
CS 446 Machine Learning Fall 2016 Nov 10, 2016

Semi-Supervised Learning
Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes

Overview

• Semi-Supervised Learning

• Expectation Maximization

• K-Means Algorithm

1 Semi-Supervised Learning

Consider the problem of prepositional phrase attachment; we want to predict
to which preceding phrase a prepositional phrase attaches, as in

Buy car with money.

Buy car with wheels.

In this setting, each sentence has four features (one for each word) and our goal
is to predict whether to attach the preposition (”with”) to the verb (”buy”)
or the noun (”car”). Let us further expand the feature space to include all
conjunctions, resulting in 15 total features.

In the Naive Bayes setting, we want to predict noun or verb, given our features
([x1...x15]). Therefore, we must estimate

P (n) P (v)
P (x1|n) P (x1|v)

...
P (xn|n) P (xn|v)

Note that there are two values for each cell in the column (ex. P (x1|n = 1) and
P (x1|n = 0)).

Now, given an example (x1, x2...xn, ?), we compare

P (n|x) = P (n)P (x1|n)...P (xn|n)

P (v|x) = P (v)P (x1|v)...P (xn|v).

and predict the label with the highest probability.

Consider that after seeing 10 examples, we have

Semi-Supervised Learning-1

P (n) = 0.5 P (v) = 0.5
P (x1|n) = 0.75 P (x1|v) = 0.25
P (x2|n) = 0.5 P (x2|v) = 0.25
P (x3|n) = 0.5 P (x3|v) = 0.75
P (x4|n) = 0.5 P (xn|v) = 0.5

If now we have an example of x = [1000], we have

P (n|x) = 0.5 ∗ 0.75 ∗ 0.5 ∗ 0.5 ∗ 0.5 = 3
64

P (v|x) = 0.5 ∗ 0.25 ∗ 0.75 ∗ 0.25 ∗ 0.5 = 3
256

According to Naive Bayes, we then compare these two numbers and predict that
the label for this example is n.

1.1 Incorporating Unlabeled Data

Consider that – in addition to the 10 labeled examples, above – we are given
100 unlabeled examples. Intuitively, we might expect that these new examples
might help us train our model, even without labels, and we therefore must
consider how best to use these unlabeled examples.

In this setting, our goal is to assign labels to the unlabeled examples and re-
train our model, repeating the process until some convergence criteria. When
considering methods to assign labels, we have several options.

Option 1
Make predictions on (some of) the unlabeled data, using a probability threshold
to determine how many examples to use (ex. retain only those labelings with
probability > 80%). Ideally, the examples we keep (and then retrain on) are
the highest confidence ones.

Option 2
Assume we have some similarity function over the data. We can further as-
sume that similar examples have similar labels, which enables us to propagate
labels; each unlabeled example that is sufficiently similar to a labeled example
is assigned that label.

Option 3
Importantly, we can relax our predictions, saying instead that x has label n
with probability

Pn(x)

Pn(x) + Pv(x)

and has label v with probability

Pv(x)

Pn(x) + Pv(x)

Semi-Supervised Learning-2

We can then train Naive Bayes as before, because Naive Bayes does not require
integers. During training, probabilities can be estimated using fractional label
counts.

2 Algorithms

In the previous section, Option 1 and Option 3 are quite similar, and suggest
the following algorithms:

Use a threshold, chose examples labeled with high confidence; label them
and retrain

Label the examples with fractional labels and then retrain

Both can be used iteratively and both can be used with other classifiers (there is
no restriction to Naive Bayes). The only requirement is we must have a robust
confidence measure in the classification.

These two approaches correspond to Hard EM and Soft EM, respectively; in
the former, we make a hard labeling decision at each step – we commit to a
label – but in the latter we only commit to a distribution.

There are other approaches to semi-supervised learning as well; co-training,
bootstrapping, graph-based algorithms that invent some notion of similarity
and propagate labels.

3 Expectation Maximization (Coins)

Expectation Maximization (EM) is a class of algorithms used to estimate prob-
ability distributions in the presence of missing attributes.

In order to run the algorithm, we must make an assumption about the under-
lying probability distribution. In the Naive Bayes example, above, we assumed
that the two labels were binomial.

EM is sensitive to this initial assumption. Typically it is run multiple times
under different initial conditions to account for this.

3.1 Three Coin Example

Consider we have three coins, such that the probability of a head is given
as

Coin 0: P (h) = α

Coin 1: P (h) = p

Semi-Supervised Learning-3

Coin 2: P (h) = q

Consider the following scenarios

Scenario 1
Toss one of the coins four times, observing: HHTH.

Question: Which coin is more more likely to produce this sequence?

Solution: Trivial; choose coin 0, 1, or 2 based on whether α, p, or q is closest to
0.75, respectively.

Scenario 2
Toss coin 0. If heads, toss coin 1; if tails, toss coin 2. We observe

HHHHT

THTHT

HHHHT

HHTTH

where the first toss in each sequence (bold) corresponds to coin 0, and the others
correspond to coin 1 or 2.

Question: What are the most likely values for α, p, and q?

Solution: First calculate α (0.75), and then estimating p and q is trivial.

Scenario 3
Toss coin 0. If heads, toss coin 1; if tails, toss coin 2. We observe

?HHHT

?HTHT

?HHHT

?HTTH

Question: What are the most likely values for α, p, and q?

Solution: Since we no longer have the label for coin 0, there exists no known
analytic solution (in the general case).

3.2 Intuition

In Scenario 3 from the previous section, if we knew which example came from
which coin (as in Scenario 2), we could simply find the maximum likelihood
estimates.

Since we lack such labels, however, we must use the following iterative approach
to estimate the parameters.

Semi-Supervised Learning-4

1. Guess the probability that a given example came from coin 1 or 2, and
generate fictional labels weighted according to that probability

2. Estimate the most likely value of the parameters

3. Compute the likelihood of the data, given these parameters

4. Re-estimate the parameters, maximizing the likelihood of the data

The core intuition here is that if we have parameters we can predict labels, and
if we have labels we can estimate parameters. This iterative process can be
shown to converge to a local maximum of the likelihood function.

3.3 Algorithm

Assume that we know the parameters p̃, q̃, α̃ (we guess them to start). Let’s
further assume that we have n data points, in each there are m tosses and h
heads.

The probability that the ith data point come from coin 1 is given by

P i1 = P (coin 1|Di)

=
P (Di|coin 1)P (coin 1)

P (Dj)

=
α̃p̃h(1− p̃)m−h

α̃p̃h(1− p̃)m−h + (1− α̃)q̃h(1− q̃)m−h

(1)

This process – determining P i1 – is known as the Expectation Step.

We must now compute the log likelihood of the data, and in so doing find
parameters to maximize it.

LL =

n∑
1

logP (Di|p, q, α)

However, we do not observe all the data. The label of the coin is hidden, and
we thus must marginalize over the possible coins (labels). This results in

LL =

n∑
i=1

log
∑
y=0,1

P (Di, y|p, q, α)

where y is the label we don’t see.

We cannot maximize this directly, however, because there is a summation inside
the log. In EM, we circumvent this limitation by using the expectation of the
log likelihood under the posterior distribution of the the latent variable y.

Semi-Supervised Learning-5

In this setting, we consider the expectation1 under y to be given by

Ey[P (Di|p, q, α)] =
∑
y=0,1

P (Di|p, q, α)P (y|Di, p, q, α)

In effect, we are considering the probability of the data D – given parameters p,
q, and α – to be a random variable that depends on the value y of the coin on
the ith toss. This enables us maximize the expectation of this random variable,
rather than maximizing the log likelihood directly.

To see why this is the case, consider Jensen’s Inequality

LL =

n∑
i=1

log
∑
y=0,1

P (Di, y|p, q, α)

=

n∑
i=1

log
∑
y=0,1

P (Di|p, q, α)P (y|Di, p, q, α)

=

n∑
i=1

logEyP (Di|p, q, α)

≥
n∑
i=1

Ey logP (Di|p, q, α)

(2)

The last line is of particular note, stating that the sum of the log of the ex-
pectation of the random variable provides an upper bound for the sum of
the expectation of the log values of that random variable. Put another way,
given random variable X, the inequality enables us to move the summation
(implicit in computing expectation) outside of the log, since

∑
log(E[X]) ≥∑

E[log(X)].

Now we maximize an upper bound, rather than maximizing the true value, over

1Recall that the expected value of a random variable is the average value of that variable
after repeated experiments

Semi-Supervised Learning-6

the coin’s label, y.

E[LL] = E

[
n∑
i=1

logP (Di|p, q, α)

]

=

n∑
i=1

E
[
logP (Di|p, q, α)

]
=

n∑
i=1

P i1 logP (Di, 1|p, q, α) + (1− P i1) logP (Di, 0|p, q, α)

=

n∑
i=1

P i1 log(α̃p̃hi(1− p̃)m−hi) + (1− P i1) log((1− α̃)q̃hi(1− q̃)m−hi)

=

n∑
i=1

P i1(log α̃+ hi log p̃+ (m− h1) log(1− p̃))+

(1− P i1)(log(1− α̃) + hi log q̃ + (m− h1) log(1− q̃))
(3)

Finally, we can derive the most likely parameters by maximizing the derivatives
with respect to p̃, q̃, α̃.

∂E

∂α̃
=

n∑
i=1

(
P i1
α̃
− 1− P i1

1− α̃

)
α̃ =

1

n

∑
i

P i1

∂E

∂p̃
=

n∑
i=1

P i1(
hi
p̃
− m− hi

1− p̃
)

p̃ =

∑
P i1

hi

m∑
P i1

∂E

∂q̃
=

n∑
i=1

(1− P i1)(
hi
q̃
− m− hi

1− q̃
)

q̃ =

∑
(1− P i1)hi

m∑
(1− P i1)

(4)

Essentially, these values correspond to

α: average of the probabilities that the ith example came from α

p: the number of heads in the ith example, weighted by the probability
that these came from coin 1

q: same as p, or the weighted sum of the observations

as before, we are fixing P i1 as a constant in order to differentiate.

This procedure can be referred to as the maximization step.

Semi-Supervised Learning-7

4 EM Algorithm (General)

Assume two sets – X and Y – and a joint distribution P (X,Y |θ).

If we had fully observed data – (Xi, Yi) pairs – then we can find the likelihood
of the parameters according to

L(θ) =
∑
i

logP (Xi, Yi|θ)

In the EM setting, however, we assume only partially observed data –Xi without
the corresponding Yi – as in the above example, where we saw the coin tosses
without knowing which coin produced them.

Under this framework, we define the likelihood of our parameters θ as

L(θ) =
∑
i

logP (Xi|θ) =
∑
i

log
∑
Y ∈Y

P (Xi, Y |θ)

In EM, we find the best parameters by finding

θML = argmax
θ

∑
i

log
∑
Y ∈Y

P (Xi, Y |θ)

EM is a general purpose algorithm for finding the maximum likelihood estimates
in latent variable models, iterating over expectation (E-step) and maximization
(M-step). In the E-step, we fill in the latent variables using the posterior, and
in the M-step we maximize the expected complete log likelihood with respect
to the complete posterior distribution.

4.1 Setup

Let D = (x1, x2...xn) be the observed data, let z denote the hidden (latent)
random variable2, and let θ be the model parameters. Then

θ∗ = argmax
θ

P (x|θ)

= argmax
θ

∑
z

P (x, z|θ)

= argmax
θ

∑
z

(P (z|θ)P (x|z, θ))

(5)

We refer to this expression as the complete log likelihood.

2Random variable z could be a vector – that is, a set of latent variables – rather than a
single value; EM is general enough to handle this setting as well

Semi-Supervised Learning-8

To derive the EM objective function, we re-write the complete log likelihood

function by multiplying it by q(z)
q(z) where q(z) is an arbitrary distribution for the

random variable z.

log p(x|θ) = log
∑
z

p(x, z|θ)

= log
∑
z

p(z|θ)p(x|z, θ)q(z)/q(z)

= logEq[p(z|θ)p(x|z, θ)/q(z)]
≥ Eq log[p(z|θ)p(x|z, θ)/q(z)]

(6)

Recall that the last line is given by Jensen’s Inequality, where we know – because
log is a concave function – that the log of a function will always be greater than
or equal to the average (expectation) of that function.

Now we get the objective:

L(θ, q) = Eq[log p(z|θ)] + Eq[log p(x|z, θ)]− Eq[log q(z)]

where the last component of the objective is an entropy component. It is also
possible to write the objective function so that it includes KL-divergence (a
distance function between distributions) between q(z) and p(z|x, θ).

4.2 Procedure

We can now consider EM to be an iterative, gradient ascent algorithm, where q
is the posterior function

q = p(z|x, θ)

Thus, at time t (the tth step), we have qt and θt.

E-Step
Update posterior, q, while fixing θt

qt+1 = argmax
q

L(q, θt) = p(z|x, θ(t))

M-Step
Update parameters to maximize the expected compete log-likelihood

θt+1 = argmax
θ

L(qt+1, θ)

Semi-Supervised Learning-9

With the right q, we have:

L(θ, q) = Eq log[p(z|θ)p(x|z, θ)/q(z)]

=
∑
z

p(z|x, θ) log[p(x, z|θ/p(z|x, θ)]

=
∑
z

p(z|x, θ) log[p(x, z|θ)p(x|θ)/p(z, x|θ)]

=
∑
z

p(z|x, θ) log[p(x|θ)]

= log[p(x|θ)]
∑
z

p(z|x, θ)

= log[p(x|θ)]

(7)

The equation gives an intuition that the algorithm is doing the right thing
because it maximizes the likelihood of the data given the parameters.

Other qs can be chosen to produce variations of EM. For example, rather than
keeping the distribution, we could keep only a label instead. Doing so results in
Hard EM, rather than the above (Soft EM).

In general, the EM procedure is given by

1. Initialize θ as θ0

2. E-Step: use the current θt to find the value of qt+1 (the posterior, in soft
EM)

3. M-Step: use the current qt to find the maximum parameters θt+1

4. Repeat steps 2 and 3 until convergence

5 K-Means

Consider data points that are known to be sampled independently from a mix-
ture of k normal distributions (clusters). K-means is a clustering algorithm for
partitioning these points into groups – or clusters – corresponding to the true
distributions.

Consider the points in Figure 1, where each point comes from a distribution,
labeled as the mean of that distribution (µ1 and µ2 (we assume that each has
the same standard deviation (σ).

In k-means, the general procedure is as follows

1. Start with a set of points, assuming that they come from k clusters

2. Choose k center points (clusters)

Semi-Supervised Learning-10

Figure 1: K-means example

3. Assign each of the points to one of the clusters

4. Recompute the center points (clusters) and repeat

This is a similar procedure to that of Hard-EM; that is, we choose a label for
each example (make a hard assignment), recompute our parameters, and repeat
iteratively. Therefore, we can view k-means as an EM algorithm, even to the
point of relaxing the hard assignments.

5.1 Algorithm

First, if we know that all the data points are taken from a normal distribution
with mean µ, finding its most likely value is easy.

p(x|µ) =
1√

2πσ2
exp[− 1

2σ2
(x− µ)2]

Using the maximum likelihood, we know that the most likely value is the aver-
age.

With many data points D = {x1, x2...xm},

ln(L(D|µ)) = ln(P (D|µ)) =
∑
i

− 1

2σ2
(xi − µ)2

Maximizing the log-likelihood is equivalent to minimizing

µML = argminµ
∑
i

(xi − µ)2

By differentiating this, with respect to µ, we get that the minimal point. That
is, the most likely mean is

µ =
1

m

∑
i

xi

or the average.

Semi-Supervised Learning-11

5.2 A mixture of distributions

As in the coins example, the problem is that data is sampled from a mixture of
k different normal distributions, and we do not know, for a given data point xi,
from which distribution it was sampled.

Now the problem becomes: what is the probability that example xi was sampled
from distribution µj .

Pij = P (µj |xi)

=
P (xi|µj)P (µj)

P (xi)

=
1
kP (x = xi|µ = µj)
k∑

n=1

1
kP (x = xi|µ = µn

=
exp[− 1

2σ2 (xi − µj)2]
k∑

n=1
exp[− 1

2σ2 (xi − µn)2]

(8)

Note that we guessed that there are k distributions (µj clusters).

Now we can introduce k binary hidden variables zi1, zi2...zik such that zij = 1
iff xi is sampled from the jth distribution.

E[zij] = 1∗P (xi was sampled from µj)+0∗P (xi was not sampled from µj) = Pij

Let h = σ, µ1, ...µk, we have

p(yi|h) = p(xi, zi1, ...zik|h) =
1√

2πσ2
exp[− 1√

2σ2

∑
j

zij(xi − µj)2]

Note here that the introduction of zij simply enables us to compactly express
the likelihood.

Given the above, we can now compute the expectation of the likelihood given
D = {x1, x2...xm} and the hypothesis h,

E[ln(P (Y |h))] = E[

m∑
i=1

− 1

2σ2

∑
j

zij(xi − µj)2]

=

m∑
i=1

− 1

2σ2

∑
j

E[zij](xi − µj)2
(9)

Then we want to maximize with respect to µj

Q(h|h′) =

m∑
i=1

− 1

2σ2

∑
j

E[zij](xi − µj)2

Semi-Supervised Learning-12

dQ

dµj
= C

m∑
i=1

E[zij](xi − µj) = 0

which yields

µj =

m∑
i=1

E[zij]xi

m∑
i=1

E[zij]

6 Conclusion

EM is a family of algorithms that can be used as a way to estimate a mixture
of probability distributions. We’ve shown two types of settings in which we can
use EM to estimate the most likely density functions.

EM is very important because in many real-world cases we are missing variables
or labeled data. Note, though, that it requires us to make assumptions about
the distributions we’re trying to learn. If you make good assumptions, EM will
work quite well; if you don’t, it wont.

Consider a dataset: xi ∈ {0, 1}n+1

and a task: given x1...xn, predict x0.

To learn this, we have two options

Parametric
Estimate the model using EM. Once a model is known, use it to make predic-
tions. The limitation is that we cannot use EM directly without an additional
assumption on the way data is generated (we must choose a family of probability
distributions).

Non-Parametric
Learn x0 directly as a function of the other variables. The limitation is that
we do not know which function to try and learn (we must choose a hypothesis
class).

Let’s assume a variable z with k values 1 ≤ z ≤ k with probability αz
k∑
1
αz = 1.

Now that we know the value of z, let’s call this value x0. Now we choose values
for each one of the other variables xi according to probability P zi (0 otherwise);
each xi is independent from each other.

x0 turns out to be a linear function of the other variables when k = 2. When
k is known, the EM approach performs well. If an incorrect value is assumed,
the estimation fails, then the linear methods performs better.

Semi-Supervised Learning-13

