
DECISION TREES CS446 Spring’17

Administration 

Registration [Ask NOW]

Hw0: Solution is out; make sure you understand it. 

Hw1 is out. 

 Please start working on it as soon as possible; 

 Discussion sessions will start next week; come ready with questions 

Projects

 Small (2-3) groups; your choice of a topic.

 25% of the grade  needs to be a substantial project 

 Extra credit for undergrads

Quiz 1: Avg. score: 4.51/5

 Only 165 of you attempted it (???)  

 Check out the solution.

No Quiz in the coming week.
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Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw0/hw0.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
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What Did We Learn? 

Learning problem: 
Find a function that 

best separates the data

What function?

What’s best?

How to find it?

A possibility: Define the learning problem to be:

Find a (linear) function that best separates the data

Linear:

x= data representation; w= the classifier

Y = sgn {wT x}

2
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Introduction - Summary

We introduced the technical part of the class by giving two (very 
important) examples for learning approaches to linear discrimination.

There are many other solutions.

Question 1: Our solution learns a linear function; in principle, the 
target function may not be linear, and this will have implications on the 
performance of our learned hypothesis. 

 Can we learn a function that is more flexible in terms of what it does with 
the feature space?

Question 2: Can we say something about the quality of what we learn 
(sample complexity, time complexity; quality)

3
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Decision Trees

Earlier, we decoupled the generation of the feature space 
from the learning. 

Argued that we can map the given examples into another 
space, in which the target functions are linearly separable. 

Do we always want to do it? 

How do we determine what are good mappings?

The study of decision trees may shed some light on this.

Learning is done directly from the given data 
representation.

The algorithm ``transforms” the data itself.

Think about the Badges problem

x

x2

4

What’s the best learning algorithm? 
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This Lecture

Decision trees for (binary) classification
 Non-linear classifiers

Learning decision trees (ID3 algorithm)
 Greedy heuristic (based on information gain)

Originally developed for discrete features

 Some extensions to the basic algorithm

Overfitting
 Some experimental issues

5
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Representing Data 

Think about a large table, N attributes, and assume you want to know 
something about the people represented as entries in this table.

E.g. own an expensive car or not;

Simplest way: Histogram on the first attribute – own

Then, histogram on first and second (own & gender)

But, what if the # of attributes is larger: N=16

How large are the 1-d histograms (contingency tables) ? 16 numbers

How large are the 2-d histograms? 16-choose-2 = 120 numbers

How many 3-d tables? 560 numbers

With 100 attributes, the 3-d tables need 161,700 numbers

 We need to figure out a way to represent data in a better way, and 
figure out what  are the important attributes to look at first. 

 Information theory has something to say about it – we will use it to 
better represent the data. 

6
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Decision Trees

A hierarchical data structure that represents data by 
implementing a divide and conquer strategy

Can be used as a non-parametric classification and 
regression method

Given a collection of examples, learn a decision tree 
that represents it.

Use this representation to classify new examples

A

C

B

7
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The Representation

Decision Trees are classifiers for instances represented as 
feature vectors (color= ; shape= ; label= )

Nodes are tests for feature values

There is one branch for each value of the feature

Leaves specify the category (labels)

Can categorize instances into multiple disjoint categories

Color 

Shape

Blue red Green
Shape

square

triangle circle circlesquare

AB
CA

B

B

Evaluation of a 
Decision Tree

Learning a 
Decision Tree

8

(color= RED ;shape=triangle)

A

C
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Expressivity of Decision Trees

As Boolean functions they can represent any Boolean function.

Can be rewritten as rules in Disjunctive Normal Form (DNF)

 Green^square  positive

 Blue^circle  positive

 Blue^square  positive

The disjunction of these rules is equivalent to the Decision Tree

What did we show? What is the hypothesis space here?
2 dimensions, 3 values each |X| = 9; |Y| = 2; |H| = 29

Color 

Shape

Blue red Green
Shape

square

triangle circle circlesquare

-+
++-

+
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Decision Trees

Output is a discrete category. Real valued outputs are 
possible (regression trees)

There are efficient algorithms for processing large 
amounts of data (but not too many features)

There are methods for handling noisy data 
(classification noise and attribute noise) and for 
handling missing attribute values

Color 

Shape

Blue red Green
Shape

square

triangle circle circlesquare

-+
++-

+
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Decision Boundaries

Usually, instances are represented as attribute-value 
pairs (color=blue, shape = square, +)

Numerical values can be used either by discretizing 
or by using thresholds for splitting nodes

In this case, the tree divides the features space into 
axis-parallel rectangles, each labeled with one of the 
labels X<3 

Y<5

no yes
Y>7

yesno

-+
+-

X < 1

no yes

+ -
1                        3                      X

7

5

Y

- +

+ +

+ +

-

-

+
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Decision Trees

Can represent any Boolean Function

Can be viewed as a way to compactly represent a lot 
of data.

Natural representation: (20 questions) 

The evaluation of the Decision Tree Classifier is easy

Clearly, given data, there are

many ways to represent it as 

a decision tree. 

Learning a good representation 

from data is the challenge.
YesHumidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes

Outlook 

Overcast RainSunny

12
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Will I play tennis today? 

Features 
 Outlook: {Sun, Overcast, Rain}

 Temperature: {Hot, Mild, Cool}

 Humidity: {High, Normal, Low}

 Wind: {Strong, Weak}

Labels
 Binary classification task: Y =  {+, -}

13
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

14

Outlook: S(unny), 
O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)
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Administration 

Registration [Ask NOW]

Hw1 is out. Due on Friday.

 You should be working on it already.  

 You have noticed that the goal of the Hw is to teach you something. 

 Discussion sessions will start next week; come ready with questions.

Projects

 Small (2-3) groups; your choice of a topic.

 Anything with a significant Machine Learning component works.

 More details will come.

 25% of the grade  needs to be a substantial project 

 Extra credit for undergrads

Quiz 2: will be made available over the weekend. 

Check the website for office hours, discussion sessions etc. 

15

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
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Basic Decision Trees Learning Algorithm

Data is processed in Batch (i.e. all the data available)

Recursively build a decision tree top down.

YesHumidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes

Outlook 

Overcast RainSunny

16

O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Algorithm?
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Basic Decision Tree Algorithm

Let S be the set of Examples
 Label  is the target attribute (the prediction) 

 Attributes is the set of measured attributes

ID3(S, Attributes, Label)

If all examples are labeled the same return a single node tree with Label

Otherwise Begin 

A =  attribute in Attributes that best classifies S (Create a Root node for tree)

for each possible value v of A

Add a new tree branch corresponding to A=v

Let Sv be the subset of examples in S with A=v

if Sv is empty:  add leaf node with the common value 
of Label in S

Else:  below this branch add the subtree

ID3(Sv, Attributes - {a}, Label)

End

Return Root
17

why? 

For evaluation time
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Picking the Root Attribute

The goal is to have the resulting decision tree as small 
as possible (Occam’s Razor)
 But, finding the minimal decision tree consistent with the 

data is NP-hard

The recursive algorithm is a greedy heuristic search 
for a simple tree, but cannot guarantee optimality.

The main decision in the algorithm is the selection of 
the next attribute to condition on.

18
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Picking the Root Attribute
Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples
<  (A=1,B=1), + >: 100 examples

A

+ -

01

B

-

01

A

+ -

01

Splitting on B: we don’t get purely labeled nodes.

What if we have: <(A=1,B=0), - >: 3 examples

What should be the first attribute we select?

Splitting on A: we get purely labeled nodes.

19



DECISION TREES CS446 Spring’17

Picking the Root Attribute
Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples 3 examples
<  (A=1,B=1), + >: 100 examples

B

-

01

A

+ -

01

A

-

01

B

+ -

0153

50 3

100

100100

Trees looks structurally similar; which attribute should we choose?

Advantage A. But…
Need a way to quantify things

20
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Picking the Root Attribute

The goal is to have the resulting decision tree as small 
as possible (Occam’s Razor)

The main decision in the algorithm is the selection of 
the next attribute to condition on.

We want attributes that split the examples to sets 
that are relatively pure in one label; this way we are 
closer to a leaf node.

The most popular heuristics is based on information 
gain, originated with the ID3 system of Quinlan.

21
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Entropy

Entropy (impurity, disorder) of a set of examples, S, 
relative to a binary classification is:

where P+ is the proportion of positive examples in S 
and      P- is the proportion of  negatives.
 If all the examples belong to the same category: Entropy = 0 

 If all the examples are equally mixed (0.5, 0.5): Entropy = 1

 Entropy  = Level of uncertainty. 

22

)log(pp)log(ppEntropy(S)  





k

i

ii

1

)log(pp}),...pp,Entropy({p k21

In general, when pi is the fraction of examples labeled i:

Entropy can be viewed as the number of bits required, on average, to  encode the 
class of labels. If the probability for + is 0.5, a single bit is required for each example; 
if it is 0.8 -- can use less then 1 bit.
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Entropy

Entropy (impurity, disorder) of a set of examples, S, 
relative to a binary classification is:

where P+ is the proportion of positive examples in S 
and      P- is the proportion of  negatives.
 If all the examples belong to the same category: Entropy = 0 

 If all the examples are equally mixed (0.5, 0.5): Entropy = 1

 Entropy  = Level of uncertainty. 

23
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Entropy

Entropy (impurity, disorder) of a set of examples, S, 
relative to a binary classification is:

where       is the proportion of positive examples in S and

is the proportion of negatives.

If all the examples belong to the same category: Entropy = 0

If all the examples are equally mixed (0.5, 0.5): Entropy = 1

p
p

)log(pp)log(ppEntropy(S)  

1 1 1

High Entropy – High level of Uncertainty

Low Entropy – No Uncertainty. 

24
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Information Gain

The information gain of an attribute a is the expected 
reduction in entropy caused by partitioning on this 
attribute

where Sv is the subset of S for which attribute a has 
value v, and the entropy of partitioning the data is 
calculated by weighing the entropy of each partition 
by its size relative to the original set
 Partitions of low entropy (imbalanced splits) lead to high 

gain

Go back to check which of the A, B splits is better

25

)Entropy(S
|S|

|S|
Entropy(S)a)Gain(S, v

v

values(a)v






Outlook 

Overcast RainSunny

High Entropy – High level of 
Uncertainty

Low Entropy – No Uncertainty. 
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

26

Outlook: S(unny), 
O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)
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Will I play tennis today? 

O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

27

Current entropy:
p = 9/14
n = 5/14

H(Y) = 
−(9/14) log2(9/14)  
−(5/14) log2(5/14) 

 0.94
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Information Gain: Outlook
O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

28

Outlook = sunny: 
p = 2/5     n = 3/5 HS = 0.971

Outlook = overcast:
p = 4/4     n = 0 Ho= 0

Outlook = rainy:
p = 3/5     n = 2/5 HR = 0.971

Expected entropy: 
(5/14)×0.971 + (4/14)×0 
+ (5/14)×0.971 = 0.694

Information gain: 
0.940 – 0.694 = 0.246
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Information Gain: Humidity
O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

29

Humidity = high: 
p = 3/7     n = 4/7 Hh = 0.985

Humidity = Normal:
p = 6/7     n = 1/7 Ho= 0.592

Expected entropy: 
(7/14)×0.985 + (7/14)×0.592= 0.7785

Information gain: 
0.940 – 0.151 = 0.1515
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Which feature to split on? 
O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

30

Information gain: 
Outlook:  0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

→ Split on Outlook
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An Illustrative Example (III)

Outlook 

Gain(S,Humidity)=0.151
Gain(S,Wind) = 0.048
Gain(S,Temperature) = 0.029
Gain(S,Outlook) = 0.246

31
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An Illustrative Example (III)

Outlook 

32

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 

O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -
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An Illustrative Example (III)

33

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 

Continue until:
• Every attribute is included in path, or,
• All examples  in the leaf have same label

O T H W Play?

1 S H H W -
2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -
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An Illustrative Example (IV)
Humidity),Gain(S sunny .97-(3/5) 0-(2/5) 0 = .97

Temp),Gain(S sunny .97- 0-(2/5) 1 = .57

Wind),Gain(S sunny .97-(2/5) 1 - (3/5) .92= .02

Day    Outlook Temperature      Humidity    Wind PlayTennis
1       Sunny            Hot              High          Weak            No

2       Sunny            Hot              High         Strong           No

8       Sunny            Mild             High          Weak             No

9       Sunny            Cool             Normal      Weak            Yes

11      Sunny            Mild              Normal     Strong           Yes

34

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 
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An Illustrative Example (V)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 

35
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An Illustrative Example (V)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity ? 

NormalHigh

No Yes

36
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induceDecisionTree(S)

1. Does S uniquely define a class? 
if all s ∈ S have the same label y: return S;

2. Find the feature with the most information gain:

i = argmax i Gain(S, Xi)

3. Add children to S:

for k in Values(Xi): 

Sk = {s ∈ S | xi = k}
addChild(S, Sk)

induceDecisionTree(Sk)

return S;

37
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An Illustrative Example (VI)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh

No Yes

WeakStrong

No Yes

38
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Hypothesis Space in Decision 
Tree Induction

Conduct a search of the space of decision trees which 
can represent all possible discrete functions. (pros 
and cons)

Goal: to find the best decision tree
 Best could be “smallest depth”

 Best could be “minimizing the expected number of tests”

Finding a minimal decision tree consistent with a set 
of data is NP-hard.

Performs a greedy heuristic search:  hill climbing 
without backtracking

Makes statistically based decisions using all data

39
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Today’s key concepts

Learning decision trees (ID3 algorithm)
 Greedy heuristic (based on information gain)

Originally developed for discrete features

Overfitting
 What is it? How do we deal with it?

Some extensions of DTs

Principles of Experimental ML

40

How can this be avoided with linear classifiers?
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History of Decision Tree Research

Hunt and colleagues in Psychology used full search decision tree 
methods to model human concept learning in the 60s

Quinlan developed ID3, with the information gain heuristics in 
the late 70s to learn expert systems from examples

Breiman, Freidman and colleagues in statistics developed CART 
(classification and regression trees simultaneously)

A variety of improvements in the 80s: coping with noise, 
continuous attributes, missing data, non-axis parallel etc.

Quinlan’s updated algorithm, C4.5 (1993) is commonly used 
(New: C5)

Boosting (or Bagging) over DTs is a very good general purpose 
algorithm

41
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Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh

No Yes

WeakStrong

No Yes

Outlook = Sunny, Temp = Hot,  Humidity = Normal,  Wind = Strong,  NO

42
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Overfitting - Example
Outlook = Sunny, Temp = Hot,  Humidity = Normal,  Wind = Strong,  NO

43

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh

No

WeakStrong

No Yes

WeakStrong
No Yes

Wind

This can always be done – may fit noise or
other coincidental regularities
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Our training data

44
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The instance space

45
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Overfitting the Data

Learning a tree that classifies the training data perfectly may 
not lead to the tree with the best generalization performance.

 There may be noise in the training data the tree is fitting

 The algorithm might be making decisions based on very little data

A hypothesis h is said to overfit the training data if there is 
another hypothesis h’, such that h has a smaller error than h’ on 
the training data but h has larger error on the test data than h’.

Complexity of tree

accuracy

On testing

On training

46
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Reasons for overfitting

Too much variance in the training data
 Training data is not a representative sample 

of the instance space

 We split on features that are actually irrelevant

Too much noise in the training data
 Noise = some feature values or class labels are incorrect

 We learn to predict the noise

In both cases, it is a result of our will to minimize the 
empirical error when we learn, and the ability to do it 
(with DTs) 

47
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Pruning a decision tree

Prune = remove leaves and assign majority label of 
the parent to all items

Prune the children of S if:
 all children are leaves, and

 the accuracy on the validation set does not decrease if we 
assign the most frequent class label to all items at S.

48
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Avoiding Overfitting

Two basic approaches

 Pre-pruning: Stop growing the tree at some point during 
construction when it is determined that there is not enough data 
to make reliable choices.

 Post-pruning: Grow the full tree and then remove nodes that seem 
not to have sufficient evidence.

Methods for evaluating subtrees to prune

 Cross-validation: Reserve hold-out set to evaluate utility

 Statistical testing: Test if the observed regularity can be dismissed 
as likely to occur by chance

 Minimum Description Length: Is the additional complexity of the 
hypothesis smaller than remembering the exceptions?

This is related to the notion of regularization that we will see in 
other contexts – keep the hypothesis simple. 

How can this be avoided with linear classifiers?

49

Next: a brief detour into explaining generalization and overfitting

Hand waving, for now. 
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The i.i.d. assumption

Training and test items are independently and 
identically distributed (i.i.d.): 

 There is a distribution P(X, Y) from which the data 
D = {(x, y)} is generated.

 Sometimes it’s useful to rewrite P(X, Y) as P(X)P(Y|X)
Usually P(X, Y) is unknown to us (we just know it exists)

 Training and test data are samples drawn from the 
same P(X, Y): they are identically distributed

 Each (x, y) is drawn independently from P(X, Y)
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Size of tree

Accuracy

On test data

On training data

Overfitting

A decision tree overfits the training data when its accuracy 
on the training data goes up but its accuracy on unseen data 
goes down

54

Why this shape 
of curves? 
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Model complexity

Empirical 
Error

Overfitting

55

Empirical error (= on a given data set):
The percentage of items in this data set are misclassified by 
the classifier f.

??
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Model complexity

Empirical 

Error

Overfitting

56

Model complexity (informally):
How many parameters do we have to learn?

 Decision trees: complexity = #nodes
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Model complexity

Expected
Error

Overfitting

57

Expected error:
What percentage of items drawn from P(x,y) do we expect to 
be misclassified by f? 

(That’s what we really care about – generalization)
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Model complexity

Variance of a learner (informally)

How susceptible is the learner to minor changes in the training data? 

 (i.e. to different samples from P(X, Y))

Variance increases with model complexity 

 Think about extreme cases: a hypothesis space with one function vs. all functions. 

 The larger the hypothesis space is,  the more flexible the selection of the chosen 
hypothesis is as a function of the data. 

 More accurately: for each data set D, you will learn a different hypothesis h(D), that 
will have a different true error e(h); we are looking here at the variance of this 
random variable. 

58

Variance
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Model complexity

Bias of a learner (informally)

How likely is the learner to identify the target hypothesis? 

Bias is low when the model is expressive (low empirical error) 

Bias is high when the model is (too) simple 

 The larger the hypothesis space is,  the easiest it is to be close to the true 
hypothesis. 

 More accurately: for each data set D, you learn a different hypothesis h(D), that 
has a different true error e(h); we are looking here at the difference of the mean 
of this random variable from the true error. 
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Bias
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Model complexity

Expected
Error

Impact of bias and variance

60

Expected error ≈ bias + variance

Variance

Bias
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Model complexity

Expected
Error

Model complexity

61

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 
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Underfitting Overfitting

Model complexity

Expected
Error

Underfitting and Overfitting

62

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 

This can be made more accurate for some loss functions. 

We will develop a more precise and general theory that 
trades expressivity of models with empirical error
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Avoiding Overfitting

Two basic approaches

 Pre-pruning: Stop growing the tree at some point during 
construction when it is determined that there is not enough data 
to make reliable choices.

 Post-pruning: Grow the full tree and then remove nodes that seem 
not to have sufficient evidence.

Methods for evaluating subtrees to prune

 Cross-validation: Reserve hold-out set to evaluate utility

 Statistical testing: Test if the observed regularity can be dismissed 
as likely to occur by chance

 Minimum Description Length: Is the additional complexity of the 
hypothesis smaller than remembering the exceptions?

This is related to the notion of regularization that we will see in 
other contexts – keep the hypothesis simple. 

How can this be avoided with linear classifiers?

63

Next: a brief detour into explaining generalization and overfitting

Hand waving, for now. 
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Trees and Rules

Decision Trees can be represented as Rules
 (outlook = sunny) and (humidity = normal) then YES

 (outlook = rain) and (wind = strong) then NO

Sometimes Pruning can be done at the rules level
 Rules are generalized by 

erasing a condition (different!)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh
No

WeakStrong
No YesYes

64
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Continuous Attributes

Real-valued attributes can, in advance, be discretized into 
ranges, such as big, medium, small

Alternatively, one can develop splitting nodes based on 
thresholds of the form A<c that partition the data into examples 
that satisfy A<c and A>=c. The information gain for these splits 
is calculated in the same way and compared to the information 
gain of discrete splits.

How to find the split with the highest gain?

 For each continuous feature A:

 Sort examples according to the value of A

 For each ordered pair (x,y) with different labels

• Check the mid-point as a possible threshold, i.e.

Sa · x, Sa ¸ y
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Continuous Attributes

Example:  

 Length (L):  10  15  21  28  32  40  50 

 Class:           - +   +    - +    +    -

 Check thresholds:   L < 12.5;  L < 24.5;  L < 45

 Subset of Examples= {…},      Split= k+,j-

How to find the split with the highest gain ?

 For each continuous feature A:

 Sort examples according to the value of A

 For each ordered pair (x,y) with different labels

• Check the mid-point as a possible threshold. I.e,          

Sa · x, Sa ¸ y
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Missing Values

Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

Many times values are not available for all attributes 
during training or testing  (e.g., medical diagnosis)

Training: evaluate Gain(S,a) where in some of the 
examples a value for a is not given 

67
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Missing Values

68

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

Yes? ? 

Humidity),Gain(Ssunny

Temp),Gain(Ssunny
.97- 0-(2/5) 1 = .57      

Day    Outlook Temperature      Humidity    Wind PlayTennis
1       Sunny            Hot              High          Weak            No

2       Sunny            Hot              High         Strong          No

8       Sunny            Mild             ??? Weak             No

9       Sunny            Cool             Normal     Weak            Yes

11      Sunny            Mild              Normal     Strong          Yes

)Ent(S
|S|

|S|
Ent(S)a)Gain(S, v

v

Fill in: assign the most likely value of Xi to s:
argmax k P( Xi = k ): Normal

97-(3/5) Ent[+0,-3] -(2/5) Ent[+2,-0] = .97

Assign fractional counts P(Xi =k) 
for each value of Xi to s 

.97-(2.5/5) Ent[+0,-2.5] - (2.5/5) Ent[+2,-.5] < .97

Other suggestions?
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Missing Values

Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

Many times values are not available for all attributes during training 
or testing  (e.g., medical diagnosis)

Training: evaluate Gain(S,a) where in some of the examples a value 
for a is not given 

Testing:  classify an example without knowing the value of a
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Missing Values

70

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14

3+,2-

Sunny

1,2,8,9,11

4+,0-2+,3-

YesHumidity Wind

NormalHigh

No

WeakStrong

No YesYes

Outlook = ???, Temp = Hot,  Humidity = Normal,  Wind = Strong, label = ??

1/3 Yes + 1/3 Yes +1/3 No = Yes

Outlook = Sunny, Temp = Hot,  Humidity = ???,  Wind = Strong, label = ??   Normal/High

Other suggestions?
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Other Issues

Attributes with different costs 
 Change information gain so that low cost attribute are 

preferred

 Dealing with features with different # of values

Alternative measures for selecting attributes
 When different attributes have different number of values 

information gain tends to prefer those with many values

Oblique Decision Trees 
 Decisions are not axis-parallel

Incremental Decision Trees induction
 Update an existing decision tree to account  for new 

examples incrementally  (Maintain consistency?) 
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Decision Trees as Features

Rather than using decision trees to represent the target function it 
is becoming common to use small decision trees as features

When learning over a large number of features, learning decision 
trees is difficult and the resulting tree may be very large  

 (over fitting)

Instead, learn small decision trees, with limited depth.

Treat them as “experts”; they are correct, but only on a small 
region in the domain. (what DTs to learn?  same every time?)

Then, learn another function, typically a linear function, over these 
as features. 

Boosting (but also other linear learners) are used on top of the 
small decision trees. (Either Boolean, or real valued features)

72

http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/Lectures/boost-DT.pdf
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Experimental Machine Learning

Machine Learning is an Experimental Field and we 
will spend some time (in Problem sets) learning how 
to run experiments and evaluate results
 First hint: be organized; write scripts

Basics:
 Split your data into two (or three) sets:

 Training data (often 70-90%)

 Test data (often 10-20%)

 Development data (10-20%)

You need to report performance on test data, but you 
are not allowed to look at it.
 You are allowed to look at the development data (and use it 

to tweak parameters)
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N-fold cross validation

Instead of a single test-training split:

Split data into N equal-sized parts 

Train and test N different classifiers

Report average accuracy and standard deviation of 
the accuracy

74

train test
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Evaluation: significance tests

You have two different classifiers, A and B

You train and test them on the same data set using N-
fold cross-validation

For the n-th fold: 
accuracy(A, n), accuracy(B, n)
pn = accuracy(A, n) - accuracy(B, n)

Is the difference between A and B’s accuracies 
significant?
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Hypothesis testing

You want to show that hypothesis H is true, based on 
your data  
 (e.g.  H  = “classifier A and B are different”) 

Define a null hypothesis H0

 (H0 is the contrary of what you want to show)

H0 defines a distribution P(m |H0) over some statistic
 e.g. a distribution over the difference in accuracy between A 

and B

Can you refute (reject) H0?
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Rejecting H0

H0 defines a distribution P(M |H0) over some statistic M
 (e.g. M= the difference in accuracy between A and B)

Select a significance value S 
 (e.g. 0.05, 0.01, etc.)

 You can only reject H0 if P(m |H0) ≤ S

Compute the test statistic m from your data
 e.g. the average difference in accuracy over your N folds

Compute P(m |H0) 

Refute H0 with p ≤ S if P(m |H0) ≤ S
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Paired t-test

Null hypothesis (H0; to be refuted): 
 There is no difference between A and B, i.e. the expected 

accuracies of A and B are the same 

That is, the expected difference (over all possible 
data sets) between their accuracies is 0:

H0: E[pD]  = 0

We don’t know the true E[pD]

N-fold cross-validation gives us N samples of pD
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Paired t-test

Null hypothesis H0: E[diffD]  = μ = 0

m: our estimate of μ based on N samples of diffD

m = 1/N n diffn

The estimated variance S2:  
S2 = 1/(N-1) 1,N (diffn – m)2

Accept Null hypothesis at significance level a if the     

following statistic lies in (-ta/2, N-1, +ta/2, N-1)
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Nm

S
~ tN-1
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Decision Trees - Summary

Hypothesis Space: 
 Variable size (contains all functions)

 Deterministic;  Discrete and Continuous attributes 

Search Algorithm
 ID3 - batch

 Extensions: missing values

Issues:  
 What is the goal? 

 When to stop? How to guarantee good generalization?

Did not address: 
 How are we doing? (Correctness-wise, Complexity-wise)

80


