
ONLINE LEARNING CS446 -Spring ‘17

Administration

Registration 

Hw1 is due tomorrow night

Hw2 will be out tomorrow night.
 Please start working on it as soon as possible

 Come to sections with questions

No lectures next Week!!
 Please watch the corresponding videos: check the schedule

page across from the corresponding dates.

 I will not have office hours this week.

 Please go to the TAs office hours and discussion session.

Extensions: you don’t need to email me about
extensions to the Hw. You have it – 96 hours of it.

1

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf

ONLINE LEARNING CS446 -Spring ‘17

Projects

Projects proposals are due on Friday 3/10/17
We will give you an approval to continue with your project, possibly,
along with comments and/or a request to modify/augment/do a different
project. There may also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally, some of the ideas you have developed in the direction of the
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good.
You can do experimental work, theoretical work, a combination of both
or a critical survey of results in some specialized topic.
The work has to include some reading. Even if you do not do a survey, you
must read (at least) two related papers or book chapters and relate your
work to it.
Originality is not mandatory but is encouraged.
Try to make it interesting!

2

ONLINE LEARNING CS446 -Spring ‘17

Examples

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we

are asked to identify which papers are really written by the author.

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification,
gender, native language, ….

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold
functions, NN) more comprehensible
 Explain the prediction

Develop a (multi-modal) People Identifier
Compare Regularization methods: e.g., Winnow vs. L1
Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep
network, efficient, architecture.
Try to prove something

3

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

ONLINE LEARNING CS446 -Spring ‘17

A Guide

Learning Algorithms
 Search: (Stochastic) Gradient Descent with LMS
 Decision Trees & Rules

Importance of hypothesis space (representation)
How are we doing?
 Simplest: Quantification in terms of cumulative # of mistakes
 More later

Perceptron
 How to deal better with large features spaces & sparsity?

 Winnow

 Variations of Perceptron
 Dealing with overfitting

 Closing the loop: Back to Gradient Descent
 Dual Representations & Kernels

Multilayer Perceptron
Beyond Binary Classification?
 Multi-class classification and Structured Prediction

More general way to quantify learning performance (PAC)
 New Algorithms (SVM, Boosting)

4

Today:
Take a more general
perspective and think
more about learning,
learning protocols,
quantifying performance,
etc.
This will motivate some of
the ideas we will see next.

ONLINE LEARNING CS446 -Spring ‘17

Quantifying Performance

We want to be able to say something rigorous about
the performance of our learning algorithm.

We will concentrate on discussing the number of
examples one needs to see before we can say that
our learned hypothesis is good.

5

ONLINE LEARNING CS446 -Spring ‘17

There is a hidden (monotone) conjunction the
learner (you) is to learn

How many examples are needed to learn it ? How ?
 Protocol I: The learner proposes instances as queries to the

teacher

 Protocol II: The teacher (who knows f) provides training
examples

 Protocol III: Some random source (e.g., Nature) provides
training examples; the Teacher (Nature) provides the labels
(f(x))

1005432 xxxxxf 

Learning Conjunctions

6

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol I: The learner proposes instances as queries to
the teacher

Since we know we are after a monotone conjunction:

Is x100 in? <(1,1,1…,1,0), ?> f(x)=0 (conclusion: Yes)

Is x99 in? <(1,1,…1,0,1), ?> f(x)=1 (conclusion: No)

Is x1 in ? <(0,1,…1,1,1), ?> f(x)=1 (conclusion: No)

A straight forward algorithm requires n=100 queries, and
will produce as a result the hidden conjunction (exactly).

1005432 xxxxxh 
What happens here if the conjunction
is not known to be monotone?
If we know of a positive example,
the same algorithm works.

7

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training
examples

8

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training
examples

<(0,1,1,1,1,0,…,0,1), 1>

9

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

10

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

To show you that all these variables are required…

11

ONLINE LEARNING CS446 -Spring ‘17

1005432 xxxxxf 

Learning Conjunctions

Protocol II: The teacher (who knows f) provides training
examples

<(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0> need x2

 <(0,1,0,1,1,0,…,0,1), 0> need x3

 …..

 <(0,1,1,1,1,0,…,0,0), 0> need x100

A straight forward algorithm requires k = 6 examples to
produce the hidden conjunction (exactly).

Modeling Teaching
Is tricky

12

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples

Teacher (Nature) provides the labels (f(x))
 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,1,0,...0,1,1), 0>

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

Skip

13

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

14

ONLINE LEARNING CS446 -Spring ‘17

10054321 ... xxxxxxf 

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

15

ONLINE LEARNING CS446 -Spring ‘17

10054321 ... xxxxxxf 

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>

16

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

10054321 ... xxxxxxf 

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive
example

 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>  learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

17

ONLINE LEARNING CS446 -Spring ‘17

10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

Learning Conjunctions

Protocol III: Some random source (e.g.,
Nature) provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive
example

 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>  learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>  learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

18

ONLINE LEARNING CS446 -Spring ‘17

10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

10054321 xxxxxxf 

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0> learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0>

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>
19

ONLINE LEARNING CS446 -Spring ‘17

10054321 ... xxxxxxf 

1009954321 xxxxxxxf 

10054321 xxxxxxf 

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: Elimination
 Start with the set of all literals as candidates

 Eliminate a literal that is not active (0) in a positive example

 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0> learned nothing

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0> Final hypothesis:

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

10054321 xxxxxxh 

Is that good ?
Performance ?
of examples ? 20

ONLINE LEARNING CS446 -Spring ‘17

Learning Conjunctions

Protocol III: Some random source (e.g., Nature)
provides training examples
 Teacher (Nature) provides the labels (f(x))

Algorithm: …….
 <(1,1,1,1,1,1,…,1,1), 1>

 <(1,1,1,0,0,0,…,0,0), 0>

 <(1,1,1,1,1,0,...0,1,1), 1>

 <(1,0,1,1,0,0,...0,0,1), 0>

 <(1,1,1,1,1,0,...0,0,1), 1>

 <(1,0,1,0,0,0,...0,1,1), 0> Final hypothesis:

 <(1,1,1,1,1,1,…,0,1), 1>

 <(0,1,0,1,0,0,...0,1,1), 0>

With the given data, we only learned an
“approximation” to the true concept

10054321 xxxxxxh 

• Is it good
• Performance ?
• # of examples ?

21

ONLINE LEARNING CS446 -Spring ‘17

Two Directions

Can continue to analyze the probabilistic intuition:
 Never saw x1=0 in positive examples, maybe we’ll never see it?

 And if we will, it will be with small probability, so the concepts
we learn may be pretty good

 Good: in terms of performance on future data

 PAC framework

Mistake Driven Learning algorithms
 (Now, we can only reason about #(mistakes), not #(examples))

 Update your hypothesis only when you make mistakes

 Good: in terms of how many mistakes you make before you
stop, happy with your hypothesis.

 Note: not all on-line algorithms are mistake driven, so
performance measure could be different.

22

ONLINE LEARNING CS446 -Spring ‘17

On-Line Learning

Two new learning algorithms

(learn a linear function over the feature space)
 Perceptron (+ many variations)

 Winnow

 General Gradient Descent view

Issues:
 Importance of Representation

 Complexity of Learning

 Idea of Kernel Based Methods

 More about features

23

ONLINE LEARNING CS446 -Spring ‘17

Motivation

Consider a learning problem in a very high
dimensional space

And assume that the function space is very sparse
(every function of interest depends on a small
number of attributes.)

Can we develop an algorithm that depends only
weakly on the space dimensionality and mostly on
the number of relevant attributes ?

How should we represent the hypothesis?

},.....,,,{ 1000000321 xxxx

1005432 .xxxxxf 

Middle Eastern deserts are known for their sweetness

24

ONLINE LEARNING CS446 -Spring ‘17

On-Line Learning

Of general interest; simple and intuitive model;

Robot in an assembly line, language learning,…

Important in the case of very large data sets, when
the data cannot fit memory – Streaming data

Evaluation: We will try to make the smallest number
of mistakes in the long run.
 What is the relation to the “real” goal?

 Generate a hypothesis that does well on previously unseen
data

25

ONLINE LEARNING CS446 -Spring ‘17

• Not the most general setting
for on-line learning.
• Not the most general metric
• (Regret: cumulative loss;
Competitive analysis)

On-Line Learning

Model:
 Instance space: X (dimensionality – n)

 Target: f: X {0,1}, f  C, concept class (parameterized by n)

Protocol:

 learner is given x  X

 learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x)  f(x)
 number of mistakes algorithm A makes on sequence S of

examples, for the target function f.

A is a mistake bound algorithm for the concept class C,
if MA(c) is a polynomial in n, the complexity parameter
of the target concept.

),(max)(, SfMCM ASCfA 

26

ONLINE LEARNING CS446 -Spring ‘17

On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC)
behavior?
 Instead, looking for exact learning. (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

27

ONLINE LEARNING CS446 -Spring ‘17

On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC)
behavior
 Instead, looking for exact learning. (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

Drawbacks:
 Too simple

 Global behavior: not clear when will the mistakes be made

28

ONLINE LEARNING CS446 -Spring ‘17

On-Line/Mistake Bound Learning

We could ask: how many mistakes to get to ²-± (PAC)
behavior
 Instead, looking for exact learning. (easier to analyze)

No notion of distribution; a worst case model

Memory: get example, update hypothesis, get rid of it (??)

Drawbacks:
 Too simple

 Global behavior: not clear when will the mistakes be made

Advantages:
 Simple

 Many issues arise already in this setting

 Generic conversion to other learning models

 “Equivalent” to PAC for “natural” problems (?)
29

ONLINE LEARNING CS446 -Spring ‘17

Is it clear that we can bound the number of mistakes ?

Let C be a finite concept class. Learn f ² C

CON:
 In the ith stage of the algorithm:

 Ci all concepts in C consistent with all i-1 previously seen examples

 Choose randomly f 2 Ci and use to predict the next example

 Clearly, Ci+1 µ Ci and, if a mistake is made on the ith example,
then |Ci+1| < |Ci| so progress is made.

The CON algorithm makes at most |C|-1 mistakes

Can we do better ?

Generic Mistake Bound
Algorithms

30

ONLINE LEARNING CS446 -Spring ‘17

Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen

examples

Given an example consider the value for all
and predict by majority.

iC

ie)(ij ef ij Cf 

The Halving Algorithm

31

ONLINE LEARNING CS446 -Spring ‘17

Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen

examples

Given an example consider the value for all
and predict by majority.

Predict 1 if

iC

ie)(ij ef ij Cf 

The Halving Algorithm

|}1)(;{||}0)(;{|  ijijijij efCfefCf

32

ONLINE LEARNING CS446 -Spring ‘17

Let C be a concept class. Learn f ² C

Halving:

In the ith stage of the algorithm:
 all concepts in C consistent with all i-1 previously seen

examples

Given an example consider the value for all
and predict by majority.

Predict 1 if

Clearly and if a mistake is made in the ith
example, then

The Halving algorithm makes at most log(|C|)
mistakes

iC

ie)(ij ef ij Cf 

The Halving Algorithm

|}1)(;{||}0)(;{|  ijijijij efCfefCf

ii CC 1

||
2

1
|| 1 ii CC 

33

ONLINE LEARNING CS446 -Spring ‘17

The Halving Algorithm

Hard to compute

In some cases Halving is optimal (C - class of all
Boolean functions)

In general, to be optimal, instead of guessing in
accordance with the majority of the valid concepts,
we should guess according to the concept group that
gives the least number of expected mistakes (even
harder to compute)

34

ONLINE LEARNING CS446 -Spring ‘17

There is a hidden conjunctions the learner is to learn

The number of conjunctions:

log(|C|) = n

The …… algorithm makes n mistakes
 Learn …..

k-conjunctions:
 Assume that only k<<n attributes occur in the disjunction

The number of k-conjunctions:
 log(|C|) =

 Can we learn efficiently with this number of mistakes ?

n3

Learning Conjunctions

nk log

kkk nknC 2),(2 

35

1005432 xxxxxf 

Can mistakes
be bounded
in the non-
finite case?

Can this
bound be
achieved?

ONLINE LEARNING CS446 -Spring ‘17

Representation

Assume that you want to learn conjunctions. Should your hypothesis
space be the class of conjunctions?
 Theorem: Given a sample on n attributes that is consistent with a conjunctive

concept, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”]

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples so that
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

37

ONLINE LEARNING CS446 -Spring ‘17

Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF

38

f (x) =
1 if w1 x1 + w2 x2 +. . . wn xn >= 

0 Otherwise {

y = (x1  x2 v) (x1  x2)

y = (x1  x2) v (x3  x4)

y = x1  x3  x5

y = (1• x1 + 1• x3 + 1• x5 >= 1)

y = at least 2 of {x1 , x3 , x5}

y = (1• x1 + 1• x3 + 1• x5 >=2)

ONLINE LEARNING CS446 -Spring ‘17 39

w ¢ x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢ x = 

ONLINE LEARNING CS446 -Spring ‘17

Footnote About the Threshold

40

On previous slide, Perceptron has no threshold

But we don’t lose generality:







,

1,

ww

xxx

0x

1x

xw

0x

1x

 01,,  xw 

ONLINE LEARNING CS446 -Spring ‘17

Perceptron learning rule

On-line, mistake driven algorithm.

Rosenblatt (1959) suggested that when a target
output value is provided for a single neuron with
fixed input, it can incrementally change weights and
learn to produce the output using the Perceptron
learning rule

(Perceptron == Linear Threshold Unit)

41

1
2

6

3
4
5

7

6w

1w


T

y

1x

6x

ONLINE LEARNING CS446 -Spring ‘17

Perceptron learning rule

We learn f:X{-1,+1} represented as f =sgn{wx)

Where X= {0,1}n or X= Rn and w Rn

Given Labeled examples: {(x1, y1), (x2, y2),…(xm, ym)}

42

1. Initialize w=0

2. Cycle through all examples

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector:

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

n
R

ONLINE LEARNING CS446 -Spring ‘17

Perceptron in action

44

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

wx = 0
Current
decision

boundary

w
Current weight

vector

x (with y = +1)
next item to be

classified

x as a vector

x as a vector added to
w

wx = 0
New

decision
boundary

w
New weight

vector

(Figures from Bishop 2006)

Positive
Negative

ONLINE LEARNING CS446 -Spring ‘17

Perceptron in action

45

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

wx = 0
Current
decision

boundary

w
Current weight

vector

x (with y = +1)
next item to be

classified
x as a vector

x as a vector added to
w

wx = 0
New

decision
boundary

w
New weight

vector

(Figures from Bishop 2006)

Positive
Negative

ONLINE LEARNING CS446 -Spring ‘17

Perceptron learning rule

If x is Boolean, only weights of active features
are updated
Why is this important?

46

1. Initialize w=0

2. Cycle through all examples

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector to

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

n
R

1/2
x)}exp{-(w1

1
 to equivalent is 0xw 






























































1

0

1

1

1

3

2

1

3

2

1

1

w

w

w

w

w

w

ii
xww

ONLINE LEARNING CS446 -Spring ‘17

Perceptron Learnability

Obviously can’t learn what it can’t represent (???)
 Only linearly separable functions

Minsky and Papert (1969) wrote an influential book
demonstrating Perceptron’s representational
limitations
 Parity functions can’t be learned (XOR)
 In vision, if patterns are represented with local features,

can’t represent symmetry, connectivity

Research on Neural Networks stopped for years

Rosenblatt himself (1959) asked,

• “What pattern recognition problems can be transformed so
as to become linearly separable?”

47

ONLINE LEARNING CS446 -Spring ‘17 48

(x1  x2) v (x3  x4) y1  y2

ONLINE LEARNING CS446 -Spring ‘17

Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e., the data is linearly separable), the
perceptron learning algorithm will converge
 How long would it take to converge ?

Perceptron Cycling Theorem:

If the training data is not linearly separable the
perceptron learning algorithm will eventually repeat
the same set of weights and therefore enter an
infinite loop.
 How to provide robustness, more expressivity ?

49

