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Optimization Problem

Minimize f(w, b) ≡ 1
2‖w‖

2

subject to yi(w · xi + b) ≥ 1, i = 1, . . . , m

This is an optimization problem in (n + 1) variables, with m linear
inequality constraints.

Introducing Lagrange multipliers αi, i = 1, . . . , m for the inequality
constraints above gives the primal Lagrangian:

Minimize LP (w, b,α) ≡ 1
2‖w‖

2 −
m∑

i=1

αi[yi(w · xi + b)− 1]

subject to αi ≥ 0, i = 1, . . . , m
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Optimization Problem (continued)

Setting the gradients of LP with respect to w, b equal to zero gives:

∂LP

∂w
= 0 ⇒ w =

m∑
i=1

αiyixi,
∂LP

∂b
= 0 ⇒

m∑
i=1

αiyi = 0

Substituting the above in the primal gives the following dual problem:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)

subject to
m∑

i=1

αiyi = 0; αi ≥ 0, i = 1, . . . , m

This is a convex quadratic programming problem in α.
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Sticky Note
A bit of Algebra. 
1. Substitute
2. Use the fact that  \sum \alpha_i y_i = 0
3. Use w = \sum \alpha_i y_i x_i
4. Multiply by (-1) (Max instead of Min)
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Solution

The parameters w, b of the maximal margin classifier are determined by
the solution α to the dual problem:

w =
m∑

i=1

αiyixi

b = −
1

2

(
min

yi=+1
(w · xi) + max

yi=−1
(w · xi)

)
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Support Vectors

Due to certain properties of the solution (known as the
Karush-Kuhn-Tucker conditions), the solution α must satisfy

αi[yi(w · xi + b)− 1] = 0, i = 1, . . . , m.

Thus, αi > 0 only for those points xi that are closest to the classifying
hyperplane. These points are called the support vectors .
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Non-Separable Case

Want to relax the constraints

yi(w · xi + b) ≥ 1.

Can introduce slack variables ξi:

yi(w · xi + b) ≥ 1− ξi,

where ξi ≥ 0 ∀i. An error occurs when ξi > 1.

Thus we can assign an extra cost for errors as follows:

Minimize f(w, b, ξ) ≡ 1
2‖w‖

2 + C
m∑

i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi; ξi ≥ 0, i = 1, . . . , m
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Note
A large value of C means that misclassifications are bad - resulting in smaller margins and less training error (but more expected true error). A small C results in more training error, hopefully better true error.

Recall the [VC Term + Empirical Error Term] expression 


danr
Sticky Note
Think about what \xi is; write it down --> Hinge Loss
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Non-Separable Case (continued)

Dual problem:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)

subject to
m∑

i=1

αiyi = 0; 0 ≤ αi ≤ C, i = 1, . . . , m

Solution:

The solution for w is again given by

w =
m∑

i=1

αiyixi.

The solution for b is similar to that in the linear case.
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Visualizing the Solution in the Non-Separable Case

1. Margin support vectors ξi = 0 Correct
2. Non-margin support vectors ξi < 1 Correct (in margin)
3. Non-margin support vectors ξi > 1 Error
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Note
The number of support vectors is going to be larger, since all data points that have a nonzero slack parameter will be a support vector.



