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Administration 

Registration 

Hw1 is due tomorrow night

Hw2 will be out tomorrow night. 
 Please start working on it as soon as possible

 Come to sections with questions

No lectures next Week!!  
 Please watch the corresponding videos: check the schedule 

page across from the corresponding dates.

 I will not have office hours this week. 

 Please go to the TAs office hours and discussion session. 

Extensions: you don’t need to email me about 
extensions to the Hw. You have it – 96 hours of it. 
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Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
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Projects

Projects proposals are due on Friday 3/10/17
We will give you an approval to continue with your project, possibly, 
along with comments and/or a request to modify/augment/do a different 
project. There may also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally,  some of the ideas you have developed in the direction of the 
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good. 
You can do experimental work, theoretical work, a combination of both 
or a critical survey of results in some specialized topic. 
The work has to include some reading. Even if you do not do a survey, you 
must read (at least) two related papers or book chapters and relate your 
work to it. 
Originality is not mandatory but is encouraged. 
Try to make it interesting!
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Examples

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we 

are asked to identify which papers are really written by the author. 

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification, 
gender, native language, …. 

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold 
functions, NN) more comprehensible 
 Explain the prediction

Develop a (multi-modal) People Identifier  
Compare Regularization methods: e.g., Winnow vs. L1 
Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep 
network, efficient, architecture. 
Try to prove something

3

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge
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A Guide

Learning Algorithms
 Search: (Stochastic) Gradient Descent with LMS     
 Decision Trees & Rules

Importance of hypothesis space (representation) 
How are we doing? 
 Simplest: Quantification in terms of cumulative # of mistakes  
 More later

Perceptron
 How to deal better with large features spaces & sparsity?

 Winnow

 Variations of Perceptron
 Dealing with overfitting

 Closing the loop: Back to Gradient Descent
 Dual Representations & Kernels

Multilayer Perceptron
Beyond Binary Classification? 
 Multi-class classification and Structured Prediction

More general way to quantify learning performance (PAC) 
 New Algorithms (SVM, Boosting)

4

Today: 
Take a more general 
perspective and think 
more about learning, 
learning protocols, 
quantifying performance, 
etc. 
This will motivate some of 
the ideas we will see next. 
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Quantifying Performance

We want to be able to say something rigorous about 
the performance of our learning algorithm.

We will concentrate on discussing the number of 
examples one needs to see before we can say that 
our learned hypothesis is good. 

5
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There is a hidden (monotone) conjunction the 
learner (you) is to learn 

How many examples are needed to learn it ?  How ?
 Protocol I:  The learner proposes instances as queries to the 

teacher

 Protocol II:  The teacher (who knows f) provides training 
examples 

 Protocol III: Some random source (e.g., Nature) provides 
training examples; the Teacher (Nature) provides the labels 
(f(x))

1005432 xxxxxf 

Learning Conjunctions

6
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Learning Conjunctions

Protocol I:  The learner proposes instances as queries to 
the teacher

Since we know we are after a monotone conjunction:

Is x100 in?   <(1,1,1…,1,0), ?>   f(x)=0 (conclusion: Yes)

Is x99 in?   <(1,1,…1,0,1), ?>   f(x)=1 (conclusion: No)

Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No)

A straight forward algorithm requires n=100 queries, and 
will produce as a result the hidden conjunction (exactly).

1005432 xxxxxh 
What happens here if the conjunction 
is not known to be monotone?
If we know of a positive example,
the same algorithm works. 

7
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Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

8
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Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

<(0,1,1,1,1,0,…,0,1), 1>

9
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Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

10
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Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

To show you that all these variables are required…

11
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1005432 xxxxxf 

Learning Conjunctions

Protocol II:  The teacher (who knows f) provides training 
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0>   need x2

 <(0,1,0,1,1,0,…,0,1), 0>   need x3

 …..

 <(0,1,1,1,1,0,…,0,0), 0>   need x100

A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly).

Modeling Teaching 
Is tricky

12
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Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples

Teacher (Nature) provides the labels (f(x)) 
 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,1,0,...0,1,1), 0>

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

Skip

13
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Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

14
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10054321 ... xxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

15
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10054321 ... xxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>

16
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Learning Conjunctions

10054321 ... xxxxxxf 

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive 
example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

17
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10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., 
Nature) provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive 
example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>    learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

18
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10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

10054321 xxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>
19
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10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

10054321 xxxxxxf 

Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  Elimination 
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>    Final hypothesis:

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

10054321 xxxxxxh 

Is that good ? 
Performance ?
# of examples ? 20
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Learning Conjunctions

Protocol III:  Some random source (e.g., Nature) 
provides training examples
 Teacher (Nature) provides the labels (f(x)) 

Algorithm:  ……. 
 <(1,1,1,1,1,1,…,1,1), 1>     

 <(1,1,1,0,0,0,…,0,0), 0>      

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>     

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>                 Final hypothesis:

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

With the given data, we only learned an 
“approximation” to the true concept

10054321 xxxxxxh 

• Is it  good
• Performance ?
• # of examples ?

21
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Two Directions

Can continue to analyze the probabilistic intuition:
 Never saw x1=0 in positive examples, maybe we’ll never see it?

 And if we will, it will be with small probability, so the concepts 
we learn may be pretty good

 Good: in terms of performance on future data

 PAC framework

Mistake Driven Learning algorithms
 (Now, we can only reason about #(mistakes), not #(examples))

 Update your hypothesis only when you make mistakes

 Good: in terms of how many mistakes you make before you 
stop, happy with your hypothesis. 

 Note: not all on-line algorithms are mistake driven, so 
performance measure could be different.

22
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On-Line Learning

Two new learning algorithms

(learn a linear function over the feature space) 
 Perceptron                   (+ many variations)

 Winnow

 General Gradient Descent view

Issues:
 Importance of Representation

 Complexity of Learning

 Idea of Kernel Based Methods

 More about features

23
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Motivation

Consider a learning problem in a very high 
dimensional space

And assume that the function space is very sparse 
(every function of interest depends on a small 
number of attributes.)

Can we develop an algorithm that depends only 
weakly on the space dimensionality and mostly on 
the number of relevant attributes ?

How should we represent the hypothesis? 

},.....,,,{ 1000000321 xxxx

1005432 .xxxxxf 

Middle Eastern deserts are known for their sweetness

24
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On-Line Learning

Of general interest; simple and intuitive model;

Robot in an assembly line, language learning,…

Important in the case of very large data sets, when 
the data cannot fit memory – Streaming data

Evaluation: We will try to make the smallest number 
of mistakes in the long run.
 What is the relation to the “real” goal?

 Generate a hypothesis that does well on previously unseen 
data

25
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• Not the most general setting 
for on-line learning.
• Not the most general metric 
• (Regret: cumulative loss; 
Competitive analysis)

On-Line Learning

Model:
 Instance space: X (dimensionality – n)

 Target: f: X {0,1}, f  C, concept class (parameterized by n)

Protocol: 

 learner is given x  X

 learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x)  f(x)
 number of mistakes algorithm A makes on sequence S of 

examples, for the target function f.

A is a mistake bound algorithm for the concept class C,  
if MA(c) is a polynomial in n, the complexity parameter 
of the target concept. 

),(max)( , SfMCM ASCfA 

26
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On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC) 
behavior?
 Instead, looking for exact learning.  (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

27
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On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC) 
behavior
 Instead, looking for exact learning.  (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

Drawbacks: 
 Too simple  

 Global behavior: not clear when will the mistakes be made

28
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On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC) 
behavior
 Instead, looking for exact learning.  (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

Drawbacks: 
 Too simple  

 Global behavior: not clear when will the mistakes be made

Advantages: 
 Simple

 Many issues arise already in this setting 

 Generic conversion  to other learning models

 “Equivalent” to PAC for “natural” problems (?)
29
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Is it clear that we can bound the number of mistakes ? 

Let C be a finite concept class. Learn f ² C

CON:
 In the ith stage of the algorithm:

 Ci all concepts in C consistent with all i-1 previously seen examples

 Choose randomly f 2 Ci and use to predict the next example

 Clearly, Ci+1 µ Ci and, if a mistake is made on the ith example, 
then |Ci+1| < |Ci|       so progress is made.

The CON algorithm makes at most |C|-1 mistakes

Can we do better ?

Generic Mistake Bound 
Algorithms

30
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Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen 

examples

Given an example     consider the value           for all      
and predict  by majority. 

iC

ie )( ij ef ij Cf 

The Halving Algorithm

31
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Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen 

examples

Given an example     consider the value           for all      
and predict  by majority. 

Predict 1 if 

iC

ie )( ij ef ij Cf 

The Halving Algorithm

|}1)(;{||}0)(;{|  ijijijij efCfefCf

32
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Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen 

examples

Given an example     consider the value           for all      
and predict  by majority. 

Predict 1 if

Clearly                and if a mistake is made in the ith
example, then

The Halving algorithm makes at most log(|C|) 
mistakes

iC

ie )( ij ef ij Cf 

The Halving Algorithm

|}1)(;{||}0)(;{|  ijijijij efCfefCf

ii CC 1

||
2

1
|| 1 ii CC 

33
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The Halving Algorithm

Hard to compute 

In some cases Halving is optimal (C - class of all 
Boolean functions)

In general, to be optimal, instead of guessing in 
accordance with the majority of the valid concepts, 
we should guess according to the concept group that 
gives the least number of expected mistakes (even 
harder to compute)

34
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There is a hidden conjunctions the learner is to learn

The number of conjunctions: 

log(|C|) = n

The …… algorithm makes n mistakes
 Learn …..

k-conjunctions:
 Assume that only k<<n attributes occur in the disjunction

The number of k-conjunctions:  
 log(|C|) =

 Can we learn efficiently with this number of mistakes ? 

n3

Learning Conjunctions

nk log

kkk nknC 2),(2 

35

1005432 xxxxxf 

Can mistakes 
be bounded 
in the non-
finite case?

Can this 
bound be 
achieved?
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Representation

Assume that you want to learn conjunctions. Should your hypothesis 
space be the class of conjunctions?
 Theorem:   Given a sample on n attributes that is consistent with a conjunctive 

concept, it is NP-hard to find a pure conjunctive hypothesis that is both 
consistent with the sample and has the minimum number of attributes. 

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”] 

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples  so that 
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a 
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the 
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier.

37
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Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF  

38

f (x) =
1      if    w1 x1 + w2 x2 +. . . wn xn >= 

0   Otherwise {

y =  (x1  x2 v ) (x1  x2)

y = (x1  x2) v (x3  x4)

y = x1  x3   x5

y = ( 1• x1 + 1• x3  + 1• x5 >= 1)

y = at least 2 of {x1 , x3 ,   x5}

y = ( 1• x1 + 1• x3  + 1• x5 >=2)
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w ¢ x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢ x = 
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Footnote About the Threshold

40

On previous slide, Perceptron has no threshold

But we don’t lose generality:







,

1,

ww

xxx

0x

1x

xw

0x

1x

 01,,  xw 
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Perceptron learning rule

On-line, mistake driven algorithm.

Rosenblatt (1959) suggested that when a target 
output value is provided for a single neuron with 
fixed input, it can incrementally change weights and 
learn to produce the output using the Perceptron 
learning rule

(Perceptron == Linear Threshold Unit)

41
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Perceptron learning rule

We learn f:X{-1,+1} represented as f =sgn{wx)

Where X=  {0,1}n  or X= Rn and w Rn

Given Labeled examples:  {(x1, y1), (x2, y2),…(xm, ym)}

42

1. Initialize w=0

2.   Cycle through all examples          

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector: 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

n
R
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Perceptron in action

44
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Perceptron in action

45

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

wx = 0
Current 
decision 

boundary

w
Current weight 

vector

x (with y = +1)
next item to be 

classified
x as a vector

x as a vector added to 
w

wx = 0
New

decision 
boundary

w 
New weight 

vector

(Figures from Bishop 2006)

Positive
Negative



ONLINE LEARNING CS446 -Spring ‘17

Perceptron learning rule

If x is Boolean, only weights of active features
are updated
Why is this important?
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1. Initialize w=0

2.   Cycle through all examples          

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector to 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.
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Perceptron Learnability

Obviously can’t learn what it can’t represent (???)
 Only linearly separable functions

Minsky and Papert (1969) wrote an influential book 
demonstrating Perceptron’s representational 
limitations
 Parity functions can’t be learned (XOR)
 In vision, if patterns are represented with local features, 

can’t represent symmetry, connectivity

Research on Neural Networks stopped for years

Rosenblatt himself (1959) asked,

• “What pattern recognition problems can be transformed so 
as to become linearly separable?” 
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(x1  x2) v (x3  x4) y1  y2
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Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with 
the data (i.e., the data is linearly separable), the 
perceptron learning algorithm will converge
 How long would it take to converge ?

Perceptron Cycling Theorem: 

If the training data is not linearly separable the 
perceptron learning algorithm will eventually repeat 
the same set of weights and therefore enter an 
infinite loop.
 How to provide robustness, more expressivity ? 
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