4 (0] Og
Elements
2 Initial state probability P(s,) (|S| parameters)
2 Transition probability P(s,]s, ;) (|S|~2 parameters)
- Observation probability P(o,|s,) (|S|x |O| parameters)

As before, the graphical model is an encoding of the independence
assumptions:

2 P(s]Se.1s Stps---57) =P(s¢]5¢.4)
2 P(o,| Sp--sS4---S1, OpyeersOp,-..07 )=P(04]S,)

m Examples: POS tagging, Sequential Segmentation
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m States:
2 {B, I, O}
m Observations:
- Actual words and/or part-of-speech tags

Sl=B 52=I S3=O 54

() o ()
04 0, 05 Oy Os Og
Mr. Brown blamed Mr. Bob for
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51=B 52=I S3=O S4=B 55=I S6=O

j ] 1 ] J ] ...... .

®
0, 0, 05 Oy Os Og
Mr. Brown blamed Mr. Bob for

Initial stdf@pviéieany ab|It o |
P(s,=B), P(§ti Iijﬁl%(g—?m > JISF;PBlL ﬂf%

] leen a ser1D
state sequence IS

Brgpn Stf_s ZB), ..
Q CPrWa il dstlikely
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0.25 0.25 0.25 0.25 0.4
C d a d

= Decoding — finding the most likely fath
= Have: model, parameters, observations (data)

= Want: most likely states sequence

S,S,..S; =argmax p(S,S,...S; | 0) =argmax p(S,S,...S;,0)
$,5,...5; $,5,...5;
= Evaluation — computing observation likelihood

= Have: model, parameters, observations (data)
= Want: the likelihood to generate the observed data
pO|A)= Y P(OISS,.5;)P(S,S,..Sr)
= |n both cases — asésﬁ‘hsble minded solution depends on |S|T steps
= Training — estimating parameters
= Supervised: Have: model, annotated data(data + states sequence)
= Unsupervised: Have: model, data

= Want: parameters
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P(sk, sk—1,...,81,0k, Ok—1,...,01)

— P(Ok|0k_170k_27 -+, 01, Sk? Sk_17 e 781)

'P(ok—l, Of—2y - -+ 501, 8k, Sk—1, -+ -, s1)

= P(0k|sk) ' P(ok—l, Of—2,---,01,8k,Sk—1, - - - . S1)
P(ok|sk) ‘ P(sk|3k—1, Sk—2,...,51,0k—1,0k—2,...,01)
'P(sk—l, Sk—2y -+ ,81,0k—1,0L—2,. .., 01)

= P(0k|sk) 'P(sk|sk—1)
‘P(sgp—1,8k—2,...,81,0k—1, Ok—2,...,01)

k—1
= Ploglsg) | HlP(st+1|8t) + Poglst)] - P(s1)
t:
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arg max P(sp,sg—1,. .., 31|ok,ok—1, ...,01)

SksSk—1,...,81

arg max P(Skv Sk—1,...,51,0k, Op—1,. °'701)
SkySk—1,...,51 P(Ok;, Ook—1,... ,01)
= argmax P(Skask 1y+.-,81,0k, Ok—1,. °'701)

Sk,Sk—1,...,51

arg max P(ok|sk) [kH P(si+1lse) - Plotlsp)] - P(s1)
SkySk—1,.. t=1
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A function of s,

max P(oklsk) [kH P(sit1lst) Plotls)] P(s1) \/

SksSk—1s++5S =1

max [kH P(st_|_1|st) P(0t|8t)] P(Sl)
1,...,8 t 1

= maXP(ok|sk) ‘ maX P(sE

= maxX )
5 P(0k|8k)

, max [HlP(st+1|st) P(otlst)] - P(s1)
SR

WS?XP(ok|sk) ' g’;?i([P(sﬁsk—l) 'P(ok—1|sk—1)]

: ggg[P(sk—ﬂsk—z) - P(og—2lsi—2)]-
- an?X[P(sz|31) - P(o1ls1)] - P(s1)
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I’T}?XP(ok|3k) . Q??[P(sﬁsk—l) | P(Ok—1|8k—1)]

‘ Q?;ZP(sk—ﬂsk—z) - Plog—2lsi—2)1 " ...
. rr;gx:P(33|32) 'P(02|32)] '
' maxﬁP(32|51) 'P(01|81)] * P(s1)

S1

m Viterbi’s Algorithm
1 Dynamic Programming
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Estimate
2 Initial state probability P (s,)
2 Transition probability P(s,|s, ;)
- Observation probability P(o,|s,)
m Unsupervised Learning (states are not observed)
2 EM Algorithm
m Supervised Learning (states are observed; more

common)
) ML Estimate of above terms directly from data

m Notice that this is completely analogues to the case
of naive Bayes, and essentially all other models.
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