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CS446: Machine Learning

What do you need to know:

Theory of Computation

Probability Theory

Linear Algebra

Programming  (Java; your favorite language; some Matlab)

Homework 0 – on the web
 No need to submit

Who is the class for?
Future Machine Learning researchers/Advanced users

2

Participate, Ask Questions
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CS446: Policies
Cheating

No.  

We take it very seriously.   

Homework:
 Collaboration is encouraged

 But, you have to write your own solution/program.

 (Please don’t use old solutions)

Late Policy: 
You have a credit of 4 days (4*24hours); That’s it.

Grading:
 Possibly separate for grads/undergrads.

 5% Quizzes; 25% - homework; 30%-midterm; 40%-final; 

 Projects: 25% (4 hours)

Questions?
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Info page

Note also the Schedule 

Page and our Notes

http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-14/info.html
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CS446 Team
Dan Roth (3323 Siebel)

 Monday, 1-2 PM (or: appointment)

TAs 
 Chase Duncan Tues 12-1 (3333 SC)

 Subhro Roy Wed 4-5 (3333 SC)

 Qiang Ning Thur 3-4 (3333 SC)

 Hao Wu Fri 1-2 (3333 SC)

Discussion Sections: (starting 3rd week) [times/locations not final]

 Tuesday: 11 -12 [3405 SC]  Subhro Roy [A-I]

 Wednesdays: 5 -6  [3405 SC]  Hao Wu  [J-L]

 Thursdays: 2 - 3 [3405 SC]  Chase Duncan  [M-S]

 Fridays: 4 -5 [3405 SC]  Qiang Ning  [T-Z]
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CS446 on the web

Check our class website:
 Schedule, slides, videos, policies

 http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html

 Sign up, participate in our Piazza forum:

 Announcements and discussions

 https://piazza.com/class#fall2017/cs446

 Log on to Compass:

 Submit assignments, get your grades

 https://compass2g.illinois.edu

Scribing the Class [Good writers; Latex; Paid Hourly]
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http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html
https://piazza.com/class#fall2016/cs446
https://compass2g.illinois.edu/
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What is Learning

The Badges Game……
 This is an example of the key learning protocol: supervised 

learning

First question: Are you sure you got it?
 Why?

Issues:
 Prediction or Modeling?

 Representation

 Problem setting

 Background Knowledge

 When did learning take place?

 Algorithm
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http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-16/game.html
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Training data

+ Naoki Abe

- Myriam Abramson

+ David W. Aha

+ Kamal M. Ali

- Eric Allender

+ Dana Angluin

- Chidanand Apte

+ Minoru Asada

+ Lars Asker

+ Javed Aslam

+ Jose L. Balcazar

- Cristina Baroglio

+ Peter Bartlett

- Eric Baum

+ Welton Becket

- Shai Ben-David

+ George Berg

+ Neil Berkman

+ Malini Bhandaru

+ Bir Bhanu

+ Reinhard Blasig

- Avrim Blum

- Anselm Blumer

+ Justin Boyan

+ Carla E. Brodley

+ Nader Bshouty

- Wray Buntine

- Andrey Burago

+ Tom Bylander

+ Bill Byrne

- Claire Cardie

+ John Case

+ Jason Catlett

- Philip Chan

- Zhixiang Chen

- Chris Darken
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The Badges game

Conference attendees to the 1994 Machine Learning 
conference were given name badges labeled with + 
or −.

What function was used to assign these labels? 

+ Naoki Abe - Eric Baum
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Raw test data

Gerald F. DeJong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jiarong Hong

J. R. Quinlan

Priscilla Rasmussen
Dan Roth
Yoram Singer
Lyle H. Ungar
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Labeled test data

+ Gerald F. DeJong
- Chris Drummond
+ Yolanda Gil
- Attilio Giordana
+ Jiarong Hong
- J. R. Quinlan

- Priscilla Rasmussen
+ Dan Roth
+ Yoram Singer
- Lyle H. Ungar
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What is Learning

The Badges Game……
 This is an example of the key learning protocol: supervised 

learning

First question: Are you sure you got it right?
 Why?

Issues:
 Prediction or Modeling?

 Representation

 Problem setting

 Background Knowledge

 When did learning take place?

 Algorithm
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http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-15/game.html
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Output

y∈Y
An item y

drawn from an 
output space Y

Input

x∈X
An item x

drawn from an 
input space X

System 
y = f(x)

Supervised Learning

We consider systems that apply a function f() 
to input items x and return an output y = f(x).

12
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Output

y∈Y
An item y

drawn from an 
output space Y

Input

x∈X
An item x

drawn from an 
input space X

System 
y = f(x)

Supervised Learning

In (supervised) machine learning, we deal with 
systems whose f(x) is learned from examples.
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Why use learning?

We typically use machine learning when 
the function f(x) we want the system to apply is 
unknown to us, and we cannot “think” about it. The 
function could actually be simple. 

14
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Output

y∈Y

An item y
drawn from a label 

space Y

Input

x∈X

An item x
drawn from an 

instance space X

Learned Model
y = g(x)

Supervised learning

Target function

y = f(x)

15
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Supervised learning: Training

Give the learner examples in D train

The learner returns a model g(x)

16

Labeled Training 
Data
D train

(x1, y1)
(x2, y2)

…
(xN, yN) 

Learned 
model

g(x)

Learning 
Algorithm

Can you suggest other 

learning protocols?
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Supervised learning: Testing

Reserve some labeled data for testing

17

Labeled
Test Data

D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M) 
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Supervised learning: Testing

Labeled
Test Data

D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M) 

Test 
Labels
Y test

y’1

y’2

...

y’M

Raw Test 
Data
X test

x’1

x’2

….

x’M
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Test 
Labels
Y test

y’1

y’2

...

y’M

Raw Test 
Data
X test

x’1

x’2

….

x’M

Supervised learning: Testing
Apply the model to the raw test data

Evaluate by comparing predicted labels against the test labels

19

Learned 
model

g(x)

Predicted
Labels

g(X test)
g(x’1)
g(x’2)

….
g(x’M)

Can you use the test 

data otherwise?
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What is Learning

The Badges Game……
 This is an example of the key learning protocol: supervised 

learning

First question: Are you sure you got it?
 Why?

Issues:
 Prediction or Modeling?

 Representation

 Problem setting

 Background Knowledge

 When did learning take place?

 Algorithm
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http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-14/game.html
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Course Overview
Introduction: Basic problems and questions

A detailed example: Linear threshold units

 Online Learning

Two Basic Paradigms:

 PAC (Risk Minimization)

 Bayesian theory

Learning Protocols: 

 Supervised; Unsupervised; Semi-supervised

Algorithms

 Decision Trees (C4.5)

 [Rules and ILP (Ripper, Foil)]

 Linear Threshold Units (Winnow; Perceptron; Boosting; SVMs; Kernels)

 [Neural Networks (Backpropagation)]

 Probabilistic Representations (naïve Bayes;  Bayesian trees; Densities)

 Unsupervised /Semi supervised: EM

Clustering; Dimensionality Reduction

21
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Supervised  Learning

Given: Examples (x,f(x)) of some unknown function f

Find: A good approximation of f

x provides some representation of the input
 The process of mapping a domain element into a 

representation is called Feature Extraction. (Hard; ill-
understood; important)

 x 2 {0,1}n or         x 2 <n

The target function (label) 
 f(x) 2 {-1,+1} Binary Classification  

 f(x) 2 {1,2,3,.,k-1} Multi-class classification 

 f(x) 2 < Regression 

22
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Supervised  Learning : Examples

Disease diagnosis  
 x: Properties of patient (symptoms, lab tests)

 f : Disease (or maybe: recommended therapy)

Part-of-Speech tagging  
 x: An English sentence (e.g., The can will rust)

 f : The part of speech of a word in the sentence

Face recognition 
 x: Bitmap picture of person’s face

 f : Name the person (or maybe: a property of)

Automatic Steering
 x: Bitmap picture of road surface in front of car

 f : Degrees to turn the steering wheel 

Many problems 
that do not seem 
like classification 
problems can be 
decomposed to 
classification 
problems. E.g, 
Semantic Role 
Labeling 

23

http://l2r.cs.uiuc.edu/~cogcomp/srl-demo.php
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Key Issues in Machine Learning

Modeling
 How to formulate application problems as machine 

learning problems ?  How to represent the data?
 Learning Protocols (where is the data & labels coming 

from?) 

Representation
 What functions should we learn (hypothesis spaces) ? 
 How to map raw input to  an instance space?
 Any rigorous way to find these? Any general approach?

Algorithms
 What are good algorithms? 
 How do we define success? 
 Generalization Vs. over fitting
 The computational problem

24
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Using supervised learning

What is our instance space?
 Gloss: What kind of features are we using?

What is our label space?
 Gloss: What kind of learning task are we dealing with?

What is our hypothesis space?
 Gloss: What kind of functions (models) are we learning?

What learning algorithm do we use?
 Gloss: How do we learn the model from the labeled data?

What is our loss function/evaluation metric?
 Gloss: How do we measure success? What drives learning?

25
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Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned
Model
y = g(x)

1. The instance space X

Designing an appropriate instance space X 
is crucial for how well we can predict y.

26
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1. The instance space X

When we apply machine learning to a task, we first 
need to define the instance space X.
Instances x∈X are defined by features:

 Boolean features:

 Does this email contain the word ‘money’?  

 Numerical features: 

 How often does ‘money’ occur in this email? 

 What is the width/height of this bounding box?

 What is the length of the first name?

27
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What’s X for the Badges game?

Possible features:

• Gender/age/country of the person?

• Length of their first or last name?

• Does the name contain letter ‘x’? 

• How many vowels does their name contain? 

• Is the n-th letter a vowel? 

28
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X as a vector space

X is an N-dimensional vector space (e.g. <N) 

 Each dimension = one feature.

Each x is a feature vector (hence the boldface x).

Think of x = [x1 … xN] as a point in X :

29

x1

x2
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Good features are essential

The choice of features is crucial for how well a task 
can be learned.
 In many application areas (language, vision, etc.),  a lot of 

work goes into designing suitable features.

 This requires domain expertise.

CS446 can’t teach you what specific features 
to use for your task.
 But we will touch on some general principles

31
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Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned 
Model
y = g(x)

2. The label space Y

The label space Y determines what kind of 
supervised learning task we are dealing with

32
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The focus of CS446. 
But…

Supervised learning tasks I

Output labels y∈Y are categorical:
 Binary classification: Two possible labels

 Multiclass classification: k possible labels

 Output labels y∈Y are structured objects (sequences of 
labels, parse trees, etc.)

 Structure learning

33
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Supervised learning tasks II

Output labels y∈Y are numerical:
 Regression (linear/polynomial): 

 Labels are continuous-valued 

 Learn a linear/polynomial function f(x)

 Ranking: 

 Labels are ordinal 

 Learn an ordering f(x1) > f(x2) over input

34
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Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned 
Model
y = g(x)

3. The model g(x)

We need to choose what kind of model 
we want to learn

35
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A Learning Problem

y  = f (x1, x2, x3, x4)
Unknown

function

x1

x2

x3

x4

Example x1 x2 x3 x4     y

1 0     0     1     0     0

3 0     0     1     1     1

4          1      0     0     1     1

5 0      1    1     0     0

6 1      1    0     0     0

7 0      1     0     1    0

2 0     1     0     0     0
Can you learn this function?

What is it? 
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Hypothesis Space

Complete Ignorance: 
There are 216 = 65536 possible functions 
over four input features.

We can’t figure out which one is 

correct until we’ve seen every 

possible input-output pair. 

After observing seven examples we still

have 29 possibilities for f

Is Learning Possible?

Example x1 x2 x3 x4     y

1     1     1     1     ?

0     0     0     0     ?

1     0     0     0     ?

1     0     1     1     ?
1     1     0     0     0
1     1     0     1     ?

1     0     1     0     ?
1     0     0     1     1

0     1     0     0     0
0     1     0     1 0
0     1     1     0 0
0     1     1     1     ?

0     0     1     1 1
0     0     1     0  0
0     0     0     1     ?

1     1     1     0     ?

37

 There are |Y||X| possible 
functions f(x) from the instance 
space X to the label space Y. 

 Learners typically consider only 
a subset of the functions from X
to Y, called the hypothesis 
space H . H ⊆|Y||X|
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Hypothesis Space (2)

Simple Rules: There are  only 16 simple conjunctive rules 

of the form     y=xi Æ xj Æ xk

No simple rule explains the data. The same is true for simple clauses.

1 0     0     1     0     0

3 0     0     1     1   1
4           1    0    0    1     1
5 0      1    1     0     0
6 1      1    0     0     0
7 0      1     0     1    0

2 0     1     0     0     0

y=c

x1 1100  0

x2 0100  0

x3 0110  0

x4 0101  1

x1  x2 1100   0

x1   x3 0011  1

x1  x4 0011  1

Rule               Counterexample

x2  x3 0011  1

x2  x4 0011  1

x3  x4 1001  1

x1  x2  x3 0011 1

x1  x2  x4 0011 1

x1  x3  x4 0011 1

x2  x3  x4 0011 1

x1  x2  x3  x4 0011 1

Rule               Counterexample

38
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Notation: 2 variables from the set on the 
left. Value: Index of the counterexample.

Hypothesis Space (3)

m-of-n rules: There are 32 possible rules 

of the form ”y = 1  if and only if at least m 

of the following n variables are 1”

Found a consistent hypothesis.

1 0     0     1     0     0

3 0     0     1     1   1
4           1      0     0     1     1
5 0      1    1     0     0
6 1      1    0     0     0
7 0      1     0     1    0

2 0     1     0     0     0

x1 3      - - -

x2 2      - - -

x3 1      - - -

x4 7      - - -

x1,x2 2      3      - -

x1, x3 1      3      - -

x1, x4 6      3      - -

x2,x3 2     3      - -

variables         1-of 2-of 3-of 4-of

x2, x4 2      3      - -

x3, x4 4      4       - -

x1,x2, x3 1      3       3      -

x1,x2, x4 2      3       3      -

x1,x3,x4 1      3      -

x2, x3,x4 1      5       3      -

x1, x2, x3,x4 1      5       3      3

variables         1-of 2-of 3-of 4-of

39

Don’t worry, this function is 
actually a neural network…
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Views of Learning

Learning is the removal of our remaining uncertainty: 
 Suppose we knew that the unknown function was an m-of-n 

Boolean function, then we could use the training data to 
infer which function it is.

Learning requires guessing a good, small hypothesis 
class: 

 We can start with a very small class and enlarge it until it 
contains an hypothesis that fits the data.

We could be wrong !
 Our prior knowledge might be wrong:   

 y=x4   one-of (x1, x3) is also consistent

 Our guess of the hypothesis space could be wrong

If this is the unknown function, then we will make errors when 
we are given new  examples, and are asked to predict the value 
of the function

40
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General strategies for Machine 
Learning

Develop flexible hypothesis spaces: 
 Decision trees, neural networks, nested collections.

Develop representation languages for restricted 
classes of functions:
 Serve to limit the expressivity of the target models

 E.g., Functional representation (n-of-m); Grammars; linear 
functions; stochastic models; 

 Get flexibility by augmenting the feature space 

In either case:

Develop algorithms for finding a hypothesis in our 
hypothesis space, that fits the data 

And hope that they will generalize well

41
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CS446 Team
[updated 1/24/17]

Dan Roth (3323 Siebel)

 Monday 1-2 (or: appointment)

TAs 
 Chase Duncan Tues 12-1 (3333 SC)

 Subhro Roy Wed 4-5 (3333 SC)

 Qiang Ning Thur 3-4 (3333 SC)

 Hao Wu Fri 1-2 (3333 SC)

Discussion Sections: (starting next week)

 Monday: 4 -5 [3405 SC]  Chase Duncan[A-I]

 Wednesdays: 5 -6  [3405 SC]  Hao Wu  [J-L]

 Thursdays: 4 - 5 [3405 SC]  Subhro Roy[M-S]

 Fridays: 4 -5 [3405 SC]  Qiang Ning  [T-Z]
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CS446 on the web

Check our class website:
 Schedule, slides, videos, policies

 http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html

 Sign up, participate in our Piazza forum:

 Announcements and discussions

 https://piazza.com/class#fall2017/cs446

 Log on to Compass:

 Submit assignments, get your grades

 https://compass2g.illinois.edu

Scribing the Class [Good writers; Latex; Paid Hourly]

45

http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html
https://piazza.com/class#fall2016/cs446
https://compass2g.illinois.edu/
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Administration 

Registration [Ask NOW]

Hw0: Solution will be released today

Hw1 will be out tomorrow 

 Please start working on it as soon as possible; 

 Discussion sessions will start next week; come ready with questions 

Projects

 Small (2-3) groups; your choice of a topic.

 25% of the grade  needs to be a substantial project 

 Extra credit for undergrads

Quiz 1: Avg. score: 4.51/5

 Only 165 of you attempted it (???)  

46

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw0/hw0.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw1/hw1.pdf
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An Example

I don’t know {whether, weather} to laugh or cry

How can we make this a learning problem?

We will look for a function 

F: Sentences {whether, weather}

We need to define the domain of this function better.

An option: For each word w in English define a Boolean feature xw :  

[xw =1] iff w is in the sentence

This maps a sentence to a point in {0,1}50,000

In this space:   some points are whether points

some are weather points Learning Protocol?

Supervised? Unsupervised?

This is the Modeling Step

47

What is the hypothesis space? 
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Representation Step: What’s 
Good? 

Learning problem: 
Find a function that 

best separates the data

What function?

What’s best?

(How to find it?)

A possibility: Define the learning problem to be:         
A (linear) function that best separates the data

Linear = linear in the feature space

x= data representation; w = the classifier

y = sgn {wTx}

48

Memorizing vs. Learning

Accuracy vs. Simplicity

How well will you do?

On what? 

Impact on Generalization
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Expressivity  

f(x) = sgn {x ¢ w - } = sgn{i=1
n wi xi -  }

Many functions are Linear 
 Conjunctions:

 y = x1 Æ x3 Æ x5                                        

 y = sgn{1 ¢ x1 + 1 ¢ x3 + 1 ¢ x5 - 3};             w = (1, 0, 1, 0, 1) =3

 At least m of n:

 y = at least 2 of {x1 ,x3, x5 }       

 y = sgn{1 ¢ x1 + 1 ¢ x3 + 1 ¢ x5 - 2} };           w = (1, 0, 1, 0, 1) =2

Many functions are not
 Xor: y = x1 Æ x2   Ç :x1 Æ :x2

 Non trivial DNF: y = x1 Æ x2   Ç x3 Æ x4

But can be made linear

Probabilistic Classifiers as well

49
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Functions Can be Made Linear

Data are not linearly separable in one dimension

Not separable if you insist on using a specific class of 
functions

x

50
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Blown Up Feature Space

Data are separable in <x, x2> space

x

x2

Key issue: Representation:

what features to use.

Computationally, can be 
done implicitly  (kernels) 

Not always ideal.

51
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Exclusive-OR  (XOR)

(x1 Æ x2) Ç (:{x1} Æ :{x2})

In general: a parity function.

xi 2 {0,1}

f(x1, x2,…, xn) = 1 

iff  xi is even

This function is not 

linearly separable.

x1

x2

52
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Functions Can be Made Linear
Discrete Case

Weather

Whether

y3 Ç y4 Ç y7
New discriminator is 
functionally simpler

A real Weather/Whether 
example

53

x1 x2 x4 Ç x2 x4 x5 Ç x1 x3 x7

Space: X= x1, x2,…, xn

Input Transformation

New Space: Y = {y1,y2,…} = {xi,xi xj, xi xj xj,…}

http://cogcomp.cs.illinois.edu/Data/Spell/
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Third Step: How to Learn? 

A possibility: Local search
 Start with a linear threshold function. 

 See how well you are doing.

 Correct

 Repeat until you converge.

There are other ways that

do not search directly in

the hypotheses space
 Directly compute the 

hypothesis

54
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A General Framework for 
Learning

Goal: predict an unobserved output value y 2 Y 
based on an observed input vector x  2 X

Estimate a functional relationship y~f(x) 
from a set  {(x,y)i}i=1,n

Most relevant - Classification: y  {0,1} (or y  {1,2,…k} )
 (But, within the same framework can also talk about Regression, y 2 < )

What do we want f(x) to satisfy? 
 We want to minimize the Risk:  L(f()) = E X,Y( [f(x)y] )
 Where: E X,Y denotes the expectation with respect to the true 

distribution.

Simple loss function: # of mistakes
[…] is a indicator function
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A General Framework for 
Learning (II)

We want to minimize the Loss:  L(f()) = E X,Y( [f(X)Y] )
Where: E X,Y denotes the expectation with respect to the true 
distribution.

We cannot minimize this loss  

Instead, we try to minimize the empirical classification error. 

For a set of training examples {(xi,yi)}i=1,n

Try to minimize:             L’(f()) = 1/n i [f(xi)yi]

 (Issue I: why/when is this good enough? Not now)

This minimization problem is typically NP hard. 
To alleviate this computational problem, minimize a new function – a 
convex upper bound of the classification error function

I(f(x),y) =[f(x) y] = {1 when f(x)y; 0 otherwise} 

Side note: If the distribution over X£Y is known, 
predict:         y = argmaxy P(y|x)
This is the best possible (the optimal Bayes' error).
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Algorithmic View of Learning: an 
Optimization Problem

A Loss Function L(f(x),y) measures the penalty 
incurred by a classifier f on example (x,y).

There are many different loss functions one could 
define:
 Misclassification Error:

L(f(x),y) = 0 if f(x) = y;       1 otherwise
 Squared Loss:

L(f(x),y) = (f(x) – y)2

 Input dependent loss:

L(f(x),y) = 0 if f(x)= y;     c(x)otherwise.

A continuous convex loss 
function allows a simpler 
optimization algorithm.

f(x) –y

L
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Loss

Here f(x) is the prediction 2 <

y 2 {-1,1} is the correct value
0-1 Loss     L(y,f(x))= ½ (1-sgn(yf(x)))
Log Loss     1/ln2 log (1+exp{-yf(x)})
Hinge Loss L(y, f(x)) = max(0, 1 - y  f(x))

Square Loss L(y, f(x)) = (y - f(x))2

0-1 Loss     x axis = yf(x)
Log Loss =  x axis = yf(x) 
Hinge Loss: x axis = yf(x) 
Square Loss: x axis = (y - f(x)+1)
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Example

Putting it all together:

A Learning Algorithm
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Third Step: How to Learn? 

A possibility: Local search
 Start with a linear threshold function. 

 See how well you are doing.

 Correct

 Repeat until you converge.

There are other ways that

do not search directly in

the hypotheses space
 Directly compute the 

hypothesis
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Learning Linear Separators (LTU)  

f(x) = sgn {xT ¢ w - } = sgn{i=1
n wi xi -  }

xT= (x1 ,x2,… ,xn) 2 {0,1}n

is the feature based 

encoding of the data point

wT= (w1 ,w2,… ,wn) 2 <n

is the target function. 

 determines the shift

with respect to the origin

w


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Canonical Representation

f(x) = sgn {wT ¢ x - } = sgn{i=1
n wi xi -  }

sgn {wT ¢ x - }  ´ sgn {(w’)T ¢ x’} 

Where: 

 x’ = (x, -1)  and w’ = (w, ) 

Moved from an n dimensional representation to an 
(n+1) dimensional representation, but now can look 
for hyperplanes that go through the origin.
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General Learning Principle 

Our goal is to find a w that 

minimizes the expected risk

J(w) = E X,Y Q(x, y, w) 

We cannot do it.  

Instead, we  approximate J(w) 

using a finite training set of 

independent samples (xi, yi) 

J(w) ~=~ 1/m 1,m Q(xi ,yi, w) 

To find the minimum, we use a

batch gradient descent algorithm

That is, we successively compute 

estimates wt of the optimal parameter vector w:

wt+1 = wt - r J(w) = wt - 1/m 1,m r Q(xi ,yi, w) 

w



63

The loss: a function of xT, w and y
The Risk: a 

function of w 
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Gradient Descent

We use gradient descent to determine the weight vector that 
minimizes J(w) = Err (w) ;

Fixing the set D of examples, J=Err is a function of wj

At each step, the weight vector is modified in the direction that 

produces the steepest descent along the error surface.

J(w)

w
w4 w3 w2 w1
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Our Hypothesis Space is the collection of Linear Threshold Units

Loss function:       

 Squared loss: LMS  (Least Mean Square, L2)

 Q(x, y, w) = ½ (wT x – y)2

LMS: An Optimization Algorithm

w


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LMS: An Optimization Algorithm

(i  (subscript) – vector component;    j  (superscript) - time; d – example #)

Let   w(j) be the current weight vector we have

Our prediction on the d-th example x is:

Let  td be the target value for this example (real value; represents u ¢ x)

The error the current hypothesis makes on  the data set is:

xwxwo (j)

ii

j

id


==

2

d

Dd

d

(j) )o-(t
2

1
)w Err(  J(w) 



==


Assumption: x 2 Rn; u 2 Rn is the target weight vector; 

the target (label) is td = u ¢ x Noise has been added; so, 

possibly, no weight vector is consistent with the data.  
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Gradient Descent

To find the best direction in the weight space we 
compute the gradient of E with respect to each of the 
components of

This vector specifies the direction that produces the 
steepest increase in E;

We want to modify         in the direction of 

Where (with a fixed step size R):

w
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Gradient Descent: LMS

We have:

Therefore:
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Gradient Descent: LMS

Weight update rule:

Gradient descent algorithm for training linear units:
 Start with an initial random weight vector

 For every example d with target value td  do: 

 Evaluate the linear unit

 Update      by adding         to each component

 Continue until E below some threshold
This algorithm always converges to a local minimum of J(w), for small enough steps. 
Here (LMS for linear regression), the surface contains only a single global minimum, 
so the algorithm converges to a  weight vector with minimum error, regardless of 
whether the examples are linearly separable.

The surface may have local minimum if the  loss function is different.

      

idd

Dd

di )xo(tRw = 


iw
didi id xwxwo


==

w

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Weight update rule:

Gradient descent algorithm for training linear units:
 Start with an initial random weight vector

 For every example d with target value td  do: 

 Evaluate the linear unit

 update      by  incrementally by adding          to each 
component  (update without summing over all data)

 Continue until E below some threshold 

Incremental (Stochastic) 
Gradient Descent: LMS

      

idddi )xoR(tw =
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didi id xwxwo


==
w


iw

Dropped the averaging operation.
Instead of averaging the gradient of 
the loss over the complete training 

set, choose at random a sample 
(x,y) (or a subset of examples) and 

update wt
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Incremental (Stochastic) 
Gradient Descent: LMS

      

idddi )xoR(tw =
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Weight update rule:

Gradient descent algorithm for training linear units:
 Start with an initial random weight vector

 For every example d with target value:

 Evaluate the linear unit

 update      by  incrementally adding         to each component  
(update without summing over all data)

 Continue until E below some threshold 

In general - does not converge to global minimum

Decreasing R with time guarantees convergence  

But, on-line algorithms are sometimes advantageous…

    dt

didi id xwxwo


==
w


iw

Dropped the averaging operation.
Sometimes called “on-line” since 

we don’t need a reference to a 
training set: 

observe – predict – get feedback.
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In the general (non-separable) case the learning rate 
R must decrease to zero to guarantee convergence.

The learning rate is called the step size. There are 
more sophisticated algorithms that choose the step 
size automatically and converge faster. 

Choosing a better starting point also has impact. 

The gradient descent and its stochastic version are 
very simple algorithms, but almost all the algorithms 
we will learn in the class can be traced back to 
gradient decent algorithms for different loss 
functions and different hypotheses spaces. 

Learning Rates and Convergence
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Computational Issues

Assume the data is linearly separable.

Sample complexity:
 Suppose we want to ensure that our LTU has an error rate (on new 

examples) of less than  with high probability (at least (1-))

 How large does m (the number of examples) must be in order to achieve 
this ? It can be shown that for n dimensional problems

m = O(1/  [ln(1/ ) + (n+1) ln(1/ ) ].

Computational complexity: What can be said?
 It can be shown that there exists a polynomial time algorithm for finding  

consistent LTU (by reduction from linear programming). 

 [Contrast with the NP hardness for 0-1 loss optimization]

 (On-line algorithms have inverse quadratic dependence on the margin)
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Other Methods for LTUs

Fisher Linear Discriminant:
 A direct computation method

Probabilistic methods (naïve Bayes):
 Produces a stochastic classifier that can be viewed as a 

linear threshold unit.

Winnow/Perceptron
 A multiplicative/additive update algorithm with some 

sparsity properties in the function space (a large number of 
irrelevant attributes) or features space (sparse examples)

Logistic Regression, SVM…many other algorithms
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