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Overview

Structural SVMs have shown promise for building accurate structural
prediction models in natural language processing and other domains

Current training algorithms (while polynomial time) are expensive on
large datasets; superlinear

Paper proposes a new cutting plane training method that runs in
linear time

Number of iterations until convergence is independent of the number
of training examples

Empirical work shows that it is much faster than conventional cutting
plane methods
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SVM

Binary classification (primal):

min
w ,εi≥0

1

2
||w ||2 +

C

n

∑
i

εi

s.t. ∀i ∈ {1, . . . n} : yi (w
T xi ) ≥ 1− εi
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Hinge Loss

Hinge loss is a convex upper bound for the 0− 1 loss.

The SVM can be represented as unconstrained minimization of the
regularized hinge loss.
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Multiclass SVM

Recall: multiclass margin is defined as the score difference between
the highest scoring label and the second highest

min
1

2

k∑
i=1

||wk ||2 + C
∑
i

εi

s.t. ∀i , (xi , yi ) ∈ D, k 6= yi : w t
yi
xi − w t

kxi ≥ 1− εi , εi ≥ 0
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Structured Prediction

Learn a function f : X → Y where Y is a space of multivariate and
structured outputs

for a given x predict fw (x) = argmaxy∈Yw
TΨ(x , y)

intuitively Ψ measures the compatibility of y and x
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Structured SVM

Assume that fw (x , y) = w tΨ(x , y)

We generalize the SVM optimization problem to train w

The true loss function is ∆(y , hw (x)) = 1{y 6= hw (x)}
hinge loss provides a convex upper bound to the true loss function:

margin-rescaling:
∆MR(hw (x), y) = maxy ′∈Y{∆(y , y ′)− w tΨ(x , y) + w tΨ(x , y ′)}
slack-rescaling:
∆SR(hw (x), y) = maxy ′∈Y{∆(y , y ′) ∗ (1− w tΨ(x , y) + w tΨ(x , y ′))}
Conceptually similar; we focus on MR.
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n-slack structural svm optimization (MR)

min
w ,ε≥0

1

2
||w ||2 +

C

n

∑
i

εi

s.t. ∀y ′ ∈ Y, i ∈ [n] : w t [Ψ(xi , yi )−Ψ(xi , y
′)] ≥ ∆(yi , y

′)− εi
Note that if Ψ is the |Y| ∗ p dimensional embedding we recover the
multiclass formulation, where p is the dimension of xi .
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Past Approaches

Note the n-slack optimization problem has |Y| ∗ n constraints, not
obviously efficiently solvable

In fact it is: a greedily constructed cutting plane model requires only
O(n/ε2) constraints.

other methods: exponentiated gradient methods, Taskar
reformulation as a QP, stochastic gradient methods.
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Cutting Plane Algorithm 1
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Cutting Plane Algorithm 1

This algorithm is efficient assuming existence of a separation oracle
calculating the most violated constraint [line 5]

note for natural choices of ∆ this is the assumption that we can
efficiently solve the inference problem
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Contribution (this paper): Faster Training!

Using a simple reformulation of the optimization problem:

1 constant iteration complexity =⇒ linear runtime in n

2 several orders of magnitude improvement in runtime (worst case
analysis)

3 empirical study shows speedup in practice
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1-slack formulation

Theorem

The n-slack formulation is equivalent to the optimization:

min
w ,ε≥0

1

2
||w ||2 + CE

s.t. ∀(y ′1, y
′
2, . . . y

′
n) ∈ Yn :

1

n
w t

n∑
i=1

[Ψ(xi , yi )−Ψ(xi , y
′
i )] ≥ 1

n

∑
i

∆(yi , y
′
i )− E

Note now we only have 1 slack variable shared among all constraints, but
we actually have exponentially more constraints
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What is the point?

New reformulation has constraint that binds on linear combination of
data points =⇒ support vectors are linear combinations of data
points

This flexibility gives a much sparser set of non-zero dual variables,
which translates into a smaller cutting plane model (constant)

High-level: exponentially more constraints, but only a constant
number of them matter
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1-slack: proof

It suffices to show that for any fixed w , the smallest feasible E in the
1-slack formulation and smallest feasible 1

n

∑
i εi in the n-slack formulation

are equal.

Proof.

In n-slack, for a fixed w , for each i , each constraint gives
εi ≥ ∆(y ′, yi )− w t [Ψ(xi , yi )−Ψ(xi , y

′)], which shows that the smallest
feasible is

εi = max
y ′
{∆(y ′, yi )− w t [Ψ(xi , yi )−Ψ(xi , y

′)]}

In 1-slack the smallest feasible E is similarly at:

max
y ′

1,y
′
2,...,y

′
n

{1

n

∑
i

(∆(yi , y
′
i )− w t [Ψ(xi , yi )−Ψ(xi , y

′)])}
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1-slack: proof ctd

Proof.

But this function separates over each y ′i and so it is equal to:
1
n

∑
i maxy ′

i
(∆(yi , y

′
i )− w t [Ψ(xi , yi )−Ψ(xi , y

′)]) which as defined in the

1-slack formulation is simply 1
n εi .
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The Main Algorithm

Similar to the previous cutting plane algorithm, only adds 1 constraint
in each iteration.

What is different is that only a constant number of constraints are
sufficient to find an ε-approximate solution.
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Correctness

Obvious; when (if) the algorithm terminates:

1 The objective is optimized over a strictly smaller set of constraints,
and hence has a smaller value

2 If the algorithm terminates the solution is approximately feasible
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Iteration Complexity

Let ∆ = maxi ,y ′ ∆(yi , y
′). Let R = maxi ,y ′ ||Ψ(xi , yi )−Ψ(xi , y

′)||.
Then the iteration complexity is 16R2C

ε + log2( ∆
4R2C

)
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Iteration Complexity: Outline

min
w ,ε≥0

1

2
||w ||2 + CE

s.t. ∀(y ′1, y
′
2, . . . y

′
n) ∈ Yn :

1

n
w t

n∑
i=1

[Ψ(xi , yi )−Ψ(xi , y
′
i )] ≥ 1

n

∑
i

∆(yi , y
′
i )−E

The pair (w , E) = (0,∆) is feasible in the above

Thus the optimal value is ≤ C∆.

This means that the dual program has optimal value ≤ C∆

We show each iteration increases the dual objective by some constant
amount, forcing constant iteration complexity.
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Classic SVM Dual

Binary classification (primal):

min
w ,εi≥0

1

2
|w ||2 +

C

n

∑
i

εi

s.t. ∀i ∈ {1, . . . n} : yi (w
T xi ) ≥ 1− εi

Binary classification (dual):

min
α

n∑
i=1

αi −
1

n

∑
i ,j

αiαjyiyjx
t
i xj

s.t.
n∑

i=1

αiyi = 0

∀i ∈ {1, . . . n} : 0 ≤ αi ≤
C

n
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The Dual Program

The dual program is easy to compute by forming the Lagrangian and
taking derivatives. First we define:
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Line Search Lemma Proof

Note that the dual objective is a QP of the form Θ(α) = htα− 1
2α

tHα
where h = {∆(ȳ)}ȳ∈Yn ,Ha,b = αaαbHMR(ya, yb)
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Proof of Line Search Lemma.

Proof.

Direct calculation yields:

Θ(α + βη)−Θ(α) = β[∇Θ(α)Tη − 1

2
βηTHη]

Setting the derivative with respect to β equal to 0 gives β = ∇θ(α)T η
ηTHη

.
Substituting this value of β gives

max
β

Θ(βη + α)−Θ(α) =
1

2

(∇Θ(α)Tη)2

ηTHη

This is the maximum value, unless the value of β at the optimum is > C ,
in which case the optimum occurs at β = C , by concavity in β.
Substituting in β = C gives the desired result.
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Iteration Complexity (Sketch)

In step 8 we add a constraint.
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This adds a variable to the dual program: αŷ . Note can set αŷ = 0, and
so it only increases the objective value.
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Adding a new constraint ŷ to the model adds a new parameter to the
dual problem; increases its objective value

We pick an η : ηŷ = 1, η′y = − 1
C αy ′ such that α + βη is always

dual-feasible (since ηT1 = 0)

The increase in objective value is lower bounded by the increase in a
line search along η (since we are only searching a feasible region of
the dual)

Line search lemma (with some algebra) lets us lower bound this
increase as a function of ε,C ,R.
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Time Complexity

Summary

O(n) calls to the separation oracle

O(n) computation time per iteration

Constant number of iterations

Each QP is of constant size, and is hence solved in constant time.

For non-linear kernel it is O(n2)
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Experiments

Applied to binary classification, multi-class classification, linear chain
HMMs, and CFG Grammar learning

Two Questions:
1 Does the 1-slack algorithm achieve significant speedups in practice?
2 Is the w∗ value as good a solution?
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Speed: 1-slack vs. n-slack

Slower speedup with slower separation oracle - still significant gains
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Speed: 1-slack vs. SVM light on binary classification

Faster even on binary classification than state-of-the-art SVM training
algorithms
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Accuracy vs. n-slack

Very similar for all tasks except HMM where n-slack outperforms

This is because the duality gap Cε is significant part of the objective
value since the data was almost linearly separable.

Generalization performance for HMM was still comparable.
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