
NEURAL	NETWORKS CS446	-FALL	‘16

Administration	

HW1	grades	should	be	up!
HW3	is	due	midnight.	
Hw4 will	be	released	next	Tuesday.	
q Please	start	working	on	it	as	soon	as	possible
q Come	to	sections	with	questions

Deadline	for	project	proposals	is	close	
q Make	sure	to	find	a	partner	and	explore	the	ideas.	

1

Questions

NEURAL	NETWORKS CS446	-FALL	‘16

Recap:	Multi-Layer	Perceptrons
Multi-layer	network	
q A	global	approximator
q Different	rules	for	training	it	
The	Back-propagation
q Forward	step	
q Back	propagation	of	errors	

Congrats!	Now	you	know	the	hardest	concept	about	
neural	networks!
Today:	
q Convolutional	Neural	Networks	
q Recurrent	Neural	Networks		

2

activation

Input

Hidden

Output

NEURAL	NETWORKS CS446	-FALL	‘16

Receptive	Fields	
The receptive	field of	an	individual sensory	neuron is	the	particular	
region	of	the	sensory	space	(e.g.,	the	body	surface,	or	the	retina)	in	
which	a stimulus will	trigger	the	firing	of	that	neuron.
q In	the	auditory	system,	receptive	fields	can	correspond	to	volumes	in	

auditory	space
Designing	“proper”	receptive	fields	for	the	input	Neurons	is	a	
significant	challenge.	
Consider	a	task	with	image	inputs
q Receptive	fields	should	give	expressive	features	from	the	raw	input	to	

the	system	
q How	would	you	design	the	receptive	fields	for	this	problem?	

3

NEURAL	NETWORKS CS446	-FALL	‘16

A	fully	connected	layer:	
q Example:	

§ 100x100	images	
§ 1000	units	in	the	input	

q Problems:	
§ 10^7	edges!	
§ Spatial	correlations	lost!	
§ Variables	sized	inputs.	

4
Slide Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Consider	a	task	with	image	inputs:	
A	locally	connected	layer:	
q Example:	

§ 100x100	images	
§ 1000	units	in	the	input	
§ Filter	size:	10x10

q Local	correlations	preserved!
q Problems:	

§ 10^5	edges	
§ This	parameterization	is	good	
when	input	image	is	
registered	(e.g.,	face	recognition).		
§ Variable	sized	inputs,	again.	

5
Slide Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Convolutional	Layer	

A	solution:	
q Filters	to	capture	different	patterns	in	the	input	space.	

§ Share	parameters	across	different	locations	(assuming	input	is	
stationary)	

§ Convolutions with	learned	filters	
q Filters	will	be	learned	during	training.	
q The	issue	of	variable-sized	inputs	will	be	
resolved	with	a	pooling	layer.

6
Slide Credit: Marc'Aurelio Ranzato

So	what	is	a	
convolution?

NEURAL	NETWORKS CS446	-FALL	‘16

Convolution	Operator	

Convolution	operator:	∗
q takes	two	functions	and	gives	another	function	

One	dimension:		

7

𝑥 ∗ ℎ 𝑡 = &𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
�

�
𝑥 ∗ ℎ [𝑛] = ∑ 𝑥 𝑚 ℎ[𝑛 − 𝑚]�

0

“Convolution”	is	
very	similar	to	

“cross-
correlation”,	
except	that	in	

convolution	one	
of	the	functions	

is	flipped.	

NEURAL	NETWORKS CS446	-FALL	‘16

Convolution	Operator	(2)

Convolution	in	two	dimension:
q The	same	idea:	flip	one	matrix	and	slide	it	on	the	other	

matrix	
q Example:	Sharpen	kernel:	

8
Try other kernels: http://setosa.io/ev/image-kernels/

NEURAL	NETWORKS CS446	-FALL	‘16

Convolution	Operator	(3)

Convolution	in	two	dimension:
q The	same	idea:	flip	one	matrix	and	slide	it	on	the	other	

matrix	

9
Slide Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Complexity	of	Convolution

Complexity	of	convolution	operator	is	𝑛log 𝑛 ,	for	𝑛
inputs.	
q Uses	Fast-Fourier-Transform	(FFT)

For	two-dimension,	each	convolution	takes	
𝑀𝑁log 𝑀𝑁 time,	where	the	size	of	input	is	𝑀𝑁.	

10
Slide Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Convolutional	Layer
The	convolution	of	the	input	(vector/matrix) with	weights	
(vector/matrix)	results	in	a	response	vector/matrix.	
We	can	have	multiple	filters	in	each	convolutional	layer,	
each	producing	an	output.		
If	it	is	an	intermediate	layer,	it	can	have	multiple	inputs!	

11

Convolutional	
Layer

Filter
Filter
Filter
FilterOne	can	add	nonlinearity	

at	the	output	of	
convolutional	layer

NEURAL	NETWORKS CS446	-FALL	‘16

Pooling	Layer	

How	to	handle	variable	sized	inputs?	
q A	layer	which	reduces	inputs	of	different	size,	to	a	fixed	size.
q Pooling		

12
Slide Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Pooling	Layer	

How	to	handle	variable	sized	inputs?	
q A	layer	which	reduces	inputs	of	different	size,	to	a	fixed	size.
q Pooling		
q Different	variations	

§ Max	pooling	

ℎ6 𝑛 = max
6∈;(=)

	ℎ@	[𝑖]

§ Average	pooling	

ℎ6 𝑛 = B
=

∑
6∈;(=)

	ℎ@	[𝑖]

§ L2-pooling	

ℎ6 𝑛 = B
=

∑
6∈;(=)

	ℎ@C	[𝑖]�

§ etc

13

NEURAL	NETWORKS CS446	-FALL	‘16

Convolutional	Nets

One	stage	structure:	

Whole	system:	

14
Slide Credit: Druv Bhatra

Convol. Pooling

Stage	1 Stage	2 Stage	3
Fully	

Connected	
Layer

Input
Image

Class
Label

NEURAL	NETWORKS CS446	-FALL	‘16

Training	a	ConvNet
The	same	procedure	from	Back-propagation	applies	here.	
q Remember	in	backprop we	started	from	the	error	terms	in	the	last	stage,	

and	passed	them	back	to	the	previous	layers,	one	by	one.	

Back-prop	for	the	pooling	layer:	
q Consider,	for	example,	the	case	of	“max”	pooling.	
q This	layer	only	routes	the	gradient	to	the	input	that	has	the	highest	value	in	the	

forward	pass.	
q Hence,	during	the	forward	pass	of	a	pooling	layer	it	is	common	to	keep	track	of	the	

index	of	the	max	activation	(sometimes	also	called the	switches)	so	that	gradient	
routing	is	efficient	during	backpropagation.

q Therefore	we	have:		 𝛿 = EFG
EHI

15

Convol. Pooling

Stage	3 Fully	Connected	LayerInput
Image

Class
Label

𝛿JKLMNJKOPQ =
𝜕𝐸T

𝜕𝑦JKLMNJKOPQ

𝐸T

Stage	1 Stage	2

𝛿VWQLMNJKOPQ =
𝜕𝐸T

𝜕𝑦VWQLMNJKOPQ

𝑥6 𝑦6

NEURAL	NETWORKS CS446	-FALL	‘16

Training	a	ConvNet
Back-prop	for	the	convolutional	layer:

16

Convol. Pooling

Stage	3 Fully	Connected	LayerInput
Image

Class
Label

𝛿JKLMNJKOPQ =
𝜕𝐸T

𝜕𝑦JKLMNJKOPQ

𝐸T

Stage	1 Stage	2

𝛿VWQLMNJKOPQ =
𝜕𝐸T

𝜕𝑦VWQLMNJKOPQ

𝑥6 𝑦6

We	derive	the	
update	rules	for	a	
1D	convolution,	
but	the	idea	is	the	
same	for	bigger	
dimensions.		

𝑦X = 𝑤 ∗ 𝑥			 ⟺			 𝑦X6 = [𝑤\

0NB

\]^

𝑥6N\ = [𝑤6N\

0NB

\]^

𝑥\					∀𝑖

𝑦 = 𝑓 𝑦X 		⟺				 𝑦6 = 𝑓(𝑦X6)					∀𝑖	

𝜕𝐸T
𝜕𝑤\

=

𝜕𝐸T
𝜕𝑦X6

=

𝛿 = 	
𝜕𝐸T
𝜕𝑥\

=

The	convolution

A	differentiable	nonlinearity	

[
𝜕𝐸T
𝜕𝑦X6

𝜕𝑦X6
𝜕𝑤\

0NB

6]^

= [
𝜕𝐸T
𝜕𝑦X6

𝑥6N\

0NB

6]^

𝜕𝐸T
𝜕𝑦6

𝜕𝑦6
𝜕𝑦X6

=
𝜕𝐸T
𝜕𝑦6

𝑓′(𝑦X)

[
𝜕𝐸T
𝜕𝑦X6

𝜕𝑦X6
𝜕𝑥\

0NB

6]^

= [
𝜕𝐸T
𝜕𝑦X6

𝑤6N\

0NB

6]^

Now	we	have	everything	in	
this	layer	to	update	the	filter

We	need	to	pass	the	gradient	
to	the	previous	layer	

Now	we	can	
repeat	this	for	
each	stage	of	
ConvNet.	

NEURAL	NETWORKS CS446	-FALL	‘16

Convolutional	Nets

17

Stage	
1

Stage	
2

Stage	
3

Fully	
Connected	

Layer
Input
Image

Class
Label

Feature	visualization	of	convolutional	net	trained	on	ImageNet from	[Zeiler &	Fergus	2013]

NEURAL	NETWORKS CS446	-FALL	‘16

ConvNet roots	
Fukushima,	1980s designed	network	with	same	basic	structure	
but	did	not	train	by	backpropagation.	
The	first	successful	applications	of	Convolutional	Networks by	
Yann	LeCun in	1990's (LeNet)
q Was	used	to	read	zip	codes,	digits,	etc.
Many	variants	nowadays,	but	the	core	idea	is	the	same
q Example:	a	system	developed	in	Google	(GoogLeNet)	

§ Compute	different	filters	
§ Compose	one	big	vector	from	all	of	them
§ Layer	this	iteratively

18
See more: http://arxiv.org/pdf/1409.4842v1.pdf

NEURAL	NETWORKS CS446	-FALL	‘16

Depth	matters

19

Slide	from	[Kaiming He	2015]

NEURAL	NETWORKS CS446	-FALL	‘16

Practical	Tips	
Before	large	scale	experiments,	test	on	a	small	subset	of	the	
data	and	check	the	error	should	go	to	zero.	
q Overfitting on	small	training	
Visualize	features	(feature	maps	need	to	be	uncorrelated)	and	
have	high	variance
Bad	training:	many	hidden	units	ignore	the	input	and/or	exhibit	
strong	correlations.

20
Figure Credit: Marc'Aurelio Ranzato

NEURAL	NETWORKS CS446	-FALL	‘16

Debugging
Training	diverges:	
q Learning	rate	may	be	too	large	→	decrease	learning	rate	
q BackProp is	buggy	→	numerical	gradient	checking	
Loss	is	minimized	but	accuracy	is	low	
q Check	loss	function:	Is	it	appropriate	for	the	task	you	want	to	

solve?	Does	it	have	degenerate	solutions?	

NN	is	underperforming	/	under-fitting	
q Compute	number	of	parameters	→	if	too	small,	make	network	

larger	
NN	is	too	slow	
q Compute	number	of	parameters	→	Use	distributed	framework,	use	

GPU,	make	network	smaller

21

Many	of	these	points	apply	to	many	machine	learning	models,	no	just	neural	networks.	

NEURAL	NETWORKS CS446	-FALL	‘16

CNN	for	vector	inputs

Let’s	study	another	variant	of	CNN	for	language	
q Example:	sentence	classification	(say	spam	or	not	spam)

First	step:	represent	each	word	with	a	vector	in	ℝT
This	 is	 not	 a	 spam	

Concatenate	the	vectors	

Now	we	can	assume	that	the	input	to	the	system	is	a	
vector		ℝTc
q Where	the	input	sentence	has	length	𝑙 (𝑙 = 5 in	our	example)
q Each	word	vector’s	length	𝑑 (𝑑 = 7 in	our	example)

22

O	O O

O O

NEURAL	NETWORKS CS446	-FALL	‘16

Think	about	a	single	convolutional	layer
q A	bunch	of	vector	filters

§ Each	defined	in	ℝTg

• Where	ℎ is	the	number	of	the	words	the	filter	covers	
• Size	of	the	word	vector	𝑑

q Find	its	(modified)	convolution	with	the	input	vector	

q Result	of	the	convolution	with	the	filter	

q Convolution	with	a	filter	that	spans	2	words,	is	operating	on	all	of	the	bi-
grams	(vectors	of	two	consecutive	word,	concatenated):	“this	is”,	“is	not”,	
“not	a”,	“a	spam”.	

q Regardless	of	whether	it	is	grammatical		(not	appealing	linguistically)

O	O O

Convolutional	Layer	on	vectors

23

O	O O O O O O O O O O O O O

O	O O
O	O O O O O O O O O O O O O
O	O O

O	O O O O O O O O O O O O O
O	O O

O	O O O O O O O O O O O O O
O	O O

O	O O O O O O O O O O O O O

𝑐B = 𝑓(𝑤. 𝑥B:g)𝑐C = 𝑓(𝑤. 𝑥gkB:Cg)𝑐l = 𝑓(𝑤. 𝑥CgkB:lg)𝑐m = 𝑓(𝑤. 𝑥lgkB:mg)

𝑐 = [𝑐B, … . , 𝑐=NgkB] O	O O O

NEURAL	NETWORKS CS446	-FALL	‘16

O	O O O O

O	O O O O O O

Convolutional	Layer	on	vectors

24

O	O O

This is not a spam

O O

O	O O O O O O O O O O O O O
O	O O O O O O O O O O O O O

O	O O O O O O O O O O O O O O O O O O O O
O	O O O O O O O O O O O O O O O O O O O O

O	O O O
O	O O O

O	O O
O	O O

Get	word	
vectors	for	
each	words	

Concatenate	
vectors	

Perform	
convolution	
with	each	
filter	

Filter	bank

Set	of	
response	
vectors	

*

How	are	we	going	to	
handle	the	variable	sized	

response	vectors?
Pooling!		

#of filters

#words - #length of filter + 1

NEURAL	NETWORKS CS446	-FALL	‘16

Now	we	can	pass	the	fixed-sized	vector	to	a	logistic	unit	(softmax),	or	give	it	to	multi-layer	
network	(last	session)

O	O O O O

O	O O O O O O

Convolutional	Layer	on	vectors

25

O	O O

This is not a spam

O O

O	O O O O O O O O O O O O O
O	O O O O O O O O O O O O O

O	O O O O O O O O O O O O O O O O O O O O
O	O O O O O O O O O O O O O O O O O O O O

O	O O O
O	O O O

O	O O
O	O O

Get	word	
vectors	for	
each	words	

Concatenate	
vectors	

Perform	
convolution	
with	each	
filter	

Filter	bank

*

#of filters

#words - #length of filter + 1

Pooling	on	
filter	

responses	

O	O OO	O OO	O O
O	O O
O	O O

Some	choices	for	
pooling:	

k-max,	mean,	etc

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Networks	

Multi-layer	feed-forward	NN:	DAG
q Just	computes	a	fixed	sequence	of	
non-linear	learned	transformations	to	convert	an	input	patter	
into	an	output	pattern

Recurrent	Neural	Network:	Digraph	
q Has	cycles.	
q Cycle	can	act	as	a	memory;	
q The	hidden	state	of	a	recurrent	net	can	carry	along		

information	about	a	“potentially”	unbounded	number	of	
previous	inputs.

q They	can	model	sequential	data	in	a	much	more	natural	
way.

26

NEURAL	NETWORKS CS446	-FALL	‘16

Equivalence	between	RNN	and	Feed-forward	NN

Assume	that	there	is	a	time	delay	of	1	in	using	each	connection.

The	recurrent	net	is	just	a	layered	net	that	keeps	reusing	the	
same	weights.

27
Slide Credit: Geoff Hinton

W1 W2 W3 W4

time=0

time=2

time=1

time=3

W1 W2 W3 W4

W1 W2 W3 W4

w1 w4

w2	 w3

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Networks	

Training	a	general	RNN’s	can	be	hard
q Here	we	will	focus	on	a	special	family	of	RNN’s	

Prediction	on	chain-like	input:	
q Example:	POS	tagging	words	of	a	sentence	

q Issues	:	
§ Structure	in	the	output:	There	is	connections	between	labels
§ Interdependence	between	elements	of	the	inputs:	The	final	decision	is	

based	on	an	intricate	interdependence	of	the	words	on	each	other.	
§ Variable	size	inputs:		e.g.	sentences	differ	in	size	

How	would	you	go	about	solving	this	task?	

28

𝑋 =	 This is a sample sentence .
Y		=	 DT VBZ DT NN NN .

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Networks	

A	chain	RNN:
q Has	a	chain-like	structure	
q Each	input	is	replaced	with	its	vector	representation	𝑥q
q Hidden	(memory)	unit	ℎq contain	information	about	

previous	inputs	and	previous	hidden	units	ℎqNB, ℎqNC, etc
§ Computed	from	the	past	memory	and	current	word.	It	
summarizes	the	sentence	up	to	that	time.

29

O	O O O O O	O O O O O	O O O O

𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
OℎqNB ℎq ℎqkB

Memory	layer

Input	layer

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Networks	

A	popular	way	of	formalizing	it:	
ℎq = 𝑓(𝑊gℎqNB +𝑊6𝑥q)

q Where	𝑓 is	a	nonlinear,	differentiable	(why?)	function.	

Outputs?
q Many	options;	depending	on	problem	and	computational	

resource

30

O	O O O O O	O O O O O	O O O O

𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
OℎqNB ℎq ℎqkB

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Networks	

Prediction	for	𝑥q,	with	ℎq

Prediction	for	𝑥q,	with	ℎq, … , ℎqNt

Prediction	for	the	whole	chain

Some	inherent	issues	with	RNNs:	
q Recurrent	neural	nets	cannot	capture	phrases	without	prefix	context	
q They	often	capture	too	much	of	last	words	in	final	vector

31

O	O O O O O	O O O O O	O O O O

𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
OℎqNB ℎq ℎqkB

𝑦qNB 𝑦q 𝑦qkB

𝑦q = softmax 𝑊xℎq	

𝑦y = softmax 𝑊xℎy	

𝑦q = softmax [𝛼6𝑊x
N6
ℎqN6

t

6]^

NEURAL	NETWORKS CS446	-FALL	‘16

Bi-directional	RNN

32
O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
O

ℎ@qNB ℎ@q ℎ@qkB

𝑦qNB 𝑦q 𝑦qkB

O	O O O O O	O O O O O	O O O O
𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
O

ℎqNB ℎq ℎqkB

One	of	the	issues	with	RNN:	
q Hidden	variables	capture	only	one	side	context	

A	bi-directional	structure

ℎq = 𝑓(𝑊gℎqNB +𝑊6𝑥q)

ℎ@q = 𝑓(𝑊{gℎ@qkB +𝑊{6𝑥q)

𝑦q = softmax 𝑊xℎq +𝑊{xℎ@q

NEURAL	NETWORKS CS446	-FALL	‘16

Stack	of	bi-directional	networks	

Use	the	same	idea	and	make	your	model	further	
complicated:	

33

NEURAL	NETWORKS CS446	-FALL	‘16

Training	RNNs
How	to	train	such	model?	

q Generalize	the	same	ideas	from	back-propagation	

Total	output	error:	𝐸 𝑦⃗, 𝑡 = ∑ 𝐸q 𝑦q, 𝑡qy
q]B

34

O	O O O O O	O O O O O	O O O O

𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
OℎqNB ℎq ℎqkB

𝑦qNB 𝑦q 𝑦qkB

Reminder:	
𝑦q = softmax 𝑊xℎq	
ℎq = 𝑓(𝑊gℎqNB +𝑊6𝑥q)

𝜕𝐸
𝜕𝑊 =[

𝜕𝐸q
𝜕𝑊

y

q]B
𝜕𝐸q
𝜕𝑊 =[

𝜕𝐸q
𝜕𝑦q

𝜕𝑦q
𝜕ℎq

𝜕ℎq
𝜕ℎqN�

𝜕ℎqN�
𝜕𝑊

y

q]B

Parameters?	
𝑊x,	𝑊6,	𝑊g +
vectors	for	

input

This	sometimes		is	called	
“Backpropagation	Through	Time”,	
since	the	gradients	are	
propagated	back	through	time.	

NEURAL	NETWORKS CS446	-FALL	‘16

Recurrent	Neural	Network	

35

𝑦qNB 𝑦q 𝑦qkB

O	O O O O O	O O O O O	O O O O

𝑥qNB 𝑥q 𝑥qkB

O
	O

O
O
O

O
	O

O
O
O

O
	O

O
O
O

ℎqNB ℎq ℎqkB

Reminder:	
𝑦q = softmax 𝑊xℎq	
ℎq = 𝑓(𝑊gℎqNB +𝑊6𝑥q)

𝜕𝐸
𝜕𝑊 =[

𝜕𝐸q
𝜕𝑦q

𝜕𝑦q
𝜕ℎq

𝜕ℎq
𝜕ℎqN�

𝜕ℎqN�
𝜕𝑊

y

q]B

𝜕ℎq
𝜕ℎqN�

= �
𝜕ℎ�
𝜕ℎ�NB

q

�]qN�kB

= � 𝑊gdiag 𝑓�(𝑊gℎqNB +𝑊6𝑥q)
q

�]qN�kB

𝜕ℎq
𝜕ℎqNB

= 𝑊gdiag 𝑓�(𝑊gℎqNB +𝑊6𝑥q) diag 𝑎B, … , 𝑎= =
𝑎B 0 0
0 ⋱ 0
0 0 𝑎=

NEURAL	NETWORKS CS446	-FALL	‘16

Vanishing/exploding	gradients	

Vanishing	gradients	are	quite	prevalent	and	a	serious	issue.		
A	real	example	
q Training	a	feed-forward	network	
q y-axis:	sum	of	the	gradient	norms
q Earlier	layers	have	exponentially	
smaller	sum	of	gradient	norms
q This	will	make	training	earlier	
layers	much	slower.	

36

𝜕ℎq
𝜕ℎ�

≤ � 𝑊g diag 𝑓�(𝑊gℎqNB +𝑊6𝑥q) ≤ � 𝛼𝛽 =
q

�]qN�kB

𝛼𝛽 �
q

�]qN�kB

𝜕ℎq
𝜕ℎqN�

= � 𝑊gdiag 𝑓�(𝑊gℎqNB +𝑊6𝑥q)
q

�]qN�kB

Gradient	can	become	very	small	or	very	large	quickly,	and	the	locality	assumption	
of	gradient	descent	breaks	down (Vanishing	gradient)	[Bengio et	al	1994]

NEURAL	NETWORKS CS446	-FALL	‘16

Vanishing/exploding	gradients	
In	an	RNN	trained	on	long	sequences	(e.g.	100	time	steps)	the	
gradients	can	easily	explode	or	vanish.
q So	RNNs	have	difficulty	dealing	with	long-range	

dependencies.
Many	methods	proposed	for	reduce	the	effect	of	vanishing	
gradients;	although	it	is	still	a	problem	
q Introduce	shorter	path	between	long	connections	
q Abandon	stochastic	gradient	descent	in	favor	of	a	much	

more	sophisticated	Hessian-Free	(HF)	optimization
q Add	fancier	modules	that	are	robust	to	handling	long	

memory;	e.g.	Long	Short	Term	Memory	(LSTM)	
One	trick	to	handle	the	exploding-gradients:	
q Clip	gradients	with	bigger	sizes:	

37

Defnne	𝑔 = EF
E�

If		 𝑔 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then	
𝑔 ← qg���gxcT

�
𝑔

