
CS446: Machine Learning Spring 2017

Problem Set 2

Handed Out: February 03, 2017 Due: February 15, 2017

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please try to keep the solution brief
and clear.

• Please use Piazza first if you have questions about the homework. Also feel free to send us e-mails
and come to office hours.

• Please, no handwritten solutions. You will submit your solution manuscript as a single pdf file.

• A large portion of this assignment deals with programming decision trees to see them in action. While
we do provide several pieces of code, you are required to try and test several decision tree algorithms
by writing your own code. While we encourage discussion within and outside the class, cheating and
copying code is strictly discouraged. Copied code will result in the entire assignment being discarded
at the very least.

• The homework is due at 11:59 PM on the due date. We will be using Compass for collecting
the homework assignments. Please submit your solution manuscript as a pdf file via Compass
(http://compass2g.illinois.edu). Please do NOT hand in a hard copy of your write-up. Contact
the TAs if you are having technical difficulties in submitting the assignment.

1. Learning Decision Trees – 20 points

(a) [7 points] You will determine the attribute that will be the root of the decision
tree if you apply ID3 algorithm on the data set summarized in Table 1. Table 1
reports the information pieces that are required in determining the root attribute,
by using the concept of information gain

Attribute Value Study Today = yes Study Today = no

Holiday yes 20 1
Holiday no 15 14

Exam Tomorrow yes 10 5
Exam Tomorrow no 25 10

Table 1: The Study Pattern data set

The data set consists of two binary attributes (Holiday, Exam Tomorrow) and a
binary label (Study Today). There are 50 instances in the data set, 35 of which are
positive (Study Today = yes) and the remaining 15 are negative (Study Today=
no). From Table 1, we can see that there are 20 such instances when students
study during a holiday (i.e., 20 instances with Holiday = yes and Study Today=
yes) and, 1 such instances when a student does not study during a holiday (i.e.,
1 instance with Holiday = yes and Study Today = no). Similarly, we can see
that there are 10 such instances when students study before an examination (i.e.,
10 instances with Exam Tomorrow = yes and Study Today = yes) and there are
5 instances when students do not study before an examination ((i.e., 5 instances
with Exam Tomorrow = yes and Study Today = no).

1



(b) [7 points] For this question, you will manually induce a decision tree from a small
data set. Table 2 shows the Balloons data set from the UCI Machine Learning
repository that was first used for an experiment in cognitive psychology1. The
data consists of four attributes (Color, Size, Act, and Age) and a binary label
(Inflated). You will represent this data as a decision tree using a new splitting
heuristics. This new heuristic uses the decrease in misclassification rate to choose
an attribute to split. If, at some node, we stop growing the tree further and assign
the majority label of the remaining examples to that node, then the empirical error
on the training set at that node will be

MajorityError = min(p, 1− p)

where p is the fraction of examples with label T and, hence, 1− p is the fraction
of examples with label F . Note that this error can be thought of as a measure of
impurity of a node, just like entropy.
Redefine information gain using MajorityError as the measure of impurity and
use this to represent the data as a decision tree.

Color Size Act Age Inflated

Blue Small Stretch Adult F
Blue Small Stretch Child F
Blue Small Dip Adult F
Blue Small Dip Child F
Blue Large Stretch Adult F
Blue Large Stretch Child T
Blue Large Dip Adult T
Blue Large Dip Child T
Red Small Stretch Adult F
Red Small Stretch Child T
Red Small Dip Adult T
Red Small Dip Child T
Red Large Stretch Adult F
Red Large Stretch Child T
Red Large Dip Adult T
Red Large Dip Child T

Table 2: The Balloons data set

You can report the decision tree as a series of if-then statements as the following
example shows:

if feature_0 = x :

if feature_1 = y :

if feature_2 = z :

class = T

1You can learn more about this data set at http://archive.ics.uci.edu/ml/datasets/Balloons

2



if feature_2 != z :

class = F

if feature_1 != y :

class = T

if feature_0 != x :

if feature_1 = y :

class = T

if feature_1 != y :

class = F

(c) [6 points] Does ID3 guarantee a globally optimal decision tree? By optimality,
we mean a decision tree perfectly fits to the training data and also has a minimal
depth. Justify your answer shortly.

2. Decision Trees as Features – 80 points

In this question, you will use a variant of the ID3 algorithm from the Weka Machine
Learning toolkit2 to train decision trees. The goal of this problem is to use the decision
tree algorithm to generate features for learning a linear separator. You can use any
programming language to implement the parts of the assignment that do not require
Weka.

You will use a data set that is similar to the one from the Badges Game introduced in
class. This data has been cleaned so that each name now consists of two lower cased
strings – both the first and the last names. The labels (+ or −) are generated accord-
ing to a new function. The new data set is available from the homework page in a file
called badges.tar.gz. The archive contains a file called badges.modified.data.all

which has all the examples. Additionally, this archive contains five files named
badges.modified.data.fold{1-5} with roughly equal splits of the data. You will
use these to perform five-fold cross validation.3

In the following few sections we explain the processes you will go through in the course
of this problem set.

(a) Feature Extraction and Instance Generation: First, you need to extract
features from the data. You need to generate ten feature types for each example.
These feature types are Boolean in nature, and are indicators for the first five
characters from the first and last names.

For example, consider the name “naoki abe” from the data set. Suppose you
want to extract features corresponding to the first letter “n” in the first name,
you will have 26 Boolean features, one for each letter in the alphabet. Only

2http://www.cs.waikato.ac.nz/ml/weka/
3In all the experiments in this problems set you will use the methodology of five-fold, cross validation.

In five fold cross validation, given 5 disjoint and roughly equal splits of the data, you train on 4 parts and
evaluate the accuracy of the resulting classifier on the remaining part. Repeat this five times, once for each
of the five choices of the test set. The average accuracy, pA, over these five runs is a good estimate of the
algorithms performance on unseen examples. For all the different training algorithms you implement, report
the averaged accuracy and standard deviation on the given 5 folds of the data.

3



the one corresponding to n will be 1 and the rest will be 0. This will give us
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, where the 14th element
corresponds to the feature String=First,Position=1,Character=n. Note that
the features defined earlier are actually feature types. In fact, you will have
260 features of the form String=i,Position=j,Character=k, where i can be
FirstName or LastName, j can be 1, . . . , 5 and k can be a,b,c, ..., z.

In addition to the feature types described above, feel free to include additional
features. For example, you can invent new feature types, such as features to
indicate if a letter in the alphabet appears in the name or not, or features based
on conjunction of two feature types given above, and so on.

You need to write the features generated into the Weka Attribute-Relation file
format so that the next steps become easier. For a description of the format,
look at http://weka.wikispaces.com/ARFF+%28stable+version%29 . See the
Resources section below for sample feature file and code.

(b) Decision Trees and SGD are the two learning algorithms you will use in this data
set. You will use them in multiple ways, and we now explains the ways they will
be used.

i. Stochastic Gradient Descent (SGD): As a baseline, you should imple-
ment yourself the stochastic gradient descent algorithm for the least means
square method. Your implementation should be generic, since you will be run-
ning this algorithm also on v). We recommend that you use five-fold cross
validation (CV) to tune the parameters (learning rate, error threshold) of the
SGD algorithm, i.e., to select the parameter that yields the best averaged
accuracy in CV.

ii. Grow decision tree: Use the decision tree package to train a decision tree
with the ID3 algorithm using the same feature set

iii. Grow decision trees of depth 44: Repeat step (ii), limiting the maximum
depth of the decision tree to four.

iv. Grow decision trees of depth 8: Repeat step (ii), limiting the maximum
depth of the decision tree to eight.

v. Decision stumps as features: In this part, you will use decision stumps
to generate a feature set.
Using the feature set defined in step (a), train hundred different decision
stumps of maximum depth four on the entire training set. Note: To get
a hundred different decision stumps, you need to repeatedly sample 50% of
the training set and train a decision tree on the sub-sample. These decision
stumps will be your new feature set. Make sure that you only sample
from the training set to generate the decision stumps, otherwise you might
contaminate the training set with examples from the test set and this will skew
your results.
Build a data set using the hundred decision stumps (again in the ARFF
format, if you need to), as follows: for each example in the data set, the value

4Decision trees with limited depth are also called decision stumps.

4



of the ith feature will be the prediction of the ith decision stump. This will
give you a new 100-dimensional feature representation for the data. Train a
linear separator with the SGD algorithm over this data set.

2.1. Evaluation

You should compare the five different algorithms – (a) simple SGD, (b) full decision
tree, (c) decision stump of depth four, (d) decision stump of depth eight, and (e) SGD
over features derived from 100 decision stumps. Remember that this is the minimum.
Feel free to experiment with more parameter combinations (e.g., decision stump depth,
learning rate for the SGD, and fraction of the data used to train the decision stumps),
or additional feature classes you came up with.

For each algorithm you experiment with, (i) run five-fold cross validation on the given
data set. This will determine an estimate for the algorithm’s performance, pA, on
unseen examples. Note that pA is the average accuracy over the five folds. (ii) Calculate
the 99% confidence interval of this estimate using Student’s t-test. You will need a
table of tn,α values to do this computation (see t-table.pdf).5

Rank your algorithms in decreasing order of the performance estimate pA. For each
pair of consecutive algorithms in the ranking, show if the difference between the two
algorithms’ performances is or is not statistically significant.

2.2. Resources

The following resources are available on the course homework page:

(a) decision-trees.tar.gz contains an implementation of the ID3 algorithm from
the Weka Machine Learning Library. This includes functionality to limit the
depth of the tree to a specified depth. There is example code that uses this class.
We have also included a dummy example feature generator that converts the raw
text into features in the ARFF format.

(b) badges.tar.gz contains the modified badges data and the five splits for cross
validation.

(c) badges.example.arff is an example ARFF feature file that contains features
corresponding to the first and last characters in the first name.

(d) t-table.pdf: Student’s t-distribution table.

Additionally, you may find the following external resources useful:

(a) http://www.cs.waikato.ac.nz/ml/weka/ : The Weka toolkit homepage

(b) http://weka.wikispaces.com/ARFF+%28stable+version%29 : A description of
the Attribute-Relation File Format

2.3. What to hand in

5http://en.wikipedia.org/wiki/Student’s_t-distribution also has a Student’s t-distribution ta-
ble.

5



• A report
Create a report listing down different observations from your experiments. In
particular, provide the following observations in an organized fashion:

– For each algorithm in order of the ranking you created, describe the feature
set and indicate the tree depth and other parameters (specially for SGD,
report the learning rate and error threshold).

– Give the value of pA for each algorithm.

– Provide the 99% confidence interval for this value using Student’s-t distribu-
tion.

You may provide these numbers in a table or in a graph with error bars.

In the end, your conclusion will be that a particular algorithm (or set of algo-
rithms) performed the best. Briefly state the assumptions that this conclusion is
based on.

• Your code and tree displays
Hand in all the code you wrote. Also, for each algorithm you experimented with
(except the last one on decision stumps as features), include the tree created
during cross validation that had the best performance. Mention the number of
correct and incorrect predictions made by the tree on the corresponding test set.
The tree displays can be similar to the one shown in 1(b). You may add the tree
displays to the report in a neat fashion.

Create a README file that contains your name and email address, a description
of which algorithms correspond to which tree files, and enough information for
someone to compile your code and run it.

Place all files including the tree files and README in a directory called userID-hw2.
Remember to exclude executables and object files. Pack the files together so that
when they unpack, the userID-hw2 directory is created with all your files in it.
The name of the packed file should be userID-hw2.zip or userID-hw2.tar.gz.

2.4. Grading

• Implementation of SGD algorithm [10 points]

• Implementation of decision tree and decision stumps. Remember that this is the
only part where you use external commercial code. [10 points]

• Implementation of decision stumps as features [20 points]

• Evaluation report [30 points]

• Other report elements (additional experiments, explanation of implementation
and experiments, conclusions, etc.) [10 points]

6


