
COLT CS446 -SPRING ‘17

Where are we?

Algorithmically: 
 Perceptron + Winnow

 Gradient Descent 

Models:
 Online Learning; Mistake Driven Learning

What do we know about Generalization? (to 
previously unseen examples?) 
 How will your algorithm do on the next example?

Next we develop a theory of Generalization.
 We will come back to the same (or very similar) algorithms   

and show how the new theory sheds light on appropriate 
modifications of them, and provides guarantees. 
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Computational Learning Theory

What general laws constrain inductive learning ?
 What learning problems can be solved ? 

 When can we trust the output of a  learning  algorithm ? 

We seek theory to relate
 Probability of successful Learning

 Number of training examples

 Complexity of hypothesis space

 Accuracy to which target concept is approximated

 Manner in which training examples are presented

3
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Quantifying Performance

We want to be able to say something rigorous about 
the performance of our learning algorithm.

We will concentrate on discussing the number of 
examples one needs to see before we can say that 
our learned hypothesis is good. 

4

Recall what we 
did earlier: 
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There is a hidden conjunction the learner (you) is to 
learn 

How many examples are needed to learn it ?  How ?
 Protocol I:  The learner proposes instances as queries to the 

teacher

 Protocol II:  The teacher (who knows f) provides training 
examples 

 Protocol III: Some random source (e.g., Nature) provides 
training examples; the Teacher (Nature) provides the labels 
(f(x))

1005432 xxxxxf 

Learning Conjunctions

5
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Learning Conjunctions

Protocol I:  The learner proposes instances as queries to 
the teacher

Since we know we are after a monotone conjunction:

Is x100 in?   <(1,1,1…,1,0), ?>   f(x)=0 (conclusion: Yes)

Is x99 in?   <(1,1,…1,0,1), ?>   f(x)=1 (conclusion: No)

Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No)

A straight forward algorithm requires n=100 queries, and 
will produce as a result the hidden conjunction (exactly).

1005432 xxxxxh 
What happens here if the conjunction 
is not known to be monotone?
If we know of a positive example,
the same algorithm works. 

6
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1005432 xxxxxf 

Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0>   need x2

 <(0,1,0,1,1,0,…,0,1), 0>   need x3

 …..

 <(0,1,1,1,1,0,…,0,0), 0>   need x100

A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly).

Modeling Teaching 
Is tricky

7
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Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples

Teacher (Nature) provides the labels (f(x)) 
 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,1,0,...0,1,1), 0>

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

8
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10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

10054321 xxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>    Final hypothesis:

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

10054321 xxxxxxh 

Is that good ? Performance ?
# of examples ? 9

We can determine 
the # of mistakes we’ll 
make before reaching 
the exact target 
function, but not how 
many examples are 
need to guarantee 
good performance. 
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Two Directions

Can continue to analyze the probabilistic intuition:
 Never saw x1 in positive examples, maybe we’ll never see it?

 And if we will, it will be with small probability, so the 
concepts we learn may be pretty good

 Good: in terms of performance on future data

 PAC framework

Mistake Driven Learning algorithms
 Update your hypothesis only when you make mistakes

 Good: in terms of how many mistakes you make before you 
stop, happy with your hypothesis. 

 Note: not all on-line algorithms are mistake driven, so 
performance measure could be different.

10
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Prototypical Concept Learning
Instance Space:  X 

 Examples

Concept Space: C 

 Set of possible target functions: f 2 C is the hidden target function

 All n-conjunctions; all n-dimensional linear functions. 

Hypothesis Space: H set of possible hypotheses

Training instances Sx{0,1}: positive and negative examples of the 
target concept f  C

Determine: A hypothesis h  H such that h(x) = f(x)

A hypothesis h  H such that h(x) = f(x)     for all x  S ?

A hypothesis h  H such that h(x) = f(x)    for all x  X ? 

11
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10054321 xxxxxxh 
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Prototypical Concept Learning
Instance Space:  X 

 Examples

Concept Space: C 

 Set of possible target functions: f 2 C is the hidden target function

 All n-conjunctions; all n-dimensional linear functions. 

Hypothesis Space: H set of possible hypotheses

Training instances Sx{0,1}: positive and negative examples of the 
target concept f  C. Training instances are generated by a fixed 
unknown probability distribution D over X

Determine: A hypothesis h  H that estimates f, evaluated by its 
performance on subsequent instances x  X drawn according  to D

12
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10054321 xxxxxxh 



COLT CS446 -SPRING ‘17

PAC Learning – Intuition 

13

• We have seen many examples (drawn according to D ) 
• Since in all the positive examples x1 was active, it is very likely that it will be

active in future positive examples 
• If not, in any case, x1 is active only in a small percentage of the 

examples so our error will be small 

10054321 xxxxxxh 

f

h

f and h disagree

+
+
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-

-

h(x)][f(x)Error
DxD Pr 


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The notion of error

14

Can we bound the Error

given what we know about the training instances ? 

f

h

f and h disagree

+
+

-

-

-

10054321 xxxxxxh 

h(x)][f(x)Error
DxD Pr 


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Learning Conjunctions– Analysis (1)
Let z be a literal. Let p(z) be the probability that, in D-sampling an 
example, it is positive and z is false in it. Then: Error(h) ·z 2 h p(z) 

 p(z) is also the probability that a randomly chosen example is positive and z
is deleted from h. 

 If z is in the target concept, than p(z) = 0.

Claim: h will make mistakes only on positive examples. 
A mistake is made only if a literal z, that is in h but not in f, is  false in a 

15
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10054321 xxxxxxh 

positive example. In this case, h will say NEG, but the 
example is POS.

Thus, p(z) is also the probability that z causes h to 
make a mistake on a randomly drawn example from D .

There may be overlapping reasons for mistakes,                                         
but the sum clearly bounds it.
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Learning Conjunctions– Analysis (2)
Call a literal z in the hypothesis h bad if p(z) > /n.

A bad literal is a literal that is not in the target concept and has a significant 
probability to appear false with a positive example.  

Claim: If there are no bad literals, than error(h) < . Reason: Error(h) ·z 2 h p(z)

What if there are bad literals ? 

 Let z be a bad literal. 

 What is the probability that it will not be eliminated by a given example?

Pr(z survives one example) = 1- Pr(z is eliminated by one example) ·

· 1 – p(z) < 1- /n

The probability that z will not be eliminated by m examples is therefore:

Pr(z survives m independent examples)  = (1 –p(z))m < (1- /n)m 

There are at most n bad literals, so the probability that some bad literal survives 
m examples is bounded by n(1- /n)m

16
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Learning Conjunctions– Analysis (3)

We want  this probability to be small. Say,  we want to choose m large enough 
such that the probability that some z survives m examples is less than .  

(I.e., that z remains in h, and makes it different from the target function)

Pr(z survives m example) =  n(1- /n)m < 

Using  1-x < e-x (x>0)  it is sufficient to require that  n e-m/n < 

Therefore, we need 

examples to guarantee a probability of failure (error > ²) of less than .

Theorem: If m is as above, then: 

 With probability > 1-±, there are no bad literals; equivalently, 

 With probability > 1-±, Err(h) < ²

With =0.1, =0.1, and n=100, we need  6907 examples.

With =0.1, =0.1, and n=10, we need  only 460 example, only 690 for =0.01

)}/1ln(){ln( 


 n
n

m
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Formulating Prediction Theory
Instance Space  X, Input to the Classifier;     Output Space Y = {-1, +1} 

Making predictions with: h: X  Y 

D: An unknown distribution over X £ Y 

S: A set of examples drawn independently from D; m = |S|, size of sample.

Now we can define:

True Error: ErrorD = Pr(x,y) 2 D [h(x) : = y]

Empirical Error: ErrorS = Pr(x,y) 2 S [h(x) : = y] = 1,m [h(xi) := yi]

 (Empirical Error (Observed Error, or Test/Train error, depending on S))

This will allow us to ask:  (1) Can we describe/bound  ErrorD given ErrorS ?

Function Space: C – A set of possible target concepts; target is: f: X  Y 

Hypothesis Space: H – A set of possible hypotheses

This will allow us to ask: (2) Is C learnable?

 Is it possible to learn a given function in C using functions in H, given the 
supervised protocol? 

18



COLT CS446 -SPRING ‘17

Requirements of Learning

Cannot expect a learner to learn a concept exactly, since 
 There will generally be multiple concepts consistent with the available 

data (which represent a small fraction of the available instance space).

 Unseen examples could potentially have any label    

 We “agree” to misclassify uncommon examples that do not show up in 
the training set.

Cannot always expect to learn a close approximation to the 
target concept since 
 Sometimes (only in rare learning situations, we hope) the training set   

will not be representative (will contain uncommon examples).  

Therefore, the only realistic expectation of a good learner is 
that with high probability it will learn a close approximation to 
the target concept.

19
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Probably Approximately Correct

Cannot expect a learner to learn a concept exactly.

Cannot always expect to learn a close approximation 
to the target concept 

Therefore, the only realistic expectation of a good 
learner is that with high probability it will learn a 
close approximation to the target concept.

In Probably Approximately Correct (PAC) learning, 
one requires that given small parameters  and ,  
with probability at least (1- ) a learner produces a 
hypothesis with error at most  

The reason we can hope for that is the Consistent 
Distribution assumption.

20
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PAC Learnability

Consider a  concept class C defined over an instance space X
(containing instances of length n),  and a learner L using a 
hypothesis space H.  

C is PAC learnable by L using H if

 for all f  C,

 for all distributions D  over X, and fixed 0< ,  < 1, 

L, given a collection of m examples sampled independently 
according to D produces 

 with probability at least (1- ) a hypothesis h  H with error at 
most , (ErrorD = PrD[f(x) : = h(x)]) 

where m is polynomial in 1/ , 1/ , n and size(H)

C is efficiently learnable if L can produce the hypothesis in time
polynomial in 1/ , 1/ , n and size(H)

21
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PAC Learnability

We impose two limitations: 

Polynomial sample complexity  (information theoretic constraint)

 Is there enough information in the sample to distinguish a 
hypothesis h that approximate f ?  

Polynomial time complexity (computational complexity)

 Is there an efficient algorithm that can process the sample and 
produce a good hypothesis h ? 

To be PAC learnable, there must be a hypothesis h  H with 
arbitrary small error for every f  C. We generally assume H  C. 
(Properly PAC learnable if H=C) 

Worst Case definition: the algorithm must meet its accuracy 

 for every distribution (The distribution free assumption)

 for every target function f in the class C 

22
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Occam’s Razor (1)
Claim: The probability that there exists a hypothesis h  H that 

(1) is consistent with m examples and 
(2) satisfies error(h) >  ( ErrorD(h) = Prx 2 D [f(x) :=h(x)] )

is less than   |H|(1-  )m .




1)]()([Pr xhxf
Dx

mH )1(|| 

m)1( 

Proof: Let h be such a bad hypothesis. 

- The probability that h is consistent with one example of f is

- Since the m examples are drawn independently of each other, 

The probability that h is consistent with m example of f is less than

- The probability that some hypothesis in H is consistent with m examples

is less than
Note that we don’t need a true f for 
this argument; it can be done with h, 
relative to a distribution over X £ Y. 

23
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Occam’s Razor (1)
We want this probability to be smaller than , that is:

|H|(1- )  <  

ln(|H|) + m ln(1- )  <  ln()

(with e-x = 1-x+x2/2+…; e-x > 1-x; ln (1- )  < - ; gives a safer )

(gross over estimate)

It is called Occam’s razor, because it indicates a preference towards small 

hypothesis spaces 

What kind of hypothesis spaces do we want ?         Large ?            Small ?

To guarantee consistency we need H  C.    But do we want the smallest H possible ?

m

)}/1ln(|){ln(|
1




 Hm

We showed that a         
m-consistent hypothesis 
generalizes well (err< ²)
(Appropriate m is a 
function of |H|, ², ±)

What do we know now 
about the Consistent 
Learner scheme?

24
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Administration 

Hw4 will be out today.
 Due on March 11 (Saturday)

 No slack time since we want to release the solutions with 
enough time before the midterm. 

 You cannot solve all the problems yet. 

Quizzes: 
 Quiz 5 will be due before the Thursday lecture

 Quiz 6 will be due before next Tuesday 

Midterm is coming in three weeks
 3/16, in class

Project Proposals are due on 3/10. 
 Follow Piazza and the web site.

25

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw4/hw4.pdf
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Consistent Learners
Immediately from the definition, we get the following general scheme 
for PAC learning:

Given a sample D of m examples

 Find some h  H that is consistent with all m examples

 We showed that if m is large enough, a consistent hypothesis must be close 
enough to f 

 Check that m is not too large (polynomial in the relevant parameters) : we 
showed that the “closeness” guarantee requires that 

m > 1/² (ln |H| + ln 1/±) 

 Show that the consistent hypothesis h  H can be computed efficiently

In the case of conjunctions 

 We used the Elimination algorithm to find a hypothesis h that is consistent 
with the training set  (easy to compute) 

 We showed directly that if we have sufficiently many examples (polynomial 
in the parameters), than h is close to the target function.

We did not need to show it directly.  
See above.

26
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Examples

27

Conjunction (general): The size of the hypothesis space is 3   

Since there are 3 choices for each feature 

(not appear, appear positively or appear negatively)

(slightly different than previous bound) 

• If we want to guarantee a 95% chance of learning a hypothesis of at least 90% accuracy,

with n=10 Boolean variable,  m > (ln(1/0.05) +10ln(3))/0.1 =140.

• If we go to n=100, this goes just to 1130,     (linear with n)

• but changing the confidence to 1% it goes just to 1145   (logarithmic with )

These results hold  for any consistent learner.

)}/1ln(3ln{
1

)}/1ln()3{ln(
1







 nm n

n
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K-CNF
)...(

211 kiii

m

i lllf  

Occam Algorithm (=Consitent Learner algorithm) for f  k-CNF

• Draw a sample D of size m

• Find a hypothesis h that is consistent with  all the examples in D

• Determine sample complexity:

How do we find the consistent hypothesis h ?

knk nnOCNFk
k

)2(..........2...........                  )(|)ln(| )2(

kim lllCCCCf  ...;........;... 2121

• Due to the sample complexity result h is guaranteed to be a PAC   

hypothesis; but we need to learn a consistent hypothesis. 

28



COLT CS446 -SPRING ‘17

K-CNF
)...(

211 kiii

m

i lllf  

How do we find the consistent hypothesis h ?

• Define a new set of features (literals), one for each clause of size k

• Use the algorithm for learning monotone conjunctions, 

over the new set of literals

k

iiij njllly
k

,...,2,1;...
21



436425324

413312211

           

           

xxyxxyxxy

xxyxxyxxy




Example: n=4, k=2; monotone k-CNF

Original examples:  (0000,l) (1010,l) (1110,l) (1111,l)

New examples: (000000,l) (111101,l) (111111,l) (111111,l) Distribution?
29
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More Examples
Unbiased learning:  Consider the hypothesis space of all Boolean functions on n features.

There are            different functions,  and the bound is therefore exponential in n.

k-CNF:  Conjunctions of any number of clauses where each disjunctive clause has 

at most k literals.

k-clause-CNF:  Conjunctions of at most k disjunctive clauses.

k-DNF:  Disjunctions of any number of terms where each conjunctive term has 

at most k literals.

k-term-DNF:  Disjunctions of at most k conjunctive terms.

n22

kim lllCCCCf  ...;........;... 2121

mik lllCCCCf  ...;........;... 2121

kim lllTTTTf  ...;........;... 2121

knk nnOCNFk
k

)2(..........2...........                  )(|)ln(| )2(

.3.......3........                   )(|)ln(| nknknOCNFclausek 

30
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Sample Complexity
All these classes can be learned using a polynomial size sample.        
 We want to learn a 2-term-DNF; what should our hypothesis class be? 

k-CNF: Conjunctions of any number of clauses where each disjunctive clause 
has at most k literals.

k-clause-CNF:  Conjunctions of at most k disjunctive clauses.

k-DNF:  Disjunctions of any number of terms where each conjunctive term 
has at most k literals.

k-term-DNF:  Disjunctions of at most k conjunctive terms.

kim lllCCCCf  ...;........;... 2121

mik lllCCCCf  ...;........;... 2121

.3.......3)........(|)ln(| nknknOCNFclausek 

kim lllTTTTf  ...;........;... 2121

knk nnOCNFk
k

)2(..........2..).........(|)ln(| )2(
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Computational Complexity
Even though from the sample complexity perspective things are 
good, they are not good from a computational complexity in this 
case. 

Determining whether there is a 2-term DNF consistent with a set of 
training data is NP-Hard. Therefore the class of k-term-DNF is not
efficiently (properly) PAC learnable due to computational complexity

But, we have seen an algorithm for learning k-CNF.

And,  k-CNF is a superset of k-term-DNF
 (That is, every k-term-DNF can be written as a k-CNF)

  e;c d;c ; e;b d;b ;    e;a d;a ;

).()(

}{ 



 bcbba

edbcba

  z}{
321

321  


yxTTT
TzTyTx

What does it mean?

32
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Computational Complexity
Determining whether there is a 2-term DNF consistent 
with a set of training data is NP-Hard

Therefore the class of k-term-DNF is not efficiently 
(properly) PAC learnable  due to computational complexity

We have seen an algorithm for learning k-CNF.

And,  k-CNF is a superset of k-term-DNF
 (That is, every k-term-DNF can be written as a k-CNF)

Therefore, C=k-term-DNF can be learned as using H=k-CNF
as the hypothesis Space

Importance of representation:

 Concepts that cannot be learned using one representation can 
be learned using another  (more expressive) representation.

C

H

This result is analogous to an earlier 
observation that it’s better to learn 
linear separators than conjunctions.

33
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Negative Results – Examples 
Two types of nonlearnability results:

Complexity Theoretic

 Showing that various concepts classes cannot be learned, based 
on well-accepted assumptions from computational complexity 
theory. 

 E.g. : C cannot be learned unless P=NP

Information Theoretic

 The concept class is sufficiently rich that a polynomial number of 
examples may not be sufficient to distinguish a particular target 
concept. 

 Both type involve “representation dependent” arguments.

 The proof shows that a given class cannot be learned by 
algorithms using hypotheses from the same class.  (So?)

Usually proofs are for EXACT learning, but apply for the 
distribution free case.

34
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Negative Results for Learning

Complexity Theoretic: 
 k-term DNF, for k>1         (k-clause CNF, k>1)

 Neural Networks of fixed architecture (3 nodes; n inputs)

 “read-once” Boolean formulas

 Quantified conjunctive concepts 

Information Theoretic: 
 DNF Formulas;  CNF Formulas 

 Deterministic Finite Automata

 Context Free Grammars

35

We need to extend the theory in two ways:
(1) What if we cannot be completely consistent with the training data?
(2) What if the hypoethesis class we work with is not finite? 
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Agnostic Learning
Assume we are trying to learn a concept f using hypotheses 
in H, but f  H 

In this case, our goal should be to find a hypothesis h  H,   
with a small training error:

We want a guarantee that a hypothesis with a small training 
error will have a good  accuracy on unseen examples

Hoeffding bounds characterize the deviation between the 
true probability of some event and its observed frequency 
over m independent trials.
 (p is the underlying probability of the binary variable (e.g., toss is 

Head) being 1)

|)}()(;_{|
1

)( xhxfexamplestrainingx
m

hErrTR 

)]()([Pr)( xhxfhErr DxD  

22][  mepp 
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Agnostic Learning
Therefore, the probability that an element in H will have training error which is 
off by more than  can be bounded as follows:

Doing the same union bound  game as before, with  
=|H|e-2m2

We get a generalization bound – a bound on how much will the true error ED

deviate from the observed (training) error ETR.

For any distribution D generating training and test instances, with probability at 
least 1- over the choice of the training set of size m, (drawn IID), for all hH

m

H
hErrorhError TRD

2

)/1log(||log
)()(




22])()([  m

TRD ehErrhErr Pr
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Agnostic Learning

An agnostic learner which makes no commitment to 
whether f is in H and returns the hypothesis with least 
training error over at least the following number of 
examples m can guarantee with probability at least (1-)  
that its training error is not off by more than  from the 
true error.

)}/1ln(|){ln(|
2

1
2




 Hm
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle

X

Y
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle

X

Y

+

+
-
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle
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Y
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle

X

Y
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle

X

Y
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Learning Rectangles

46

• Assume the target concept is an axis parallel rectangle

• Will  we be able to learn the target rectangle ?
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Learning Rectangles
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• Assume the target concept is an axis parallel rectangle

• Will  we be able to learn the target rectangle ?

• Can we come close ?

X

Y

+

+
-

+
+

+

+
+

+

+
+

+
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Infinite Hypothesis Space

The previous analysis was restricted to finite 
hypothesis spaces 

Some infinite hypothesis spaces are more expressive 
than others
 E.g., Rectangles, vs. 17- sides convex polygons vs. general 

convex polygons

 Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite 
hypothesis space other than its size 

The Vapnik-Chervonenkis dimension (VC dimension)  
provides such a measure. 

Analogous to |H|, there are bounds for sample 
complexity using VC(H)
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Shattering
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Shattering
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Linear functions are expressive enough 
to shatter 2 points

(4 options; not all shown)
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Shattering
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Linear functions are not expressive 
enough to shatter 13 points
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

(Intuition:  A rich set of functions shatters large sets of points)
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

(Intuition:  A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis: [0,a), for some real number a>0

0 a

+ + + + + --
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

(Intuition:  A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis: [0,a), for some real number a>0

Sets of two points cannot be shattered

(we mean: given two points, you can label them in such a way that 

no concept in this class will be consistent with  their labeling)

0 a

+ + + + + --

0 a

+ + + + +

-

-

+
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

Intervals on the real axis: [a,b], for some real numbers b>a

a b

+ + + + + ----

This is the set of functions (concept class) considered here
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

Intervals on the real axis: [a,b], for some real numbers b>a

All sets of one or two points can be shattered

but sets of three points cannot be shattered

a b

+ + + + + --

b b

+ + + + +

-

-

+

-- --

+
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

Half-spaces in the plane:

+
---

-

+
+

+
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Shattering
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• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

Half-spaces in the plane:

sets of one, two or three points can be shattered

but there is no set of  four points that can be shattered

+
---

-

+
+

+

+ -

- +
1. If the 4 points 
form a convex 

polygon… (if not?)
2. If one point is 

inside  the convex 
hull defined by the 

other three…
(if not?)

All sets of 
three?
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VC Dimension
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• An unbiased hypothesis space H shatters the entire instance space X, i.e, 

it is able to induce every possible partition on the set of all possible instances. 

• The larger the subset X that can be shattered, the more expressive a 

hypothesis space is, i.e., the less biased.
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VC Dimension

60

• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

• The VC dimension of hypothesis space H over instance space X

is the size of the largest finite subset of X that is shattered by H.

• If  there exists a subset of size d that can be shattered, then VC(H) >=d

• If no subset of size d can be shattered, then VC(H) < d

VC(Half intervals) = 1 (no subset of size 2 can be shattered)

VC( Intervals) = 2 (no subset of size 3 can be shattered)

VC(Half-spaces in the plane) = 3 (no subset of size 4 can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are not
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Sample Complexity & VC Dimension

61

What if H is 

finite?

• Using VC(H) as a measure of expressiveness we have an Occam algorithm

for infinite hypothesis spaces.

• Given a sample D of m examples

• Find some h  H that is consistent with all m examples

• If 

•

• Then with probability at least (1-), h has error less than .

(that is, if m is polynomial we have a PAC learning algorithm;

to be efficient, we need to produce the hypothesis h efficiently. 

• Notice that to shatter m examples it must be that: |H|>2m, so log(|H|)¸VC(H)

)}
2

log(4
13

log)(8{
1


 HVCm
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Administration 

Hw4 is out.
 Due on March 11 (Saturday)

 No slack time since we want to release the solutions with 
enough time before the midterm. 

 You cannot solve all the problems yet. 

Quizzes: 
 Quiz 5 is done. 

 Quiz 6 will be due before next Tuesday 

Midterm is coming in three weeks
 3/16, in class

Project Proposals are due on 3/10. 
 Follow Piazza and the web site.

62

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw4/hw4.pdf
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ? 
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

• Some four instance can be shattered

(need to consider here 16 different

rectangles)  Shows that VC(H)>=4
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Learning Rectangles

66

• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

• Some four instance can be shattered          and some cannot

(need to consider here 16 different

rectangles)  Shows that VC(H)>=4
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

• But, no five instances can be shattered
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

• But, no five instances can be shattered

There can be at most 4 distinct

extreme points (smallest or largest 

along some dimension) and these 

cannot be included (labeled +)

without including the 5th point.

Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

(2) Can we give an efficient algorithm ? 
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Learning Rectangles
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• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ? 

(1) What is the VC dimension ?

(2) Can we give an efficient algorithm ? 

Find the smallest rectangle that 

contains the positive examples 

(necessarily, it will not contain any 

negative example, and the hypothesis

is consistent.

Axis parallel rectangles are efficiently PAC learnable.
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Sample Complexity Lower Bound

71

• There is also a general lower bound on the minimum number of examples 

necessary  for PAC leaning in the general case.

• Consider any concept class C such that VC(C)>2, 

any learner L and small enough , .  

Then, there exists  a distribution D and a target function in C such that 

if L observes less than 

examples, then with probability at least , 

L outputs a hypothesis having error(h) >  .

Ignoring constant factors, the lower bound is the same as the upper bound,

except for the extra log(1/) factor in the upper bound.

]
32

1)(
),

1
log(

1
max[




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COLT Conclusions

The PAC framework provides a reasonable model for theoretically analyzing 
the effectiveness of learning algorithms. 

The sample complexity for any consistent learner using the hypothesis space, 
H, can be determined from a measure of H’s expressiveness (|H|, VC(H))

If the sample complexity is tractable, then the computational complexity of  
finding a consistent hypothesis governs the complexity of the problem.

Sample complexity bounds given here are far from being tight, but separate  
learnable classes from non-learnable classes (and show what’s important).

Computational complexity results exhibit cases where information theoretic 
learning is feasible, but finding good hypothesis is intractable. 

The theoretical framework allows for a concrete analysis of the complexity of 
learning as a function of various assumptions (e.g., relevant variables)   
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COLT Conclusions (2)

Many additional models have been studied as 
extensions of the basic one:      
 Learning with noisy data

 Learning under specific distributions

 Learning probabilistic representations

 Learning neural networks

 Learning finite automata

 Active Learning; Learning with Queries

 Models of Teaching

An important extension: PAC-Bayesians theory. 
 In addition to the Distribution Free assumption of PAC, 

makes also an assumption of a prior distribution over the 
hypothesis the learner can choose from. 

73
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COLT Conclusions (3)

Theoretical results shed light on important issues such 
as the importance of  the bias (representation), sample 
and computational complexity,  importance of 
interaction, etc.

Bounds guide model selection even when not practical. 

A lot of recent work is on data dependent bounds.   

The impact COLT has had on practical learning system in 
the last few years has been very significant: 
 SVMs; 

 Winnow (Sparsity), 

 Boosting

 Regularization
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