Count m
Minimum Value 21.00
Maximum Value 96.00
Range 75.00
Average 72.33
Median 79.50
Standard Deviation 13.43
Variance 180.30
PAC Learning SVM Kernels+Boost Decision Trees
Cout Court (151 Count 151 Court [151]
Minimum Valug 300 Minimum Value 250 M Voke 5 Minimum Valug 500
Maximum Valug 25.00 Mazximum Valug 25.00 laximum Value 2300 Maximum Valug 24.00
Range 200 Range 2250 Range A0 Range 19,00
Average 1974 Average 16:65 Average 1he Average 18.13
Median 2100 Median 1800 edian 1750 Median 18,50
Standard Deviation 490 Standard Deviation 5% Standard Deviation 363 Standard Deviation 407
Variance 24,04 Variance 35.07 Variance 1319 Variance 16,54
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Grades
are on a

curve

Will be
available
at the TA
sessions
this week

Projects
feedback
has been
sent.
Recall
that this
is 25% of
your
grade!

Undergrad Midterm

Probability
=
=
r
=

100

MultiClass

Midterm Lewvel = 0
B8.
0.
13.
22.
gl.

count
mean
std
min
25%
hO%
5%
max

74
80

. 000000
.250000
892.

000000
539773
822400
000000
375000

000000

0035

0.030

0.025

Probalbility
=] (=}
(== ©
— [
[ (=]

0.010

0.005

0.000

Grad Midterm

Midterm Lewvel
150.
12.
13.
22.
63.
5.
B,
96,

count
mean
std
min
25%
50%
15%
max

= ALL
000000
173333
442643
000000
750000
000000
000000
000000

Midterm Level = G

count
mean
std
min
25%
50%
15%
max

6.
74.
12.
37.
68.
715.
B3.
96.

000000
491935
632735
500000
125000
150000
000000
000000




MultiClass

m So far we focused on Binary Classification

m For linear models:
2 Perceptron, Winnow, SVM, GD, SGD

m The prediction is simple:
2 Given an example x,
2 Prediction = sgn(w'x)
2 Where w is the learned model

m The output is a single bit

CS446 Spring "17



mmm) = Multi-class Classification (y < {1,...,K})

2 character recognition (‘6’)

2 document classification (‘homepage’)

» Multi-label Classification (y < {1,...,K})
2 document classification (‘(homepage,facultypage)’)

m Category Ranking (y € m(K))
2 user preference (‘(love > like > hate)’)
0 document classification (‘hompage > facultypage > sports’)

m Hierarchical Classification (y < {1,..,K})

2 cohere with class hierarchy

2 place document into index where ‘soccer’ is-a ‘sport’

MultiClass CS446 Spring '17 4



W Learning:
O Given a dataset D ={(x, y;)};™
0 Wherex, € R", y. € {1,2,...,k}.
m Prediction (inference):
2 Given an example x, and a learned function (model),

2 Output a single class labels y.

MultiClass CS446 Spring "17 5



MultiClass

Most schemes for multiclass classification work by
reducing the problem to that of binary classification.

There are multiple ways to decompose the multiclass
prediction into multiple binary decisions
2 One-vs-all

2 All-vs-all
2 Error correcting codes

We will then talk about a more general scheme:

0 Constraint Classification

It can be used to model other non-binary classification
schemes and leads to Structured Prediction.

CS446 Spring "17 6



MultiClass

Assumption: Each class can be separated from all the
rest using a binary classifier in the hypothesis space.

m Learning: Decomposed to learning k independent
binary classifiers, one for each class label.
W Learning:
2 Let D be the set of training examples.

0 Vlabel |, construct a binary classification problem as follows:
= Positive examples: Elements of D with label |
* Negative examples: All other elements of D

2 This is a binary learning problem that we can solve, producing
k binary classifiers w,, w,, ...w,

m Decision: Winner Takes All (WTA):
a f(x) = argmax, w,'x

CS446 Spring "17 7



= MultiClass classifier °
"1 Function f:R"—>{1,2,3,...,k} ®

m Decompose into binary problems

m No theoretical justification
"1 Need to make sure the range of all classifiers is the same

w (unless the problem is easy)
MultiClass CS446 Spring’17 8



= Findv,v,v v, e R"such that

T v.x>0
Vx>0
v x>0
v,.x>0

iff y = red X
iff y = blue \
iff y = green \
iff y =vellow \

= Classification: f(x) = argmax; v; x

MultiClass

00 00
o o
°_ O o ° T @ eg
T Te— o0y o | eg
0 0
® © 05

CS446 Spring’17
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MultiClass

Assumption: There is a separation between every pair of classes
using a binary classifier in the hypothesis space.

Learning: Decomposed to learning [k choose 2] ~ k?
independent binary classifiers, one corresponding to each pair
of class labels. For the pair (i, j):

0 Positive example: all exampels with label i

0 Negative examples: all examples with label j

Decision: More involved, since output of binary classifier may
not cohere. Each label gets k-1 votes.

Decision Options:

0 Majority: classify example x to take label i if i wins on x more often
thanj (j=1,...k)

0 A tournament: start with n/2 pairs; continue with winners .

CS446 Spring "17 10



It is possible to
separate all k
classes with the
O(k?) classifiers

i d
% Find Vi, Vo)V Ve Vi, Vg, € R® such that

v x>0 ify=red
<0 ify=blue
Vx>0 ify=red
<0 ify=green
"1 ... (for all pairs)

H = Rkkn

Individual
Classifiers

Decision

Regions
CS446 Spring’17

MultiClass



Tournament Majority Vote

1 red, 2 yellow, 2 green
- ?

All are post-learning and might cause weird stuff

MultiClass CS446 Spring’17 12



MultiClass

Assume m examples, k class labels.

2 For simplicity, say, m/k in each.
One vs. All:
O classifier f: m/k (+) and (k-1)m/k (-)
-1 Decision:
0 Evaluate k linear classifiers and do Winner Takes All (WTA):
a f(x) = argmax. f,(x) = argmax; w,'x
All vs. All:
a Classifier f: m/k (+) and m/k (-)
1 More expressivity, but less examples to learn from.
—1 Decision:
0 Evaluate k2 linear classifiers; decision sometimes unstable.

What type of learning methods would prefer All vs. All
(efficiency-wise)?

(Think about Dual/Primal)

CS446 Spring’17 13



m  1-vs-all uses k classifiers for k labels; can you use only log, k?

m Reduce the multi-class classification to random binary problems.
1 Choose a “code word” for each label.
o K=8: all we need is 3 bits, three classifiers

m  Rows: An encoding of each class (k rows)

m Columns: L dichotomies of the data, each corresponds to a new classification

problem Label [P1 [P2 [P3 [P4
m  Extreme cases:

0 1-vs-all: k rows, k columns 1 - + |- +

2 krows log, k columns
m  Each training example is mapped to one example per cquEn 2 - -+ + -

2 (x,3) 2 {(x,P1), +; (x,P2), -; (x,P3), -; (x,P4), +}

3 - -
m  To classify a new example x:
21 Evaluate hypothesis on the 4 binary problems 4 + - +
{(x,P1), (x,P2), (x,P3), (x,P4),}
-1 Choose label that is most consistent with the results. K - + - -

= Use Hamming distance (bit-wise distance)
Nice theoretical results as a function of the performance of the P, s (depending on code & size)
Potential Problems?

Can you separate any dichotomy?

MultiClass CS446 Spring '17 14




MultiClass

Learning optimizes over local metrics
1 Does not guarantee good global performance
1 We don’t care about the performance of the local classifiers

Poor decomposition = poor performance
~1 Difficult local problems
21 lrrelevant local problems

Especially true for Error Correcting Output Codes
1 Another (class of) decomposition
=1 Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All
Former has advantage when working with the dual space.

Not clear how to generalize multi-class to problems with a very large # of
output variables.

CS446 Spring "17 15



m klabel nodes; n input features, nk weights.

m Evaluation: Winner Take All
m Training: Each set of n weights, corresponding to the i-th label, is trained

1 Independently, given its performance on example x, and
1 Independently of the performance of label j on x.

m Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).

m However, this architecture allows multiple learning algorithms; e.g., see the
implementation in the SNoW/LbJava Multi-class Classifier
Targets (each an LTU) 3% I Sed

Weighted edges
(weight vectors)

., Features © O
MultiClass CS446 Spring’17 21



m Winnow learns monotone Boolean functions
m  We extended to general Boolean functions via

w “Balanced Winnow”
1 2 weights per variable;

-1 Decision: using the “effective weight”,
the difference between w* and w-

y¢Positive 3¢ Negative

-1 This is equivalent to the Winner take all decision

W-

1 Learning: In principle, it is possible to use the 1-vs-all rule and update each set
of n weights separately, but we suggested the “balanced” Update rule that
takes into account how both sets of n weights predict on example x

If (W —w)ex20]#y, w < wr', w «wr’"

Can this be generalized to the
case of k labels, k >27?

MultiClass

We need a “global”
learning approach

CS446 Spring "17




MultiClass

In a 1-vs-all training you have a target node that represents
positive examples and target node that represents negative
examples.

m Typically, we train each node separately (mine/not-mine
example).

Rather, given an example we could say: this is more a + example
than a — example.

If [(W—w)ex>0|=y, w «wr, w «<wr’"

We compared the activation of the different target nodes
(classifiers) on a given example. (This example is more class +
than class -)

Can this be generalized to the case of k labels, k >27?
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» Introduction

m Combining binary classifiers
2 One-vs-all
2 All-vs-all

2 Error correcting codes

B Training a single (global) classifier
O Multiclass SVM

0 Constraint classification

MultiClass CS446 Spring '17 24



The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point
nearest to it.

iy

++
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MultiClass

Defined as the score difference between the highest

scoring label and the second one

Multiclass Margin

M Blue

Score for B Red
a label
=W 0 X “ Green
M Black

Labels

CS446 Spring "17 26



m Recall: Binary SVM

2 Maximize margin

2 Equivalently,

Minimize norm of weight vector, while keeping the closest points to
the hyperplane with a score 4-1

m Multiclass SVM

2 Each label has a different weight vector (like one-vs-all)
0 Maximize multiclass margin

2 Equivalently,

Minimize total norm of the weight vectors while making sure that
the true label scores at least 1 more than the second best one.

MultiClass CS446 Spring "17 27



Recall hard binary SVM

min LwT'w

Size of the weights.

2 Effectively, regularizer

w

s.t.Vi, ywlx; >1

s.t. wlx—wix>1 V(x;,¥i) € D,
ke {1:2: 7K}:k %yz:

The score for the true label is higher
than the score for any other label by 1

MultiClass CS446 Spring "17 28



Total slack. Effectively,

‘ Size of the weights. \ don’t allow too many
Effectively, regularizer examples to violate the

margin constraint

min % E Wi W
wl’W2’...’wK k

S.t. wl x — ng >1

:I-

The score for the true label is higher
than the score for any other label by 1

4

V(xiayz') ED:
ke {1727 7K}7k7éyi:

Slack variables. Not all
examples need to
satisfy the margin

constraint.

MultiClass -

Slack variables can
only be positive




Total slack. Effectively,

‘ Size of the weights. \ don’t allow too many
Effectively, regularizer examples to violate the

A

4

4

margin constraint

-

: 1 T
w3 zk: w, wg + C (Xi%ED&
s.t. wg;,x —wix>1-¢, V(x;,¥i) € D,
i \\\\ ke{lvzv"'vK}vk%Yi:
o N w
v Y

The score for the true label is higher
than the score for any other label by

1-¢

TG R P P

Slack variables. Not all
examples need to
satisfy the margin

constraint.

Slack variables can
only be positive

MultiClass cosFFuopTrmg—1/ 30



m Generalizes binary SVM algorithm

2 If we have only two classes, this reduces to the binary (up to
scale)

m Comes with similar generalization guarantees as the
binary SVM

m Can be trained using different optimization methods

2 Stochastic sub-gradient descent can be generalized
= Try as exercise

MultiClass CS446 Spring "17 31



MultiClass

Training:
0 Optimize the “global” SVM objective

Prediction:
0 Winner takes all
argmax; w;'x

With K labels and inputs in 1", we have nK weights in all
0 Same as one-vs-all

Why does it work?
0 Why is this the “right” definition of multiclass margin?

A theoretical justification, along with extensions to other algorithms
beyond SVM is given by “Constraint Classification”

0 Applies also to multi-label problems, ranking problems, etc.

0 [Dav Zimak; with D. Roth and S. Har-Peled]

CS446 Spring "17
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MultiClass

The examples we give the learner are pairs (x,y), y € {1,...k}

The “black box learner” (1 vs. all) we described might be thought of as
a function of x only but, actually, we made use of the labels y

How is y being used?

1y decides what to do with the example x; that is, which of the k classifiers
should take the example as a positive example (making it a negative to all
the others).

How do we predict?
O Let: f (x) =w," - x
0 Then, we predict using: y" =argmax,_;  f (x)

Equivalently, we can say that we predict as follows:

) Predict vy iff
0 Vy €{l,.khy—-=y (wS-w,")-x>0 (*¥)
So far, we did not say how we learn the k weight vectors w, (y = 1,...k)

21 Can we train in a way that better fits the way we predict?
1 What does it mean?

Is it better in any well defined way?
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We showed: if pairs of labels are separable (a reasonable assumption) than in
some higher dimensional space, the problem is linearly separable.

e’ m  We are learning k n-dimensional weight vectors, so we can concatenate

%o the k weight vectors into Notice: This is just a representational

° .. ®eo w= (w;, W,,...w,) € | trick. We did not say how to learn the
o weight vectors.

m Key Construction: (Kesler Construction; Zimak’s Constraint Classification)

1 We will represent each example (x,y), as an nk-dimensional vector, x,, with x
embedded in the y-th part of it (y=1,2,...k) and the other coordinates are 0.

N E.g., X, =(0,x,0,0) € R (here k=4, y=2)

m Now we can understand the n-dimensional decision rule:

w  Predicty iff Vy €{l,.kLy—=y  (w-w,")-x>0 (*¥)
Equivalently, in the nk-dimensional space.
Predict vy iff Vy €{1,.kly—=y w'-(x,-x,)=w"-x, >0

m  Conclusion: The set (x,,,, +) = (x, — X, +) is linearly separable from the

set (-x,,, - ) using the linear separator w € Rkn,
1 We solved the voroni diagram challenge.
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MultiClass

® Training:

2 [We first explain via Kesler’s construction; then show we
don’t need it]

2 Given a data set {(x,y)}, (m examples) with x € R", y € {1,2,...k}
create a binary classification task (in Rk):
(X, - Xp» ), (X, =%, =), forally’ ==y (2m(k-1) examples)
Here x, € R

2 Use your favorite linear learning algorithm to train a binary
classifier.

w Prediction:

2 Given an nk dimensional weight vector w and a new example
. T
X, predict: argmax, W' X,

CS446 Spring "17 35



If (x,i) was a given n-
dimensional example (that
m Transform Examples C is, x has is labeled i, then

X, V j=1,..K, jo=1, are
positive examples in the

2>1 © nk-dimensional space. —x

253 ‘ Q0 % ® @ | are negative examples. :
@

2>4

= (0,x,0,0) € Rkd
X; = (0,0,0,x) € Rk
Xij = Xi - XJ = (O,X,O,'X)

W = (W, W,,W,,W,) € Rk

MultiClass CS446 Spring "17 36



Wy =argmax

-l w;, XeR"

= Find w,,wy,,W,,W, € R"such that -
0 WX > WX

OOWLX > WX

i=(r,b,g,v) W;.X

WX > WX

MultiClass CS446 Spring '17



MultiClass

Let w = (w,r,wb,wg,wy ) € Rk
Let O", be the n-dim zero vector

x B2 X VA4
W,.X > WX & W.(X,-x,0",0") >0 < w.(-x,x,0",0") <0
WX > WX < W.(x,07,-x,0") >0 <> w.(-x,0",x,0") < 0

WX > W, X < w.(x,0",0"-x) >0 < w.(-x,0",0",x) <0

- J - J
Y Y

—= .

CS446 Spring "17
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Let
0 W= (Wyg, ..., W) € R"x ... x R" = Rk
Q Xi; = (O(i‘l)n’ X, O(k'i)n) — (O(J"l)n’ —X, O(k-j)n) c Rk

%%

m Given (x,y) e R x{1,...,k}
2 Forallj=y (all other labels)
“ Add to P*(x,y), (x; 1)
* Add to P(x,y), (—x;, -1)

m P*(x,y) has k-1 positive examples (e R*)
m P (x,y) has k-1 negative examples (e R«)

MultiClass CS446 Spring '17




Given (X4, Yq), .- (Xy, Yn) € R" X {1,...,k}
Create
0 Pr=U P*(x,Y:)
0 PT=UP(x,y:)
w Findw = (wy, ..., w,) € R, such that
) w.x separates P* from P~
m One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

m To understand how to update the weight vector in the n-dimensional space,
we note that

o ©O

N wh - x,, >0 (in the nk-dimensional space)
W is equivalent to:
N (w,"=w, ") - x>0 (in the n-dimensional space)
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MultiClass

A perceptron update rule applied in the nk-dimensional space due to a
mistake in w'-x; >0

Or, equivalently to (w;"—w;") - x > 0 (in the n-dimensional space)
Implies the following update:

Given example (x,i) (example x € R", labeled i)

2 V(i) =10k 0 o= (***)
a9 1f (w'-w;") - x< 0 (mistaken prediction; equivalent tow" - x; <0)
0w, € w; +x (promotion) and w; < w; —x (demotion)

Note that this is a generalization of balanced Winnow rule.

Note that we promote w; and demote k-1 weight vectors w;
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The general scheme suggests:
Given example (x,i) (example x € R", labeled i)

O V(i) =1k 0 o= (***)
a9 1f (wi'-w;") - x< 0 (mistaken prediction; equivalent tow" - x; <0)
0 w; € w, +x (promotion) and w; € w; — x (demotion)

= Promote w; and demote k-1 weight vectors w;
w A conservative update: (SNoW and LBJava’s implementation):

21 In case of a mistake: only the weights corresponding to the target node i and
that closest node j are updated.

2 Let: j* = argmax.; ij- X (highest activation among competing labels)
2 0f (wT=wpuT) - x< 0 (mistaken prediction)

0w, € w; +x (promotion) and w: € wi. — x (demotion)

-1 Other weight vectors are not being updated.
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From the full dataset,
construct three binary
classifiers, one for each class

—
o o)
o ®
000 0.0\ g6
\ o
e o0 oo \ °
o O
™[>
Whiue X 0 for w,.'x >0 for Wy, X > 0 for
blue inputs . .
orange inputs black inputs
Notation: Score Winner Take All will predict the right answer.
for blue label Only the correct label will have a positive score
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o
°> e Red points are not separable with a single
. . o o
e® o binary classifier
o Oy

The decomposition is not expressive enough!

0 0
o ® o o
©5° \eoe ©5° o000
o0\ © ° e® O
o o
e o0
O Op O Op
W,,.' X >0 w._ x>0 WX >0 2772
blue org black res
for blue for orange for black
inputs inputs inputs
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m Easy to learn
1 Use any binary classifier learning algorithm

m Potential Problems
1 Calibration issues

= We are comparing scores produced by K classifiers trained independently.
No reason for the scores to be in the same numerical range!

1 Train vs. Train
* Does not account for how the final predictor will be used
= Does not optimize any global measure of correctness

2 Yet, works fairly well

= In most cases, especially in high dimensional problems (everything is
already linearly separable).
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[ Create K classifiers wy, w,, ..., wy .
[ Predict with WTA: argmax, w,'x

1 But, train differently:

= For examples with label i, we want
w;'x > w;'x for all j

» Training: For each training example (x;, y;) :

y < argmax w;i ¢ (xi, yi)

ify #y;
Wy, < Wy, +1X;  (promote) n: learning rate
Wy < Wy — X (demote)
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MultiClass

©)
@)
© ©)

The hypothesis learned above is more expressive than when the OvA
assumption is used.

Any linear learning algorithm can be used, and algorithmic-specific
properties are maintained (e.g., attribute efficiency if using winnow.)

E.g., the multiclass support vector machine can be implemented by
learning a hyperplane to separate P(S) with maximal margin.

As a byproduct of the linear separability observation, we get a natural
notion of a margin in the multi-class case, inherited from the binary
separability in the nk-dimensional space.

1 Given example x; € R™, margin(x
1 Consequently, given x € R", labeled i
margin(x,w) = minj (w"-w;") - x

w) =min_w'- x.
|

i J j
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The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point

nearest to it. .
A
' .
‘. N

- - _ A “-‘ 'l' +-|.!-+
o " \ ++

— - “ N\
- " » “\ ‘ " . .

- \ ~ Margin with respect to this hyperplane

\ ‘\\
A}
)
A\
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MultiClass

Defined as the score difference between the highest

scoring label and the second one

Multiclass Margin

M Blue

Score for B Red
a label
=W 0 X “ Green
M Black

Labels
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The scheme presented can be generalized to provide a uniform view
for multiple types of problems: multi-class, multi-label, category-
ranking

Reduces learning to a single binary learning task
Captures theoretical properties of binary algorithm
Experimentally verified

Naturally extends Perceptron, SVM, etc...

It is called “constraint classification” since it does it all by representing
labels as a set of constraints or preferences among output labels.

MultiClass CS446 Spring '17
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Multiclass
2 (x, A) = (x, (A>B, A>C, A>D))
m  Multilabel
2 (x, (A, B)) = (x, ( (A>C, A>D, B>C, B>D) )

w Label Ranking
2 (x, (5>4>3>2>1)) = (x, ((5>4, 4>3, 3>2,2>1))

® Inall cases, we have examples (x,y) with y € S,
w Where S, : partial order over class labels {1,...,k}
2 defines “preference” relation ( > ) for class labeling

m Consequently, the Constraint Classifier is: h: X —> S,

2 h(x) is a partial order

2 h(x) is consistent with y if (i<j) € y = (i<j) €h(x)

MultiClass CS446 Spring '17

The unified formulation is clear from the following examples:

Just like in the multiclass we
learn one w; € R" for each
label, the same is done for
multi-label and ranking. The
weight vectors are updated
according with the
requirements fromy € S,

(Consult the Perceptron in Kesler
construction slide)
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Properties of Construction @maket. al 2002, 2003)

Can learn any argmax v..x function (even when i isn’t linearly separable
from the union of the others)
Can use any algorithm to find linear separation
Perceptron Algorithm
ultraconservative online algorithm [Crammer, Singer 2001]
Winnow Algorithm
multiclass winnow [ Masterharm 2000 ]
Defines a multiclass margin
by binary margin in Rk
multiclass SVM [Crammer, Singer 2001]

MultiClass CS446 Spring "17
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w Linear Hypothesis space:
2 h(x) = argsort v..x
= v, x eRd
= argsort returns permutation of {1,...,k}

m CC margin-based bound

2
C|R

m\y’

m - number of examples
R - max, |||
0 - confidence
C - average # constraints
MultiClass CS446 Spring '17

err,(h) <O —In(0)
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w Linear Hypothesis space:
2 h(x) = argsort v,.x
= v, x eRd

= argsort returns permutation of {1,...,k}

m CCVC-based bound

err,(h)<err(S,h)+ 6{\/

MultiClass

pos

kdlog(mk/d)—1no

m - number of examples

d - dimension of input space
delta - confidence

k - number of classes

CS446 Spring "17

Performance: even though
this is the right thing to do,
and differences can be
observed in low dimensional
cases, in high dimensional
cases, the impact is not
always significant.

U
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m Ranking
1 category ranking (over classes)
1 ordinal regression (over examples)

= Multilabel
1 Xis both red and blue

m  Complex relationships
1 xis more red than blue, but not

m  Millions of classes
1 sequence labeling (e.g. POS tagging)

1 The same algorithms can be applied to these problems, namely, to Structured
Prediction

1 This observation is the starting point for CS546.
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m Sequential Prediction (y < {1,...,K}")
e.g. POS tagging ((NVNNA)’)

“This is a sentence.” =DV DN
e.g. phrase identification
Many labels: K for length L sentence

m  Structured Output Prediction (y e C({1,...,K}*))
e.qg. parse tree, multi-level phrase identification
e.g. sequential prediction
Constrained by
domain, problem, data, background knowledge, etc...
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m  Foreachverbin asentence
1. Identify all constituents that fill a semantic role

2. Determine their roles
Core Arguments, e.g., Agent, Patient or Instrument
Their adjuncts, e.g., Locative, Temporal or Manner

AO : leaver A2 : benefactor
| left my pearls to my daughter-in-law in my will.
A1 : thing left AM-LOC
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Just like in the multiclass case we can
think about local vs. global predictions.

Local: each component learned
separately, w/o thinking about other
components.

Global: learn to predicting the whole
structure.

Algorithm: essentially the same as CC

AO - Al A2
| left my pearls to my daughter-in-law in my will.

= Many possible valid outputs
= Many possible invalid outputs

m Typically, one correct output (per input)
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