
CS 446 Machine Learning Fall 2016 Nov 01, 2016

Bayesian Learning
Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes

Overview

• Bayesian Learning

• Naive Bayes

• Logistic Regression

1 Bayesian Learning

So far, we’ve discussed the paradigm of error driven learning, where our the
core concept was to learn a hypothesis, make mistakes, correct the hypothe-
sis, and repeat. Now we consider the probabilistic learning paradigm, which –
rather than being driven by errors – is driven by hypothesis based on certain
probabilistic assumptions.

1.1 Discriminitive vs. Generative Learning

Consider a distribution D over space X×Y (instance cross labels). We can think
of the data generation process as D(x) and the label process as D(y|x).

D(x, y) = D(x)D(y|x)

If we know D, there is no learning; we just compute the most probably label. So
far, we’ve been interested in finding a hypothesis that minimized the probability
of mislabeling

h = argmin
h

E(x,y)∼D [h(x) 6= y]

This kind of learning is referred to as discriminative learning.

We are now interested in generative learning.

Consider the example of context-sensitive spelling correction

• I saw the girl it the park

where, here, we want to detect the misspelling and change it → in.

According to the discriminative approach, we would model this problem as
directly learning from the data how to make predictions.

Bayesian Learning-1

1. Look at many examples

2. Discover regularities in the data

3. Use these to construct a prediction policy

In this example, the hypothesis may be if ”the” occurs after the target, choose
”in”. Approximating h : X → Y , is estimating P (Y |X).

According to the generative approach, we model the problem as that of gener-
ating correct sentences, where the goal is to learn a model of language and use
this model to predict.

1. Learn a probability distribution over all sentences

2. Use the distribution to estimate which sentence is more likely; make a
decision based on this

In this example, the model chooses the sentence that contains ”in” because this
sentence is more likely that the one that contains ”it”. This paradigm thus
approximates P (X,Y) = P (X|Y)P (Y)

1.2 Probabilistic Learning

There are actually two different notions in probabilistic learning.

First, we could think about learning concept c that maps X → [0, 1] where
c(x) may be interpreted as the probability that the label 1 is assigned to x.
The learning theory we learned before (linear classifiers, shattering) apply this
notion.

We could instead think of learning in the Bayesian framework, where we are
using probabilistic criterion in selecting a hypothesis. The hypothesis itself
can be deterministic. It is the process – not the hypothesis – that we are
learning.

1.3 Core Concepts

Goal : find the best hypothesis from some space H, given the observed data
D.

We consider the best hypothesis to be the most probable hypothesis in H, but
in order to determine that, we must assume a probability distribution over hy-
pothesis class H. Further, we must also know something about the relationship
between the observed data and the hypothesis.

Consider coin tosses. In order to determine whether the coin is fair or biased (or
to what degree its biased), we must first have a notion of how fair coins behave
(50% chance of heads) contrasted with how biased coins behave.

Bayesian Learning-2

Definitions

• P (h): the prior probability of a hypothesis h; this reflects the background
knowledge (things we know before observing data), where if we have no
prior information, P (h) is the uniform distribution

• P (D): the probability of seeing example D; this does not vary based on
the hypothesis

• P (D|h): the probability of seeing sample D, given that hypothesis h is
the target

• P (h|D): the posterior probability of h, or the probability of hypothesis h,
given that D has been observed

Bayes Theorem
According to Bayes theorem, the posterior probability of a hypothesis h, given
that we’ve seen data D, is equal to the probability of the data given the hy-
pothesis times the probability of the hypothesis, divided by the probability of
the data.

P (h|D) =
P (D|h)P (h)

P (D)

Note that P (h|D) increases with P (h) since if the hypothesis is more likely, the
hypothesis is more likely to be chosen.

P (h|D) also increases with P (D|h), which implies that the probability of ob-
serving this data given h is proportional to the probability of observing this h
given D.

Note that P (h|D) decreases with P (D), since the probability of observing D
goes up will decrease the probability that h is related to D.

Product Rule
P (A,B) = P (A|B)P (B) = P (B|A)P (A)

Joint probability, if A and B are independent

P (A,B) = P (A)P (B);P (A|B) = P (A);P (A|B,C) = P (A|C)

Sum Rule
P (A ∨B) = P (A) + P (B)− P (A,B)

Total Probability
If events A1, A2...An are mutually exclusive (Ai ∩Aj = φ),

∑
i

P (Ai) = 1

P (B) =
∑

P (B,Ai) =
∑
i

P (B|Ai)P (Ai)

Bayesian Learning-3

Total Conditional Probability
If events A1, A2...An are mutually exclusive (Ai ∩Aj = φ),

∑
i

P (Ai) = 1

P (B|C) =
∑

P (B,Ai|C) =
∑
i

P (B|Ai, C)P (Ai|C)

1.4 Learning Scenario

In Bayesian Learning, a learner tries to find the most probably hypothesis h
from a set of hypotheses H, given the observed data. This maximally probable
hypothesis is called the maximum a posteriori hypothesis (MAP), and we use
Bayes theorem to compute it. This is the basic concept of Bayesian Learning;
everything else is just examples and implementations.

hmap = argmax
h∈H

P (h|D)

= argmax
h∈H

P (D|h)P (h)

P (D)

= argmax
h∈H

P (D|h)P (h)

(1)

Note that because we’re finding the argmax, we can drop the probability of the
data, since this does not vary across hypotheses.

Note that in many cases we do not have a prior probability, so often we say that
there is a uniform distribution over H

P (hi) = P (hj), ∀hi, hj ∈ H

Using this assumption, we can drop the probability of h from the equation
above, producing the maximum likelihood hypothesis

hml = argmaxh∈HP (D|h)

1.5 Examples

Fair vs. Biased Coin
Consider a coin that is known to be either fair or biased 60% in favor of heads.
We see a seies of trials, and want to determine which kind of coin it is, based
on our observations.

Hypotheses: h1 : P (head) = 0.5 and h2 : P (head) = 0.6

Prior Distribution: P (h1) = 0.75 and P (h2) = 0.25

Note that the prior distribution is informed by our beliefs about the hypotheses,
rather than anything intrinsic about the problem.

Bayesian Learning-4

After the first trial, the coin comes up heads. Now P (D|h1) = 0.5 and P (D|h2) =
0.6. We then compute the probability of the data, and thus we need to sum the
two possible conditions: that observation came from h1 and h2.

P (D) = P (D|h1)P (h1) + P (D|h2)P (h2) = 0.5 ∗ 0.75 + 0.6 ∗ 0.25 = 0.525

Then we can compute

P (h1|D) =
P (D|h1)P (h1)

P (D)
=

0.5 ∗ 0.75

0.525
= 0.714

P (h2|D) =
P (D|h2)P (h2)

P (D)
=

0.6 ∗ 0.25

0.525
= 0.286

Note that we need not compute P (D) since our goal is to compare P (h1|D) and
P (h2|D), rather than knowing their exact values.

Given these results, after the first toss it is more likely that the coin is fair. If we
had used the maximum likelihood approach (and thus thought both hypotheses
were equally likely), however, we would have believed the coin was biased.

Regardless, if after trying 100 tosses, observing 70 heads will indicate that the
coin is biased.

Language Model
Assume a language that contains five characters and a space, as in {A, B, C,
D, E, }. These characters are generated according to P (A) = p1, P (B) = p2,
P (C) = p3, P (D) = p4, P (E) = p5, P () = p6 and

∑
i

pi = 1

Consider learning the values for each pi; that is, given a family of distributions
and observed data, determine which distribution generated the data.

Let’s assume a generative model of independent characters (fixed k)

P (U) = P (x1, x2...xk) =

k∏
i=1

P (xi|xi+1...xk) =

k∏
i=1

P (xi)

If we consider two strings (U and V), the goal is to determine which is more
likely. In the Bayesian framework, we can compute the probability of each
string and choose the most likely. Learning, then, becomes the task of finding
the parameters of a known model family.

It is important to note that in discriminative learning we frame problems as
making one decision – predicting y, given x – but generative learning can be
somewhat more expressive than that. In this example, we not only can predict
whether U or V is more likely, given the training data, but we’ve also learned
the distribution that governs the characters, potentially enabling us to make
more decisions.

Bayesian Learning-5

Biased Coin
Assume a coin with bias (p, 1− p) for heads and tails, respectively. Consider m
tosses with k heads.

To find p, we use the maximum likelihood estimate. Given what we know, the
probability of data observed is P (D|p) = pk(1− p)m−k

The log likelihood is given by L(p) = logP (D|p) = k log(p) + (m − k) log(1 −
p)

To maximize this likelihood, we can use the derivative

∂L(p)

∂p
=
k

p
− m− k

1− p
= 0⇒ p =

k

m

When sample sizes are very small – like when two out of two toesses are heads –
p = 1, which is unlikely. To account for this, we must smooth our distributions,
and one way to do so is by assuming a prior.

1.6 Probability Distributions

Bernoulli Distribution
Random Variable X takes values {0, 1} so that P (X = 1) = p = 1 − P (X =
0).

Binomial Distribution
Random Variable X takes values {1, 2, ...n} representing the number of successes
(X = 1) in n Bernoulli trails.

P (X = k) = f(n, p, k) = Ck
np

k(1− p)n−k

Note that if X ∼ Binom(n, p) and Y ∼ Bernoulli(p),

X =

n∑
i=1

Y

thus, you can consider a binomial distribution as the sum of Bernoilli distribu-
tions.

Categorical Distribution
Random Variable X takes on values in {1, 2...k}, so that P (X = i) = pi and
k∑
1
pi = 1. (Think of a dice).

Multinomial Distribution
Let the random variables Xi, (i = 1, 2, ...k) indicates the number of times out-
come i was observed over n trials.

Bayesian Learning-6

The vector X = (X1..Xk) follows a multinomial distribution (n, p) where p =

(p1, p2...pk) and
k∑
1
pi = 1.

f(x1, x2...xk, n, p) = P (X1 = x1...Xk = xk) =
n!

x1!...xk!
px1
1 ...p

xk

k

where
k∑

i=1

xi = n. (Thinks of n tosses of a k sided dice).

1.7 Additional Examples

Multinomial Bag of Words
Consider a collection of documents written in a three word language {a, b, c},
where each document has exactly n words.

We are given labels on each document (good, bad), and our goal – given {D1, D−
2...Dm} – is to predict the label y for an unseen document.

In the discriminative setting, we know how to solve this problem: train a model
over features a, b, c to predict a label y. In the generative setting, we’re going
to assume a probability distribution that generates these documents and we
will then try to learn that distribution, enabling us to perform various tasks
(including predicting the label).

Let’s assume a multinomial distribution. Let ai, bi, ci be the number of a, b, c’s
appearances in document i, respectively, where ai + bi + ci = n.

In this generative model

P (Di|y = 1) =
n!

ai!bi!ci!
αai
1 β

bi
1 γ

ci
1

where α1, β1, γ1 are the probability that a, b, c appears in a good document,
respectively, and

P (Di|y = 0) =
n!

ai!bi!ci!
αai
0 β

bi
0 γ

ci
0

where α0, β0, γ0 are the probability that a, b, c appears in a bad document.

Now, we only need ai, bi, ci to learn the parameters α, β, γ, where it’s important
to note that α0 + β0 + γ0 = α1 + β1 + γ1 = 1.

We now want to determine P (y|D); that is, given a document D, determine if
it is good or bad. This can be computed through the Bayes rule, and to do so
we must first derive the most likely value of the parameters defined above by
maximizing the log likelihood of the observed data.

PD =
∏
i

P (yi, Di) =
∏
i

P (Di|yi)P (yi)

Bayesian Learning-7

We denote P (y1) = η, the probability that an example is ”good”. Thus

PD =
∏
i

[(
ηn!

ai!bi!ci!
αai
1 β

bi
1 γ

ci
1)yi · ((1− η)n!

ai!bi!ci!
αai
0 β

bi
0 γ

ci
0)1−yi]

Note that the above formulation is an important trick to writing down the joint
probability without knowing the outcome of the experiment; depending on the
label (because of the exponent), different parameters are included in the final
product.

log(PD) =
∑

i yi[log(η)+C+ai log(α1)+bi log(β1)+ci log(γ1)]+(1−yi)[log(1−
η) + C + ai log(α0) + bi log(β0) + ci log(γ0)]

d log(PD)

dη
=

∑
i

[
yi
η
− 1− yi

1− η
] = 0⇒ η =

∑
i

yi
m

Hidden Markov Models
Consider two states (two different distributions) that govern character genera-
tion. In this example there are five characters – x = a, b, c, d, e – and two states
– s = B, I. You can think the two states as chunking a sentence into phrases,
B is the beginning of each phrase and I is inside a phrase.

We then generate characters according to

Initial State: P (B) = 1, P (I) = 0
State transition: P (B → B) = 0.8

P (B → I) = 0.2
P (I → B) = 0.5
P (I → I) = 0.5

Output: P (a|B) = 0.25
P (b|B) = 0.1...P (a|I) = 0.25
P (b|I) = 0...

These state transitions are shown in the diagrams below.

(a) State transition (b) State transition

Using the definitions above we can do the same thing. Given data {x1, x2...s1, s2}n,
we want to find the most likely parameters of the model P (xi|si), P (si+1|si), P (si).

Bayesian Learning-8

Thus, given an unlabeled example x = (x1, x2...xm), we can use Bayes rule to

predict the label l = (s1, s2...sm), where l∗ = argmax
l

P (l|x) = argmax
l

P (x|l)P (l)
P (x) .

Note that we still have a computational issue here, since there are 2m possible
values of l. The argmax thus would take time to compute, in the simplest way.
Note that in this setup, though, no states were hidden, making learning an easy
problem. When the states are hidden, which is typical with HMMs, learning is
more difficult.

1.8 Bayes Optimal Classifier

Using the Bayesian framework, one remaining question is the exact definition
of our hypothesis space H. As noted before, Bayesian learning requires making
assumptions about the distribution that generates our data before we can learn
the most likely h ∈ H.

Recall the MAP function for learning a good hypothesis

hMAP = argmax
h∈H

P (h|D) = argmax
h∈H

P (D|h)P (h)

For example, assume three hypotheses P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) =
0.3.. Therefore, hMAP = h1. Given a new instance, however, h1(x) = 1, h2(x) =
0, h3(x) = 0, because we’ve already committed to h1.

In this case, however, P (f(x) = 1) = 0.4 is less than P (f(x) = 0) = 0.6, so
our new example is misclassified because of how we’ve committed to a single
hypothesis.

We can account for this by combining the predictions from all hypotheses –
weighted by their posterior probabilities – to determine the most probable clas-
sification.

Let V be a set of possible classifications.

P (vj |D) =
∑
hj∈H

P (vj |hi, D)P (hi|D) =
∑
hi∈H

P (vj |hi)P (hi|D)

Bayes Optimal Classification:

v = argmaxvj∈V P (vj |D) = argmaxvj∈V
∑
hi∈H

P (vj |hi)P (hi|D)

In the example above

P (1|D) = 1 · 0.4 + 0 · 0.3 + 0 · 0.3 = 0.4

P (0|D) = 0 · 0.4 + 1 · 0.3 + 1 · 0.3 = 0.4

The optimal prediction is 0.

Bayesian Learning-9

1.9 Bayesian Classifier

Instance space: x ∈ X, where x = (x1, x2...xn), xj ∈ {0, 1}

Label space: value v ∈ V

Given x, we want to predict most probable value in V

vMAP = argmax
vj∈V

P (vj |x)

= argmax
vj∈V

P (vj |x1, x2, ...xn)

= argmax
vj∈V

P (x1, x2...xn|vj)P (vj)

P (x1, x2...xn

= argmax
vj∈V

P (x1, x2, ...xn|vj)P (vj)

(2)

While P (v) can be easily estimated by counting the number of times v appears
in the training data, it is not feasible to estimate P (x1, x2...xn|v); with even
a relatively small n, it is unlikely that each combination of features is seen a
sufficient number of times to estimate probabilities by counting.

Therefore, we must make certain assumptions to estimate this probability. The
Naive Bayes classifier does so by assuming all features are conditionally inde-
pendent.

2 Naive Bayes

Recall that – in the general Bayesian classifier – we must compute P (x1, x2...xn|vj).

P (x1, x2...xn|vj) = P (x1|x2, ...xn, vj)P (x2...xn|vj)
= P (x1|x2...xn, vj)P (x2|x3...xn, vj)P (x3...xn|vj)
= ...

= P (x1|x2...xn, vj)P (x2|x3...xn, vj)...P (xn|vj)

(3)

Naive Bayes assumes that each feature value is conditionally independent, given
a target value. This can be written as

n∏
i=1

P (xi|vj)

Using this method, we now must learn n|V |+ |V | parameters. Doing so means
we learn without search, and thus computing the hypothesis directly.

Bayesian Learning-10

2.1 Conditional Independence

Naive Bayes assumes that feature values are conditionally independent given
the target value, but does not require that they are independent.

Note that independence does not imply conditional independence. Consider the
Boolean features x and y. We define l = f(x, y) = x ∨ y over the distribution
P (x = 0) = P (x = 1) = 1

2 and P (y = 0) = P (y = 1) = 1
2 . The distribution is

defined so that x and y are independent: P (x, y) = P (x)P (y).

But, given that l = 0, P (x = 1|l = 0) = P (y = 1|l = 0) = 1
3 while P (x = 1, y =

1|l = 0) = 0. so x and y are not conditionally independent.

Note also that conditional independence does not imply independence. As-
sume

l = 0 : P (x = 1|l = 0) = 1, P (y = 1|l = 0) = 0

l = 1 : P (x = 1|l = 1) = 0, P (y = 1|l = 1) = 1

P (l = 0) = P (l = 1) = 1
2 .

Given the value of l, x and y are independent, but x and y are not indepen-
dent.

2.2 Tennis Example

Consider the Naive Bayes classifier defined by

VNB = argmaxvj∈V P (vj)
∏
i

P (xi|vj)

Let’s consider the tennis example, from the decision trees lecture

Figure 2: Final Hypothesis

We must compute P (x|v) and P (v), i.e.

Bayesian Learning-11

P (playTennis = yes), P (playTennies = no)

P (outlook = ...|playTennis = ...) (6 numbers)

P (temp = ...|playTennis = ...) (6 numbers)

P (humidity = ...|playTennis = ...) (4 numbers)

P (wind = ...|playTennis = ...) (4 numbers)

In total, we must compute 22 numbers. Given a specific example, though, we
will know the values for xi and thus will no longer need to compute all 22. We
only need the relevant ones.

Now given an example of (outlook = sunny, temp = cool, humidity = high,wind =
strong), you want to compute the probability of each v.

P (playTennis = yes) = 0.64, P (playTennis = no) = 0.36

P (outlook = sunny|yes) = 2
9 , P (outlook = sunny|no) = 3

5

...

P (wind = strong|yes) = 3
9 , P (wind = strong|no) = 3

5

P (yes, ...) = 0.0053, P (no, ...) = 0.0206

P (no|instance) = 0.0206
0.0206+0..0053 = 0.795

There is one problem with this setup, however. If one of the P (x|v) = 0, e.g.
(outlook = OC), then the probability to predict no is zero, which is probably
wrong. To account for unseen events, our probability estimates must be more
robust.

2.3 Robust Estimating Probabilities

Consider predicting the most likely document label v, as in

vNB = argmaxv∈{like,dislike}P (v)
∏
i

P (xi = wordi|v)

If we make the binomial assumption, the probability of a particular word xk
given label v is given by

P (xk|v) =
v documents containing xk

v documents
=
nk
n

In this setting, data sparsity becomes a serious problem. If n is small, the
estimate will be inaccurate. If nk is 0 (if, for example, xk is only seen with v in
the test data) we will never predict v at all.

Bayesian Learning-12

To address this sparsity problem, we use smoothing. In smoothing, the goal is
to push probabilities away from 0. There are many ways to accomplish this,
and one of the simplest, Laplace smoothing, is given by

P (xk|v) =
nk +mp

n+m

where nk is the number of documents with label v in which word xk appears,
n is the number of documents with label v, p is a prior estimate of v, and m is
the number of labels.

Laplace Rule
Specifically for the Boolean case, we can assume p = 1

2 and m = 2, which gives
us

P (xk|v) =
nk + 1

n+ 2

2.4 Two Classes

Before, we thought of Naive Bayes as a predictor, rather than a classifier. We
can rewrite Naive Bayes for use in two-class classification (v ∈ {0, 1}) by saying
it predicts v = 1 iff

P (vj = 1) ·
n∏

i=1

P (xi|vj = 1)

P (vj = 0) ·
n∏

i=1

P (xi|vj = 0)
> 1

Let’s denote pi = P (xi = 1|v = 1), qi = P (xi = 1|v = 0). Now recall that
when xi = 1 we want to use pi and qi, but if xi = 0 we want to use 1− pi and
1 − qi. Since xi ∈ {0, 1}, we can write a single equation that uses the correct
probability, given the value of xi, as

P (vj = 1) ·
n∏

i=1

pxi
i (1− pi)1−xi

P (vj = 0) ·
n∏

i=1

qxi
i (1− qi)1−xi

> 1

Due to the exponents, we pi is used when xi = 1, and 1−pi is used when xi = 0.
We can further rewrite this as below

P (vj = 1) ·
n∏

i=1

(1− pi)(pi

1−pi
)xi

P (vj = 0) ·
n∏

i=1

(1− qi)(qi
1−qi)xi

> 1

If we now take the log of both sides, the product is transformed into a sum.

log
P (vj = 1)

P (vj = 0)
+
∑
i

log
1− pi
1− qi

+
∑
i

(log
pi

1− pi
− log

qi
1− qi

)xi > 0

Bayesian Learning-13

In effect, we are multiplying some coefficient with x and we add another term
that is irrelevant to x. This is just a linear separator:

wi = log
pi
qi

1− pi
1− qi

If pi = qi, then wi = 0 and the feature is irrelevant.

Thus, in the cases of two classes we have that

log
P (vj = 1|x)

P (vj = 0|x)
=

∑
i

wixi − b

Thus, Naive Bayes works because it operates as a linear separator. Moreover,
since we know P (vj = 1|x) = 1− P (vj = 0|x), we can rewrite it as

P (vj = 1|x) =
1

exp(−
∑
i

wixi + b)

which is simply the logistic function.

3 Logistic Regression

Consider the logistic regression model

P (y = 1/− 1|x,w) =
1

1 + exp(−y(wTx+ b)

This is exactly the same model as we derived for Naive Bayes, but here we do
not assume independence. Rather than computing w based on observed counts,
we directly find the best w that satisfies the above.

As a result, training will be more difficult, but the weight vector will be more
expressive. Since Naive Bayes computes its weight vector given the nk

n fractions,
not all the coefficients are expressible. Thus, while Naive Bayes cannot represent
all linear threshold functions, it converges much faster because of the trivial way
w is computed.

In logistic regression1, our goal is to find a (w, b) that maximizes the log like-
lihood of the data ({x1, x2...xm}), which can be rewritten as minimizing the
negative log likelihood

minw,b

m∑
1

logP (y = 1/− 1|x,w) = minw,b

m∑
1

log[1 + exp(−yi(wTxi + b)]

1Logistic regression is sometimes called Maximum Entropy – particularly in the NLP com-
munity – but the term has fallen out of favor. The term comes from the fact that the resulting
distribution is the one that has the largest entropy from among all those that activate the
same features.

Bayesian Learning-14

To get good generalization, we’re going to modify our objective function by
adding a regularization term (the L2 norm of w); this is called regularized
logistic regression

minwf(w) =
1

2
wTw + C

m∑
1

log[1 + exp(−yi(wTxi))]

where C is a user selected parameter that balances the two terms, 1
2w

Tw is the
regularization term, and the sum is the empirical loss.

Since the second term is the loss function, regularized logistic regression can be
related to other learning methods, like SVM.

L1 SVM solves the following optimization problem (hinge loss):

minwf1(w) =
1

2
wTw + C

m∑
1

max(0, 1− yi(wTxi))

L2 SVM solves the following optimization problem:

minwf2(w) =
1

2
wTw + C

m∑
1

(max(0, 1− yiwTxi))
2

Bayesian Learning-15

