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There is a hidden conjunctions the learner is to learn

The number of conjunctions: 

log(|C|) = n

The elimination algorithm makes n mistakes
 Learn from positive examples; eliminate active literals.

k-conjunctions:
 Assume that only k<<n attributes occur in the disjunction

The number of k-conjunctions:  
 log(|C|) =

 Can we learn efficiently with this number of mistakes ? 
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Can mistakes 
be bounded 
in the non-
finite case?

Can this 
bound be 
achieved?

Last time: 
- Learning Protocols

- Exact (vs. in exact) Learning
- On Line Learning

- # of examples needed to learn
- # of mistakes needed to learn
- Developed ideas on what might be 

possible (finite hypothesis classes) 
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Representation

Assume that you want to learn conjunctions. Should your hypothesis 
space be the class of conjunctions?
 Theorem:   Given a sample on n attributes that is consistent with a conjunctive 

concept, it is NP-hard to find a pure conjunctive hypothesis that is both 
consistent with the sample and has the minimum number of attributes. 

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”] 

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples  so that 
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a 
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the 
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier.

2
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Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF  

3

f (x) =
1      if    w1 x1 + w2 x2 +. . . wn xn >= 

0   Otherwise {

y =  (x1  x2 v ) (x1  x2)

y = (x1  x2) v (x3  x4)

y = x1  x3   x5

y = ( 1• x1 + 1• x3  + 1• x5 >= 1)

y = at least 2 of {x1 , x3 ,   x5}

y = ( 1• x1 + 1• x3  + 1• x5 >=2)
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Footnote About the Threshold

5

On previous slide, Perceptron has no threshold

But we don’t lose generality:
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Perceptron learning rule

On-line, mistake driven algorithm.

Rosenblatt (1959) suggested that when a target 
output value is provided for a single neuron with 
fixed input, it can incrementally change weights and 
learn to produce the output using the Perceptron 
learning rule

(Perceptron == Linear Threshold Unit)
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Perceptron learning rule

We learn f:X{-1,+1} represented as f =sgn{wx)

Where X=  {0,1}n  or X= Rn and w Rn

Given Labeled examples:  {(x1, y1), (x2, y2),…(xm, ym)}

7

1. Initialize w=0

2.   Cycle through all examples          

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector: 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

n
R

Mistake driven 
algorithms

Analysis via 
mistake bound

Can mistakes 
be bounded in 
the non-finite 
case?

Can we 
achieve good 
bounds?
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Perceptron in action

9
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Perceptron in action

10
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Perceptron learning rule

If x is Boolean, only weights of active features
are updated
Why is this important?

11

1. Initialize w=0

2.   Cycle through all examples          

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector to 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.
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Perceptron Learnability

Obviously can’t learn what it can’t represent (???)
 Only linearly separable functions

Minsky and Papert (1969) wrote an influential book 
demonstrating Perceptron’s representational 
limitations
 Parity functions can’t be learned (XOR)
 In vision, if patterns are represented with local features, 

can’t represent symmetry, connectivity

Research on Neural Networks stopped for years

Rosenblatt himself (1959) asked,

• “What pattern recognition problems can be transformed so 
as to become linearly separable?” 

12
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(x1  x2) v (x3  x4) y1  y2
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Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with 
the data (i.e., the data is linearly separable), the 
perceptron learning algorithm will converge
 How long would it take to converge ?

Perceptron Cycling Theorem: 

If the training data is not linearly separable the 
perceptron learning algorithm will eventually repeat 
the same set of weights and therefore enter an 
infinite loop.
 How to provide robustness, more expressivity ? 

14
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Perceptron

15

Just to make sure we understand
that we learn both w and µ
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Perceptron: Mistake Bound 
Theorem

Maintains a weight vector wRN,    w0=(0,…,0).

Upon receiving an example x  RN

Predicts according to the linear threshold function 
w•x  0.

Theorem [Novikoff,1963] Let (x1; y1),…,: (xt; yt), be a 
sequence of labeled examples with xi <

N, xiR and 
yi {-1,1} for all i. Let u <N,  > 0 be such that, 

||u|| = 1 and yi u • xi   for all i. 

Then Perceptron makes at most R2 /  2 mistakes on 
this example sequence.

(see additional notes)

16

Complexity Parameter
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Perceptron-Mistake Bound

17

Proof: Let vk be the hypothesis before the k-th mistake.  Assume 
that the k-th mistake occurs on the input example (xi, yi).

Assumptions

v1 = 0

||u|| = 1

yi u • xi  

k < R2 /  2

1. Note that the bound does not 
depend on the dimensionality 
nor on the number of examples.

2. Note that we place weight vectors
and examples in the same space.
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Robustness to Noise

In the case of non-separable data , the extent to which a data 
point fails to have margin ° via the hyperplane w can be 
quantified by a  slack variable 

»i= max(0, ° − yi w¢ xi). 
Observe that when »i = 0, the example xi has margin at least °. 
Otherwise, it grows linearly with − yi w¢ xi

Denote: D2 = [ {»i
2}]1/2

Theorem: The perceptron is 

guaranteed to make no more than 

((R+D2)/°)2 mistakes on any sequence

of examples satisfying ||xi||2<R
Perceptron is expected to 

have some robustness to noise. 

18
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Perceptron for Boolean Functions

How many mistakes will the Perceptron algorithms 
make when learning a k-disjunction?

Try to figure out the bound 

Find a sequence of examples that will cause 
Perceptron to make O(n) mistakes on k-disjunction on 
n attributes. 

(Where is n coming from?)

19
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Winnow Algorithm

The Winnow Algorithm learns Linear Threshold 
Functions. 

For the class of disjunctions:
 instead of demotion we can use elimination. 

20
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Winnow - Example

21
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Winnow – Mistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted.

When these weights get to n there will be no more mistakes on 
positives.

22
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Winnow – Mistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

2. v < 2(u + 1)
Total weight TW=n initially

Mistake on positive: TW(t+1) < TW(t) + n

Mistake on negative: TW(t+1) < TW(t) - n/2

0 < TW < n + u n - v n/2  v < 2(u+1)

23
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Winnow – Mistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

# of mistakes:     u + v < 3u + 2 = O(k log n)

24
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Summary of Algorithms 

Examples: x 2 {0,1}n; or x 2 Rn (indexed by k) ; Hypothesis: w 2 Rn

Prediction: y 2{-1,+1}:  Predict: y = 1 iff w¢ x >µ

Update: Mistake Driven

Additive weight update algorithm: w Ã w +r yk xk

 (Perceptron, Rosenblatt, 1958. Variations exist)

 In the case of Boolean features: 

Multiplicative weight update algorithm wi Ã wi exp{yk xi}

(Winnow, Littlestone, 1988.   Variations exist)

 Boolean features:

25
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Practical Issues and Extensions

There are many extensions that can be made to these basic 
algorithms.

Some are necessary for them to perform well

 Regularization (next; will be motivated in the next section, COLT)

Some are for ease of use and tuning

 Converting the output of a Perceptron/Winnow to a conditional 
probability

P(y = +1 |x) = [1+ exp(-Awx)]-1

 Can tune the parameter A 

Multiclass classification (later)

Key efficiency issue: Infinite attribute domain

26
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I Regularization Via Averaged 
Perceptron

An Averaged Perceptron Algorithm is motivated by the following 
considerations:

 Every Mistake-Bound Algorithm can be converted efficiently to a PAC 
algorithm – to yield global guarantees on performance.

 In the mistake bound model:

 We don’t know when we will make the mistakes. 

 In the PAC model: 

 Dependence is on number of examples seen and not number of mistakes.

 Which hypothesis will you choose…??

 Being consistent with more examples is better 

To convert a given Mistake Bound algorithm (into a global guarantee algorithm):

 Wait for a long stretch w/o mistakes  (there must be one)

 Use the hypothesis at the end of this stretch.

 Its PAC behavior is relative to the length of the stretch.

Averaged Perceptron returns a weighted average of a number of 
earlier hypotheses; the weights are a function of the length of no-
mistakes stretch. 

28
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I Regularization Via Averaged 
Perceptron (or Winnow)

Training: 

[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi ]

Input: a labeled training set {(x1, y1),…(xm, ym)}

Number of epochs T

Output: a list of weighted perceptrons {(v1, c1),…,(vk, ck)}

Initialize: k=0; v1 = 0, c1 = 0

Repeat T times:

 For i =1,…m:

 Compute prediction y’ = sign(vk ¢ xi )

 If y’ = y,   then ck = ck + 1

else: vk+1 =  vk + yi x ; ck+1 = 1; k = k+1

Prediction:

Given: a list of weighted perceptrons {(v1, c1),…(vk, ck)} ; a new example x

Predict the label(x) as follows:

y(x)=  sign [ 1,k ci sign(vi ¢ x) ] 

29
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II Perceptron with Margin

Thick Separator  (aka as Perceptron with Margin)     
(Applies both for Perceptron and Winnow)

Promote if:

 w x -  < 

Demote if:

 w x -  > 

30

w ¢ x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢ x = 

Note:  is a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karov et. al 97) 



ONLINE LEARNING CS446 -Spring ‘17

Other Extensions 

Threshold relative updating (Aggressive Perceptron)

Equivalent to updating 

on the same example 

multiple times

31
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SNoW (also in LBJava)

Several of these extensions (and a couple more) are 
implemented in the SNoW learning architecture that supports 
several linear update rules (Winnow, Perceptron, naïve Bayes) 

Supports 
 Regularization(averaged Winnow/Perceptron; Thick Separator)

 Conversion to probabilities

 Automatic parameter tuning 

 True multi-class classification 

 Feature Extraction and Pruning 

 Variable size examples 

 Good support for large scale domains in terms of number of examples and 
number of features.

 Very efficient 

 Many other options 

[Download from: http://cogcomp.cs.illinois.edu/page/software ]

32

http://cogcomp.cs.illinois.edu/page/software
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Winnow - Extensions

This algorithm learns monotone functions

For the general case: 
 Duplicate variables (down side?)

 For the negation of variable x, introduce a new variable y.

 Learn monotone functions over 2n variables

Balanced version:
 Keep two weights for each variable; effective weight is the 

difference

 We’ll come back to this idea when talking about multiclass. 

33
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Winnow – A Robust Variation

Winnow is robust  in the presence of  various kinds of 
noise.  
 (classification noise, attribute noise)

Moving Target:
 The target function changes with time.

Importance: 
 sometimes we learn under some distribution but test under 

a slightly different one. (e.g., natural language applications)

 The algorithm we develop provides a good insight into 
issues of Adaptation

34



ONLINE LEARNING CS446 -Spring ‘17

Winnow – A Robust Variation

Modeling: 
 Adversary’s turn: may change the target concept by adding 

or removing some variable from the target disjunction. 

 Cost of each addition move is 1.

 Learner’s turn: makes prediction on the examples given, and 
is then told the correct answer (according to current target 
function)

 Winnow-R:  Same as Winnow, only doesn’t let weights go 
below 1/2

 Claim:  Winnow-R makes O(c log n) mistakes, (c - cost of 
adversary) (generalization of previous claim)

35
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Winnow R – Mistake Bound

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

2. v < 2(u + 1)
Total weight TW=n initially

Mistake on positive: TW(t+1) < TW(t) + n

Mistake on negative: TW(t+1) < TW(t) - n/4    

0 < TW < n + u n - v n/4  v < 4(u+1)

36

Good project:

Push weights 
to 0 (simple 
hypothesis, L1 
regularization 
(Lasso)) vs. 
bounding them 
away from zero 

– impact on 
adaptation
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Administration 

Registration - Done

Hw2 is due tomorrow 

Hw3 will be released tomorrow 

37

QuestionsTODAY:

• Administration: HW, Projects

• Flipped Class

• Continuing with On-Line Learning

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw2/hw2.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf
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Features; feature types; instances 
space transformation. 

Stopping Criterion left ambiguous 
deliberately. Multiple options; 
think and make a decision (e.g., 
based on loss; based on error).

HW2

38

Decision Trees, Expressivity of Models, Features

Key Reporting Module (RM):
 Train a model on a given Training Set

 Report 5-fold cross validation

 Report results on a supplied Test Set.

(a) Convert Data to Feature Representation (given; can be augmented)
 2000 * 270 dimensions

(b) Program SGD; run RM

(c) Use Weka to Learn DT using ID2; run RM.

(d) Use Weka to learn DT(depth=4) and DT(depth=8); run RM

(e) Use Weka to generate 100 different DT(d=4)

 Generate 100 dimensional data, each dimension is the prediction of a DT 

 Run (b) on the new data

Compare algorithms from b,c,d,e.
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Projects

Projects proposals are due on March 10 2017
Within a week we will give you an approval to continue with your project 
along with comments and/or a request to modify/augment/do a different 
project. There will also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally,  some of the ideas you have developed in the direction of the 
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good. 
You can do experimental work, theoretical work, a combination of both 
or a critical survey of results in some specialized topic. 
The work has to include some reading. Even if you do not do a survey, you 
must read (at least) two related papers or book chapters and relate your 
work to it. 
Originality is not mandatory but is encouraged. 
Try to make it interesting!
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Examples

Fake News Challenge :- http://www.fakenewschallenge.org/

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we are asked to 

identify which papers are really written by the author. 

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification, gender, 
native language, …. 

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold functions, NN) 
more comprehensible 
 Explain the prediction

Develop a (multi-modal) People Identifier  
Compare Regularization methods: e.g., Winnow vs. L1 Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep 
network, efficient, architecture. 
Try to prove something

40
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What have you learned
(on your own)

The feasibility of Mistake Bounds
 Con

 Halving

 Perceptron

Algorithms
 Perceptron

 + Analysis

 Winnow

 + Analysis (special case)

 The general case

Algorithms could behave differently
 Averaged version of Perceptron/Winnow is as good as any 

other linear learning algorithm, if not better. 

41

• Why do I include Perceptron 
in this bullet?

• What’s interesting about it? 
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General Stochastic Gradient 
Algorithms 

Given examples {z=(x,y)}1, m from a distribution over XxY, we are 
trying to learn a linear function, parameterized by a weight vector w, 
so that we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m 1,m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this 
minimization by incrementally updating the weight vector w as 
follows: 

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t. 

The difference between algorithms now amounts to choosing a 
different loss function Q(z, w)

42
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wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – w ¢ x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – wt ¢ xt) xt

Here, even though we make binary predictions based on sign (w ¢ x) 
we do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y w ¢ x)

This leads to the perceptron update rule:

If yi wi ¢ xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms 

43

w ¢ x

Think about the case where x is a 
Boolean vector.
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wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change. 
AdaGrad alters the update to adapt based on historical information, 
so that frequently occurring features in the gradients get small 
learning rates and infrequent features get higher ones. 
The idea is to “learn slowly” from frequent features but “pay 
attention” to rare but informative features.
Define a “per feature” learning rate for the feature j, as: 

rt,j = r/(Gt,j)
1/2

where Gt,j = k1,t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagrad is:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron 
or LMS when needed.

New Stochastic Gradient 
Algorithms 

44
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Regularization

The more general formalism adds a regularization term to the risk 
function, and attempts to minimize: 

J(w) = 1,m Q(zi, wi) + ¸ Ri (wi)
Where R is used to enforce “simplicity” of the learned functions. 

LMS case: Q((x, y), w) =(y – w ¢ x)2

 R(w) = ||w||2
2 gives the optimization problem called Ridge Regression.

 R(w) = ||w||1 gives a problem called the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢ x)
 R(w) = ||w||2

2 gives the problem called Support Vector Machines

Logistics Loss case:  Q((x,y),w) = log (1+exp{-y w ¢ x}) 
 R(w) = ||w||2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient 
descent mechanism can be used in all cases. 
We will see later why it makes sense to use the “size” of w as a way to 
control “simplicity”.

45
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Algorithmic Approaches

Focus:    Two families of algorithms (one of the on-
line representative) 
 Additive update algorithms: Perceptron

 SVM is a close relative of Perceptron

 Multiplicative update algorithms: Winnow

 Close relatives: Boosting, Max entropy/Logistic Regression

46
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How to Compare? 

Generalization
 (since the representation is the same): How many examples 

are needed to get to a given level of accuracy?

Efficiency
 How long does it take to learn a hypothesis and evaluate it 

(per-example)? 

Robustness;  Adaptation to a new domain, ….

47
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Sentence Representation

S= I don’t know whether to laugh or cry

Define a set  of  features:
 features are relations that  hold in the sentence

Map a sentence to its  feature-based representation
 The feature-based representation will give some of the 

information in the sentence

Use  this as an example to your algorithm

48
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Sentence Representation

S= I don’t know whether to laugh or cry

Define a set  of  features:
 features are properties that  hold in the sentence

Conceptually, there are two steps in coming up with a 
feature-based representation
 What are  the information sources available? 

 Sensors: words, order of words, properties (?) of words

 What features to construct based on these?

49

Why is this distinction needed?
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Embedding

50

Weather

Whether

523341321 xxxxxxxxx  541 yyy 

New discriminator in functionally simpler
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Domain Characteristics

The number of potential features is very large

The instance space is sparse

Decisions depend on a small set of features: the 

function space is sparse

Want  to  learn  from a number of examples that is 

small  relative  to  the  dimensionality

51
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Generalization

Dominated by the sparseness of the function space
 Most features are irrelevant

# of examples required by multiplicative algorithms 
depends mostly on # of relevant features
 (Generalization bounds depend on the target ||u|| )

# of examples required by additive algoirithms depends 
heavily on sparseness of features space: 
 Advantage to  additive. Generalization depend on input ||x||

 (Kivinen/Warmuth 95).

52
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Which Algorithm to Choose?

Generalization

 Multiplicative algorithms:

 Bounds depend on ||u||, the separating hyperplane; i: example #)

 Mw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢ x(i))2

 Do not care much about data; advantage with sparse target u

 Additive algorithms:

 Bounds depend on ||x|| (Kivinen / Warmuth, ‘95)

 Mp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢ x(i))2

 Advantage with few active features per example

53

The l1 norm: ||x||1 = i|xi|              The l2 norm: ||x||2 =(1
n|xi|

2)1/2

The lp norm: ||x||p = (1
n|xi|

P
)

1/p
The l1 norm: ||x||1 = max

i
|x

i
|
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Examples
Extreme Scenario 1: Assume the u has exactly k active features, 
and the other n-k are 0. That is, only k input features are relevant 
to the prediction. Then:

||u||2, = k1/2  ; ||u||1, = k ; max ||x||2, = n1/2   ;; max ||x||1, = 1

We get that: Mp = kn;     Mw = 2k2 ln n 

Therefore, if k<<n, Winnow behaves much better.

Extreme Scenario 2: Now assume that u=(1, 1,….1) and the 
instances are very sparse, the rows of an nxn unit matrix. Then:

||u||2, = n1/2  ; ||u||1, = n ; max ||x||2, = 1 ;; max ||x||1, = 1

We get that: Mp = n; Mw = 2n2 ln n 

Therefore, Perceptron has a better bound.

54

Mw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢ x(i))2 

Mp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢ x(i))2
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`

55

Function: At least 10 out of 

fixed 100 variables are active

Dimensionality is n
Perceptron,SVMs

n: Total # of Variables (Dimensionality)

Winnow

Mistakes bounds for 10 of 100 of n
# 
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Efficiency

Dominated by the size of the feature space

Most features are functions (e.g. conjunctions) of raw 
attributes

Additive algorithms allow the use of Kernels
 No need to explicitly generate complex features

Could be more efficient since work is done in the 
original feature space, but expressivity is a function 
of the kernel expressivity.

56
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Functions Can be Made Linear

Data are not linearly separable in one dimension

Not separable if you insist on using a specific class of 
functions

x

57
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Blown Up Feature Space

Data are separable in <x, x2> space

x

x2

58
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Making data linearly separable

59

f(x) = 1 iff  x1
2 + x2

2 ≤  1
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Making data linearly separable

60

Transform data: x = (x1, x2 )  => x’ = (x1
2, x2

2 ) 
f(x’) = 1 iff  x’1 + x’2 ≤  1

In order to deal with this, we 
introduce two new concepts: 

Dual Representation

Kernel (& the kernel trick)
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(demotion) 1)x (if   1- w    w,xbut   w  0Class  If

)(promotion  1)x (if  1  w    w,xwbut     1Class  If

iii

iii









)xxw(Th  f(x)                   

R w:Hypothesis               ;{0,1} x :Examples

n

1i ii

nn

 




)(

Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be 
examples and assume mistakes are made on x1, x2 and x4. 
What is the resulting weight vector? 

w = w + x1 + x2 - x4

In general, the weight vector w can be written 
as a linear combination of examples: 

w = 1,m r ®i yi xi

Where ®i is the number of mistakes made on xi.

Dual Representation

Note: We care about the dot 
product: f(x) = w ¢ x =

= (1,m r®i yi xi) ¢ x            
= 1,m r®i yi (xi ¢ x) 
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Kernel Based Methods

A method to  run Perceptron on a very large feature set, 
without incurring the cost of keeping a very large weight vector. 

Computing the dot product can be done in the original feature 
space.

Notice: this pertains only to efficiency: The classifier is identical 
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or, 
related properties).

Kernels were popularized by SVMs, but many other algorithms 
can make use of them (== run in the dual). 
 Linear Kernels: no kernels; stay in the original space. A lot of applications  

actually use linear kernels.

62
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(demotion) 1)x (if   1- w    w,xbut   w  0Class  If

)(promotion  1)x (if  1  w    w,xwbut     1Class  If

iii

iii









)xxw(Th  f(x)                   

R w:Hypothesis               ;{0,1} x :Examples

n

1i ii

nn

 




)(

Let I be the set t1,t2,t3 …of monomials (conjunctions) over the 
feature space x1, x2… xn. 

Then we can write a linear function over this new feature space.

)xtw(Th  f(x)                   
i ii


I

)(

1 (11011)xxx  0 (11010)xx    1 (11010)xxx  :Example 42143421 

Kernel Base Methods
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nn R w:Hypothesis               ;{0,1} x :Examples 

Great Increase in expressivity

Can run Perceptron (and Winnow) but the convergence bound 
may suffer exponential growth.

Exponential number of monomials are true in each example. 

Also, will have to keep many weights.

)xtw(Th  f(x)                   
i ii


I

)(

(demotion) 1)x (if   1- w    w,xbut   w  0Class  If

)(promotion  1)x (if  1  w    w,xwbut     1Class  If

iii

iii









Kernel Based Methods
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Weather

Whether

523341321 xxxxxxxxx  541 yyy 

New discriminator in functionally simpler

Embedding
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The Kernel Trick(1)

Consider the value of w used in the prediction.

Each previous mistake, on example z, makes an 
additive contribution of +/-1 to w, iff t(z) = 1.

The value of w is determined by the number of 
mistakes on which t() was satisfied. 
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)xtw(Th  f(x)                   
i ii


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)(

(demotion) 1)x (if   1- w    w,xbut   w  0Class  If

)(promotion  1)x (if  1  w    w,xwbut     1Class  If
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iii
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 

 


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
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
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
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



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i i

1(z)tD,z1(z)tP,z

x)z)ttS(z)(Th

)xt11(Th  f(x)
ii





The Kernel Trick(2)

P – set of examples on which we Promoted

D – set of examples on which we Demoted

M = P [ D
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 



M

I

(( f(x)      
z

i

ii ))xz)ttS(z)(Th

The Kernel Trick(3)

P – set of examples on which we Promoted

D – set of examples on which we Demoted

M = P [ D

Where S(z)=1 if z P and S(z) = -1 if z D. Reordering: 
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 


M
 f(x)      

z
z))S(z)K(x,(Th

The Kernel Trick(4)

S(y)=1 if y P and S(y) = -1 if y D. 

A mistake on z contributes the value +/-1 to all monomials 

satisfied by z. The total contribution of z to the sum is equal 

to the number of monomials that satisfy both x and z.

Define a dot product in the t-space: 

We get the standard notation:
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Kernel Based Methods

What does this representation give us?

We can view this Kernel as the distance between x,z

in the t-space. 

But, K(x,z) can be measured in the  original space, 

without explicitly writing the t-representation of x, z 

70
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x1x3 (001) = x1x3 (011) = 1             

x1 (001) = x1 (011) = 1 ;    x3 (001) = x3 (011) = 1

Á (001) = Á (011) = 1

If any other variables appears in the monomial, 
it’s evaluation on x, z will be different.

Kernel Trick

Consider the space of all 3n monomials (allowing 
both positive and negative literals). Then, 

When  same(x,z) is the number of features that have 
the same value for both x and z. 

We get: 

Example: Take n=3; x=(001), z=(011), monomials of size 0,1,2,3

Proof: let k=same(x,z); construct a “surviving” monomials by: 
(1) choosing to include one of these k literals with the right 
polarity in the monomial, or (2) choosing to not include it at all. 
Monomials with literals outside this set disappear. 
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Example 

Take X={x1, x2, x3, x4}

I = The space of all 3n monomials; | I |= 81

Consider x=(1100), z=(1101)
Write down I(x), I(z), the representation of x, z in the I space.

Compute I(x) ¢ I(z).

Show that 

K(x,z) =I(x) ¢ I(z) = I ti(z) ti(x) = 2same(x,z) = 8

Try to develop another kernel, e.g., where I is the space 
of all conjunctions of size 3 (exactly). 
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Implementation: Dual Perceptron

Simply run Perceptron in an on-line mode, but keep 
track of the set M.

Keeping the set M allows us to keep track of S(z).

Rather than remembering the weight vector w,    
remember the set M (P and D) – all those examples 
on which we made mistakes.

Dual Representation
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Administration 

Hw3 is out. 

Projects:
 Some of you are thinking about the Fake News Challenge. 

 Hard, but interesting. 

Quizzes:
 Most of you are doing it.

 Scores are ~95%

 Questions indicate that you are thinking about it…

74

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf
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Example: Polynomial Kernel

Prediction with respect to a separating hyper planes (produced by 
Perceptron, SVM) can be computed as a function of dot products 
of  feature based representation of examples. 

We want to define a dot product in a high dimensional space. 

Given two examples  x = (x1, x2, …xn) and y = (y1,y2, …yn) we want 
to map them to a high dimensional space [example- quadratic]: 

(x1,x2,…,xn) = (1, x1,…,xn, x1
2,…,xn

2, x1x2,…,xn-1xn) 

(y1,y2,…,yn) = (1, y1,…,yn ,y1
2,…,yn

2, y1y2,…,yn-1yn)

and compute the dot product A  = (x)T(y) [takes time ]

Instead, in the original space, compute 

B = k(x , y)= [1+ (x1,x2, …xn )T (y1,y2, …yn)]2

Theorem: A = B                              (Coefficients do not really matter)

75

Sq(2)
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We proved that K is a valid kernel by explicitly 
showing that it corresponds to a dot product. 

Kernels – General Conditions

Kernel Trick: You want to work with degree 2 polynomial features, Á(x). 
Then, your dot product will be in a space of dimensionality n(n+1)/2. The 
kernel trick allows you to save and compute dot products in an n 
dimensional space. 

Can we use any K(.,.)? 
 A function K(x,z) is a valid kernel if it corresponds to an inner product in some 

(perhaps infinite dimensional) feature space. 

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction  (2 dimensional, for simplicity): 

K(x,z) = (x1 z1 + x2 z2)2 = x1
2 z1

2 +2x1 z1 x2 z2 + x2
2 z2

2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)  

= ©(x)T ©(z)  A dot product in an expanded space.

It is not necessary to explicitly show the feature function Á.

General condition: construct the kernel matrix {k(xi ,zj)}; check that it’s 

positive semi definite.  
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The Kernel Matrix

The Gram matrix of a set of n vectors S = {x1…xn} is 
the n×n matrix G with Gij = xixj

 The kernel matrix is the Gram matrix of {φ(x1), …,φ(xn)} 

 (size depends on the # of examples, not dimensionality) 

Direct option: 
 If you have the φ(xi), you have the Gram matrix (and it’s 

easy to see that it will be positive semi-definite)

Indirect:
 If you have the Kernel, write down the Kernel matrix Kij, and 

show that it is a legitimate kernel, without an explicit 
construction of φ(xi)
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Kernels – General Conditions

Called the Gram Matrix.
A is positive semidefinite if zAzT >0 
for all nonzero z 2 Rn 

In fact, no need to have an explicit representation of Á, only that K satisfies: 
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Polynomial kernels

Linear kernel: k(x, z) = xz

Polynomial kernel of degree d: k(x, z) = (xz)d

(only dth-order interactions) 

Polynomial kernel up to degree d: k(x, z) = (xz + c)d (c>0)
(all interactions of order d or lower)
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Constructing New Kernels

You can construct new kernels k’(x, x’) from 
existing ones:

 Multiplying k(x, x’) by a constant c:
k’(x, x’) = ck(x, x’)

 Multiplying k(x, x’) by a function f applied to x and x’: 
k’(x, x’) = f(x)k(x, x’)f(x’)

 Applying a polynomial (with non-negative coefficients) to 
k(x, x’): 
k’(x, x’) = P( k(x, x’) )  with P(z) = ∑i aiz

i and ai≥0

 Exponentiating k(x, x’):
k’(x, x’) = exp(k(x, x’))
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Constructing New Kernels (2)

You can construct k’(x, x’) from k1(x, x’), k2(x, x’) by:

 Adding k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’) + k2(x, x’)

 Multiplying k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’)k2(x, x’)

Also: 

 If φ(x) ∈ Rm and km(z, z’) a valid kernel in Rm, 
k(x, x’) = km(φ(x), φ(x’)) is also a valid kernel

 If A is a symmetric positive semi-definite matrix, 
k(x, x’) = xAx’ is also a valid kernel

In all cases, it is easy to prove these directly by construction. 
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Gaussian Kernel 
(aka radial basis function kernel)

k(x, z) = exp(−(x − z)2/c）
 (x − z)2: squared Euclidean distance between x and z 

 c = σ2: a free parameter 

 very small c: K ≈ identity matrix  (every item is different) 

 very large c: K ≈ unit matrix  (all items are the same)

 k(x, z) ≈ 1 when x, z close

 k(x, z) ≈ 0 when x, z dissimilar 
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Gaussian Kernel

k(x, z) = exp(−(x − z)2/c）

Is this a kernel?

k(x, z) = exp(−(x − z)2/2σ2）

= exp(−(xx + zz − 2xz)/2σ2）

= exp(−xx/2σ2）exp(xz/σ2) exp(−zz/2σ2）

= f(x) exp(xz/σ2) f(z)  

exp(xz/σ2)  is a valid kernel: 
 xz is the linear kernel; 

 we can multiply kernels by constants (1/σ2) 

 we can exponentiate kernels 

Unlike the discrete kernels discussed earlier, here you cannot easily 
explicitly blow up the feature space to get an identical representation.
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A method to  run Perceptron on a very large feature set, 
without incurring the cost of keeping a very large weight vector. 

Computing the weight vector can be done in the original feature 
space.

Notice: this pertains only to efficiency: the classifier is identical 
to the one you get by blowing up the feature space.
Generalization is still relative to the real dimensionality (or, 
related properties).
Kernels were popularized by SVMs but apply to a range of 
models, Perceptron, Gaussian Models, PCAs, etc. 

Summary – Kernel Based Methods
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Efficiency-Generalization 
Tradeoff

There is a tradeoff between the computational
efficiency with which these kernels can be computed 
and the generalization ability of the classifier.  

For example, using such kernels the Perceptron
algorithm can make an exponential number of
mistakes even when learning simple functions.
[Khardon,Roth,Servedio,NIPS’01; Ben David et al.]

In addition, computing with kernels depends strongly
on the number of examples. It turns out that
sometimes working in the blown up space is more
efficient than using kernels. [Cumby,Roth,ICML’03]
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Explicit & Implicit Kernels: 
Complexity

Is it always worthwhile to define kernels and work in 
the dual space? 

Computationally: [Cumby,Roth 2003]

 Dual space – t1 m2 vs, Primal Space – t2 m

 Where m is # of examples, t1, t2 are the sizes of the (Dual, 
Primal) feature spaces, respectively.

 Typically, t1 << t2, so it boils down to the number of 
examples one needs to consider relative to the growth in 
dimensionality. 

Rule of thumb: a lot of examples  use Primal space

Most applications today: People use explicit kernels. That is, 
they blow up the feature space explicitly. 
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Kernels: Generalization

Do we want to use the most expressive kernels we 
can? 
 (e.g., when you want to add quadratic terms, do you really 

want to add all of them?)

No; this is equivalent to working in a larger feature 
space, and will lead to overfitting. 

Here is a simple argument that shows that simply 
adding irrelevant features does not help. 
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Kernels: Generalization(2)

Given:  A linearly separable set of points S={x1,…xn} 2 Rn with 
separator  w 2 Rn

Embed  S into a higher  dimensional space n’>n , by adding 
zero-mean random noise e to the additional dimensions.

Then w’ ¢ x’= (w,0) ¢ (x,e) = w ¢ x 

So w’ 2 Rn’ still separates S.

We will now look at °/||x|| which we have shown to be 
inversely proportional to generalization (and mistake bound).

 (S, w’)/||x’|| = minS w’T x’ / ||w’|| ||x’|| = 

minS wT x /||w|| ||x’|| <  (S, w’)/||x|| 

Since ||x’|| = ||(x,e)|| > ||x||

The new ratio is smaller, which implies generalization suffers.

Intuition: adding a lot of noisy/irrelevant features cannot help
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Conclusion- Kernels
The use of Kernels to learn in the dual space is an important idea
 Different kernels may expand/restrict the hypothesis space in useful ways.

 Need to know the benefits and hazards

To justify these methods we must embed in a space much larger 
than the training set size.
 Can affect generalization

Expressive structures in the input data could give rise to specific 
kernels, designed to exploit these structures.
 E.g., people have developed kernels over parse trees: corresponds to 

features that are sub-trees.

 It is always possible to trade these with explicitly generated features, but 
it might help one’s thinking about appropriate features. 

Collins-kernels.pdf
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Functions Can be Made Linear

Data are not linearly separable in one dimension

Not separable if you insist on using a specific class of 
functions

x
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Blown Up Feature Space

Data are separable in <x, x2> space

x

x2
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Multi-Layer Neural Network

Multi-layer network were designed to overcome the 
computational (expressivity) limitation  of a single 
threshold element. 

The idea is to stack several 

layers of threshold elements, 

each layer using the output of 

the previous layer as input.  

Multi-layer networks can represent arbitrary 
functions, but  building effective learning methods 
for such network was [thought to be] difficult. 
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Basic Units 

Linear Unit: Multiple layers of linear functions  
oj = w ¢ x produce linear functions.  We want to 
represent nonlinear functions.

Need to do it in a way that 

facilitates learning

Threshold units:  oj = sgn(w ¢ x) 

are not differentiable, hence 

unsuitable for gradient descent. 

The key idea was to notice that the discontinuity of 
the threshold element can be represents by a smooth 
non-linear approximation: oj = [1+ exp{-w ¢ x}]-1

(Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html )
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Model Neuron (Logistic)

Us a non-linear, differentiable output function such 
as the sigmoid or logistic function

Net input to a unit is defined as: 

Output of a unit is defined as:
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Learning with a Multi-Layer  
Perceptron

It’s easy to learn the top layer – it’s just a linear unit. 

Given feedback (truth) at the top layer, and the activation at the 
layer below it, you can use the Perceptron update rule (more 
generally, gradient descent) to updated these weights.

The problem is what to do with 

the other set of weights – we do

not get feedback in the 

intermediate layer(s). 
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Learning with a Multi-Layer  
Perceptron

The problem is what to do with 

the other set of weights – we do 

not get feedback in the 

intermediate layer(s). 

Solution: If all the activation 

functions are differentiable, then 

the output of the network is also 

a differentiable function of the input and weights in the network.

Define an error function (multiple options) that is a differentiable function 
of the output, that this error function is also a differentiable function of the 
weights. 

We can then evaluate the derivatives of the error with respect to the 
weights, and use these derivatives to find weight values that minimize this 
error function.  This can be done, for example, using gradient descent .  

This results in an algorithm called back-propagation.
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