
SVMs CS446 Spring ’17

Administration

HW4 is due on Saturday 3/11  
 No extensions!

 We will release solutions on Saturday night, so there is 
enough time for you to look at it before the exam. 

Midterm exam on Thursday 3/16
 Closed books;  in class; ~4 questions

 All the material covered before the midterm

 Practice midterms will be released over the weekend

 Next Tuesday 3/14: Review

Additional Office hours: 
 8:30-9:30 Tomorrow (Wednesday) 
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Questions?

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/hw4/hw4.pdf
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Projects

Projects proposals are due on March 10 2017
Within a week we will give you an approval to continue with your project 
along with comments and/or a request to modify/augment/do a different 
project. There will also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally,  some of the ideas you have developed in the direction of the 
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good. 
You can do experimental work, theoretical work, a combination of both 
or a critical survey of results in some specialized topic. 
The work has to include some reading. Even if you do not do a survey, you 
must read (at least) two related papers or book chapters and relate your 
work to it. 
Originality is not mandatory but is encouraged. 
Try to make it interesting!
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Scale of Projects: 
25% of the grade
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Examples

Fake News Challenge :- http://www.fakenewschallenge.org/

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we are asked to 

identify which papers are really written by the author. 

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification, gender, 
native language, …. 

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold functions, NN) 
more comprehensible 
 Explain the prediction

Develop a (multi-modal) People Identifier  
Compare Regularization methods: e.g., Winnow vs. L1 Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep 
network, efficient, architecture. 
Try to prove something
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https://urldefense.proofpoint.com/v2/url?u=http-3A__www.fakenewschallenge.org_&d=DwMFAg&c=8hUWFZcy2Z-Za5rBPlktOQ&r=4vDcLc57cD397QaRxR0yOZWu-Gg0KM96wcN0Jci1clw&m=9N8h2Wns4dC-DEEP0V-pObXSyU3Zl4uG51ahA1VuScE&s=LWaUdjsTWw0Y1xGXjw1TCh2YdQAXX-PgPe8hD0Yup7A&e=
https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge
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COLT approach to explaining Learning

4

No Distributional Assumption

Training Distribution is the same as the Test 
Distribution

Generalization bounds depend

on this view and affects 

model selection.  

ErrD(h) < ErrTR(h)   +   

P(VC(H), log(1/±),1/m)

This is also called the 

“Structural Risk Minimization” principle. 
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COLT approach to explaining Learning
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No Distributional Assumption

Training Distribution is the same as the Test Distribution

Generalization bounds depend on this view and affect model 
selection.  

ErrD(h) < ErrTR(h)   +   P(VC(H), log(1/±),1/m)

As presented, the VC dimension is a combinatorial parameter that is 
associated with a class of functions. 

We know that the class of linear functions has a lower VC dimension 
than the class of quadratic functions. 

But, this notion can be refined to depend on a given data set, and 
this way directly affect the hypothesis chosen for a given data set.
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Data Dependent VC dimension

So far we discussed VC dimension in the context of a fixed class 
of functions.  

We can also parameterize the class of functions in interesting 
ways. 

Consider the class of linear functions, parameterized by their 
margin.  Note that this is a data dependent notion.
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Linear Classification

Let X = R2, Y = {+1, -1}

Which of these classifiers would be likely to 
generalize better?

7

h1 h2
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VC and Linear Classification

Recall the VC based generalization bound:

Err(h) · errTR(h) + Poly{VC(H), 1/m, log(1/±)}

Here we get the same bound for both classifier: 

ErrTR (h1) = ErrTR (h2)= 0

h1, h2 2 Hlin(2), VC(Hlin(2)) =  3

How, then, can we explain our intuition that h2 should give 
better generalization than h1?

8



SVMs CS446 Spring ’17

Linear Classification

Although both classifiers separate the data, the 
distance with which the separation is achieved is 
different: 

9

h1 h2
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Concept of Margin

The margin °i of a point xi 2 Rn with respect to a 
linear classifier h(x) = sign(w ¢ x +b) is defined as the 
distance of xi from the hyperplane w ¢ x + b = 0:

°i = |(w ¢ xi +b)/||w||| 

The margin of a set of points {x1,…xm} with respect to 
a hyperplane w, is defined as the margin of the point 
closest to the hyperplane:

° = min
i
°i = mini|(w ¢ xi +b)/||w||| 

10
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VC and Linear Classification

If H° is the space of all linear classifiers in <n that 
separate the training data with margin at least °, 
then: 

VC(H°) · min(R2/°2, n) +1,

Where R is the radius of the smallest sphere (in <n) 
that contains the data.

Thus, for such classifiers, we have a bound of the 
form: 

Err(h) · errTR(h) + { (O(R2/°2 ) + log(4/±))/m }1/2

11
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Data Dependent VC dimension

Namely, when we consider the class H° of linear hypotheses 
that separate a given data set with a margin °,

We see that 

 Large Margin ° Small VC dimension of H°

Consequently, our goal could be to find a separating hyperplane 
w  that maximizes the margin of the set S of examples. 

A second observation that drives an algorithmic approach is 
that:

Small ||w||  Large Margin

This leads to an algorithm: from among all those w’s that agree 
with the data, find the one with the minimal size ||w||  

12
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Maximal Margin

13

This discussion motivates the notion of a maximal margin.
The maximal margin of a data set S is define as:

°(S) = max||w||=1 min(x,y) 2 S |y wT x|
1. For a given w: Find the 

closest point.  
2. Then, find the one the gives 
the maximal margin value across 
all w’s (of size 1). 
Note: the selection of the point  is in 
the min and therefore  the max does 
not change if we scale w, so it’s okay 
to only deal with normalized w’s. 

(PS0, PS1): The distance between a point x and the hyperplane defined by (w; b) is:   |wT x + b|/||w||

How does it help us to derive these h’s? 

argmax||w||=1 min(x,y) 2 S |y wT x|
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Margin and VC dimension

14

Theorem (Vapnik): If H° is the space of all linear classifiers in 
<n that separate the training data with margin at least °, then

VC(H°) · R2/°2

where R is the radius of the smallest sphere (in <n) that 
contains the data.

This is the first observation that will lead to an algorithmic 
approach.

The second observation is that: 

Small ||w||  Large Margin

Consequently: the algorithm will be: from among all those
w’s that agree with the data, find the one with the minimal 
size ||w||

Believe

We’ll 
Prove
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Hard SVM

We want to choose the hyperplane that achieves the largest 
margin. That is, given a data set S, find: 

 w* = argmax||w||=1 min(x,y) 2 S |y wT x|

How to find this w*?

Claim: Define w0 to be the solution of the optimization problem:

w0 = argmin {||w||2 : 8 (x,y) 2 S, y wT x ¸ 1 }.

Then:

w 0/||w0|| = argmax||w||=1 min(x,y) 2 S y wT x

That is, the normalization of w0 corresponds to the largest  margin 
separating hyperplane.  

15

1. For a given w: Find the closest 
point. 
2. Among all w’s (of size 1) find the w
the maximizes this point’s margin. 
Note: the selection of the point in the min
and therefore the largest margin w do not 
change if we scale w, so it’s okay to only 
deal with normalized w’s. 

1. Consider the set of 
“good” w’s (those that 
separate the data).
2. Among those, choose 
the one with minimal 
size. 
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Hard SVM (2)

Claim: Define w0 to be the solution of the optimization problem:

w0 = argmin {||w||2 : 8 (x,y) 2 S, y wT x ¸ 1 }    (**)

Then:

w 0/||w0|| = argmax||w||=1 min(x,y) 2 S y wT x

That is, the normalization of w0 corresponds to the largest  margin 
separating hyperplane.  

Proof: Define w’ = w 0/||w0|| and let w* be the largest-margin 
separating hyperplane of size 1.  We need to show that w’ = w*. 

Note first that  w*/°(S) satisfies the constraints in (**); 

therefore:       ||w0|| · ||w*/°(S)||  = 1/°(S) . 

Consequently:

8 (x,y) 2 S   y w’T x  = 1/||w0|| y w0
T x ¸ 1/||w0|| ¸ °(S)

But since ||w’|| = 1 this implies that w’ corresponds to the largest 
margin, that is w’= w*

16

Def. of w’ Def. of w0
Prev. ineq.

Def. of w0
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Margin of a Separating Hyperplane

17

A separating hyperplane: wT x+b = 0
Distance between 
wT x+b = +1 and -1 is 2 / ||w||

What we did: 
1. Consider all possible w 

with different angles
2. Scale w such that the 

constraints are tight
3. Pick the one with largest 

margin/minimal size

wT x+b = 0

wT x+b = -1

wT xi +b¸ 1   if  yi = 1
wT xi +b· -1  if  yi = -1

=> 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1

Assumption: data is linearly separable
Let (x0 ,y0) be a point on wTx+b = 1

Then its distance to the separating plane 
wT x+b = 0 is: |wT (x0 ,y0) +b|/||w||= 1/||w||
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Hard SVM Optimization

We have shown that the sought after weight vector w 
is the solution of the following optimization problem:

SVM Optimization:  (***)

Minimize:  ½ ||w||2

Subject to: 8 (x,y) 2 S:     y wT x ¸ 1 

This is a quadratic optimization problem in (n+1) 
variables, with |S|=m inequality constraints.   

It has a unique solution.

19
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Maximal Margin

20

The margin of a linear separator
wT x+b = 0

is 2 / ||w||

max 2 / ||w|| = min ||w|| 

= min ½ wTw

min
𝑤,𝑏

1

2
𝑤𝑇𝑤

s.t yi(w
Txi + 𝑏) ≥ 1, ∀ 𝑥𝑖 , 𝑦𝑖 ∈ 𝑆
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Support Vector Machines

The name “Support Vector Machine” stems from the 
fact that w* is supported by (i.e. is the linear span of) 
the examples that are exactly at a distance 1/||w*|| 
from the separating hyperplane. These vectors are 
therefore called support vectors. 

Theorem: Let w* be the minimizer of

the SVM optimization problem (***)

for S = {(xi, yi)}.    Let I= {i: w*Tx = 1}. 

Then there exists coefficients ®i >0 such that:

w* = i 2 I ®i yi xi

21

This representation 
should ring a bell…
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If n’ is large, we cannot represent w explicitly. However, the weight vector w
can be written as a linear combination of examples: 

Where 𝛼𝑗 is the number of mistakes made on 𝑥(𝑗)

Then we can compute f(x) based on {𝑥(𝑗)} and 𝜶

(recap) Kernel Perceptron
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In the training phase, we initialize 𝜶 to be an all-zeros vector.
For training sample (𝑥(𝑘), 𝑦(𝑘)), instead of using the original Perceptron 
update rule in the 𝑅𝑛′ space

we maintain 𝜶 by

based on the relationship between w and 𝜶 :
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(recap) Kernel Perceptron
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Duality

This, and other properties of Support Vector 
Machines are shown by moving to the dual problem.

Theorem: Let w* be the minimizer of

the SVM optimization problem (***)

for S = {(xi, yi)}.   

Let I= {i: yi (w
*Txi +b)= 1}. 

Then there exists coefficients ®i >0 

such that:

w* = i 2 I ®i yi xi

24

08-LecSvm-dual.pdf
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Footnote about the threshold

25

Similar to Perceptron, we can augment vectors to handle the bias term

ҧ𝑥 ⇐ 𝑥 , 1 ; ഥ𝑤 ⇐ 𝑤 , 𝑏 so that ഥ𝑤𝑇 ҧ𝑥 = 𝑤𝑇𝑥 + 𝑏

Then consider the following formulation 

min
ഥ𝑤

1

2
ഥ𝑤𝑇ഥ𝑤 s.t yiഥ𝑤

T ҧ𝑥i ≥ 1, ∀ 𝑥𝑖 , 𝑦𝑖 ∈ S

However, this formulation is slightly different from (***), because it is 
equivalent to

min
𝑤,𝑏

1

2
𝑤𝑇𝑤 +

1

2
𝑏2 s.t yi(𝑤

Txi + 𝑏) ≥ 1, ∀ 𝑥𝑖 , 𝑦𝑖 ∈ S

The bias term is included in the regularization. 
This usually doesn’t matter

For simplicity, we ignore the bias term
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Key Issues

26

Computational Issues
 Training of an SVM used to be is very time consuming – solving 

quadratic program.

 Modern methods are based on Stochastic Gradient Descent and 
Coordinate Descent.

Is it really optimal? 
 Is the objective function we are optimizing the “right” one?
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Real Data  

27

17,000 dimensional context sensitive spelling 

Histogram of distance of points from the hyperplane
In practice, even in the separable 
case, we may not want to depend 
on the points closest to the 
hyperplane but rather on the 
distribution of the distance. If 
only a few are close, maybe we 
can dismiss them.

This applies both to generalization
bounds and to the algorithm. 
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Soft SVM

Notice that the relaxation of the constraint:                                                      
yiw

Txi ≥ 1

Can be done by introducing a slack variable 𝜉𝑖 (per 
example) and requiring:    

yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0

Now, we want to solve: 

28

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0 ∀𝑖

A large value of C means 
that misclassifications 
are bad - resulting in 

smaller margins and less 
training error (but more 
expected true error). A 
small C results in more 
training error, hopefully 

better true error.
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Soft SVM (2)

Now, we want to solve: 

Which can be written as:

min
𝑤

1

2
𝑤𝑇𝑤 + 𝐶෍

𝑖

max(0, 1 − 𝑦𝑖𝑤
𝑇𝑥𝑖) .

What is the interpretation of this?

29

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0 ∀𝑖

In  optimum, ξi = max(0, 1 − yiw
Txi)

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t 𝜉𝑖 ≥ 1 − yiw
Txi; 𝜉𝑖≥ 0 ∀𝑖
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Soft SVM (3)

The hard SVM formulation assumes linearly separable data.

A natural relaxation: maximize the margin while minimizing the 
# of examples that violate the margin (separability) constraints. 

However, this leads to non-convex problem that is hard to solve. 

Instead, move to a surrogate loss function that is convex.  

SVM relies on the hinge loss function (note that the dual 
formulation can give some intuition for that too). 

Minw ½ ||w||2 + C (x,y) 2 S max(0, 1 – y wTx) 

where the parameter C controls the tradeoff 
between large margin (small ||w||) and small hinge-
loss. 

30
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SVM Objective Function

31

The problem we solved is:

Min ½ ||w||2 + c  »i

Where »i > 0 is called a slack variable, and is defined by:

 » i = max(0, 1 – yi wtxi)

 Equivalently, we can say that: yi wtxi ¸ 1 - »;   »¸ 0

And this can be written as:

Min  ½ ||w||2 +             c  »i

General Form of a learning algorithm:
 Minimize empirical loss, and Regularize (to avoid over fitting) 

 Theoretically motivated improvement over the original algorithm we’ve see 
at the beginning of the semester.

Can be replaced by other loss functionsCan be replaced by other regularization 
functions

Empirical lossRegularization term
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Balance between regularization and empirical 
loss
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Balance between regularization and empirical 
loss

33

(DEMO)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html
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Underfitting Overfitting

Model complexity

Expected
Error

Underfitting and Overfitting

34

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 

Smaller C Larger C



SVMs CS446 Spring ’17

What Do We Optimize?

35
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What Do We Optimize(2)?

36

We get an unconstrained problem. We can use the gradient 
descent algorithm! However, it is quite slow.

Many other methods
 Iterative scaling; non-linear conjugate gradient; quasi-Newton 

methods; truncated Newton methods; trust-region newton method.

 All methods are iterative methods, that generate a sequence wk that 
converges to the optimal solution of the optimization problem above.

Currently: Limited memory BFGS is very popular 
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Optimization: How to Solve

37

1. Earlier methods used Quadratic Programming. Very slow.

2. The soft SVM problem is an unconstrained optimization problems. It is 
possible to use the gradient descent algorithm! Still, it is quite slow.

Many options within this category: 

 Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; 
truncated Newton methods; trust-region newton method.

 All methods are iterative methods, that generate a sequence wk that 
converges to the optimal solution of the optimization problem above.

 Currently: Limited memory BFGS is very popular 

3. 3rd generation algorithms are based on Stochastic Gradient Decent 
 The runtime does not depend on n=#(examples); advantage when n is very large. 

 Stopping  criteria is a problem: method tends to be too aggressive at the beginning and 
reaches a moderate accuracy quite fast, but it’s convergence becomes slow if we are 
interested in more accurate solutions.

4. Dual Coordinated Descent (& Stochastic Version)
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SGD for SVM

38

Goal:   min
𝑤

𝑓 𝑤 ≡
1

2
𝑤𝑇𝑤 +

𝐶

𝑚
σ𝑖max 0, 1 − 𝑦𝑖𝑤

𝑇𝑥𝑖 . m: data size

Compute sub-gradient of 𝑓 𝑤 :

𝛻𝑓 𝑤 = 𝑤 − 𝐶𝑦𝑖𝑥𝑖 if  1 − 𝑦𝑖𝑤
𝑇𝑥𝑖 ≥ 0 ; otherwise 𝛻𝑓 𝑤 = 𝑤

1. Initialize 𝑤 = 0 ∈ 𝑅𝑛

2. For every example xi, yi ∈ 𝐷

If 𝑦𝑖𝑤
𝑇𝑥𝑖 ≤ 1 update the weight vector to 

𝑤 ← 1 − 𝛾 𝑤 + 𝛾𝐶𝑦𝑖𝑥𝑖 (𝛾 - learning rate)

Otherwise    𝑤 ← (1 − 𝛾)𝑤

3. Continue until convergence is achieved

This algorithm 
should ring a bell…

Convergence can be proved for a slightly 
complicated version of SGD (e.g, Pegasos)

m is here for mathematical correctness, it 
doesn’t matter in the view of modeling.
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Nonlinear SVM

39

We can map data to a high dimensional space: x → 𝜙 𝑥 (DEMO)

Then use Kernel trick: 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇 𝜙 𝑥𝑗 (DEMO2)

Primal: 

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
T𝜙 𝑥𝑖 ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ∀𝑖

Dual:

min
𝛼

1

2
𝛼𝑇Q𝛼 − 𝑒𝑇𝛼

s.t 0 ≤ 𝛼 ≤ 𝐶 ∀𝑖

Q𝑖𝑗 = 𝑦𝑖 𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

Theorem: Let w* be the minimizer of the primal problem, 

𝛼∗ be the minimizer of the dual problem.
Then w∗ = σ𝑖 𝛼

∗ yixi

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html
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Nonlinear SVM

Tradeoff between training time and accuracy

Complex model v.s. simple model

40

From: http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly_journal.pdf


