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Overview

@ Structural SVMs have shown promise for building accurate structural
prediction models in natural language processing and other domains

e Current training algorithms (while polynomial time) are expensive on
large datasets; superlinear

@ Paper proposes a new cutting plane training method that runs in
linear time

@ Number of iterations until convergence is independent of the number
of training examples

@ Empirical work shows that it is much faster than conventional cutting
plane methods
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SVM

Binary classification (primal):
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Hinge loss is a convex upper bound for the 0 — 1 loss.

0-1 Loss:
Ly, 9) = 1§ # ]

Hinge loss:
L(y.9) = wax (0,1 - jy)

/

The SVM can be represented as unconstrained minimization of the

regularized hinge loss.
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Hinge loss is a convex upper bound for the 0 — 1 loss.

Hinge loss:
L(y.9) = wax (0,1 - jy)

/

0-1 Loss:
Ly, 9) = 1§ # ]

The SVM can be represented as unconstrained minimization of the
regularized hinge loss.

min||w||2+CZmax(O,1—(w-acj +b)y;)
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Multiclass SVM

@ Recall: multiclass margin is defined as the score difference between
the highest scoring label and the second highest

k
1
m|n2z;||wk||2+ CZE,’
1= 1

s.t. Vi (x,,y,)EDk;Ey,:W Xj —wix; >1—¢€,6i >0
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Structured Prediction

@ Learn a function f : X — ) where ) is a space of multivariate and
structured outputs

o for a given x predict f,(x) = argmax,cyw’ V(x,y)
@ intuitively W measures the compatibility of y and x

X 1Y S > NPVP
J The dog chased the cat ‘ ol s—np
f‘X%Y* 2 |NP — Det N
J 1|VP—V NP
/ \ :
Py = 0| Det — dog
/ \ / 2| Det — the
Det Det 1| N —dog
* 1|V — chased
The dog chased the cat 1) N—cat

Figure 1: Tllustration of natural language parsing model.
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Structured SVM

@ Assume that f,,(x,y) = w'V(x,y)
o We generalize the SVM optimization problem to train w

@ The true loss function is A(y, hy(x)) = 1{y # hy(x)}
@ hinge loss provides a convex upper bound to the true loss function:
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Structured SVM

@ Assume that f,,(x,y) = w'V(x,y)
o We generalize the SVM optimization problem to train w

@ The true loss function is A(y, hy(x)) = 1{y # hy(x)}
@ hinge loss provides a convex upper bound to the true loss function:
e margin-rescaling:
Amr(hw(x),y) = maxyep{ Ay, y') = w'V¥(x,y) + w'V(x, y")}
o slack-rescaling:
Asr(hw(x),y) = max,ep{Ay,y’) = (1 - w'¥(x,y) + w¥(x,y’))}
e Conceptually similar; we focus on MR.
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n-slack structural svm optimization (MR)

1 , C
iy 3w+ 2 e
s.t.Vy e Y,i€[n]: wiV(x,yi) — V(xi,y)] > Alyi,y') — €

Note that if W is the |Y| * p dimensional embedding we recover the
multiclass formulation, where p is the dimension of x;.
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Past Approaches

o Note the n-slack optimization problem has || * n constraints, not
obviously efficiently solvable

@ In fact it is: a greedily constructed cutting plane model requires only
O(n/€?) constraints.

@ other methods: exponentiated gradient methods, Taskar
reformulation as a QP, stochastic gradient methods.
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Cutting Plane Algorithm 1

Algorithm 1 for training Structural SVMs (with margin-rescaling) via the n-Slack
Formulation (OP2).

1: Input: §= ((Ilayl)a ERER) (xﬂ:yn)); Ce

2: #;—0,& —0foralli=1,...,n

3: repeat

4:  fori=l,..,ndo
5 § — argmaxgeq {A(yi, §) — W' [P (xi,y:) — ¥(xu )]}
6: if A (3, 5) — W [¥ (xi, 1) — ¥ (4, 9)] > & +€ then
7 Wi #U ()
8: (w,§) «— argmin,, g0 3w w4+ EX1 &
sty € W0  wl [Plxpn) =Pl = Alv,y) - &
v}Tn € % " [‘P(xmyn) - lP(xn:y_n)] = A(ymin) - én
9: end if
10: end for

11: until no #; has changed during iteration
12: return(w,&)
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Cutting Plane Algorithm 1

5: J; — argmaxﬁé?!/{A (yiaj}) - WT [lp(-xhyi) - ‘P(x,,)‘;')]}

@ This algorithm is efficient assuming existence of a separation oracle
calculating the most violated constraint [line 5]

@ note for natural choices of A this is the assumption that we can
efficiently solve the inference problem
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Contribution (this paper): Faster Training!

Using a simple reformulation of the optimization problem:
@ constant iteration complexity = linear runtime in n

@ several orders of magnitude improvement in runtime (worst case
analysis)

© empirical study shows speedup in practice
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1-slack formulation

The n-slack formulation is equivalent to the optimization:

1
min = ||w|]® + CE
w,e>0 2
St (Y1, Y2, Yn) €V

%WtZ[W(Xi,Yi)_ Xl7yl = ZA(y”y’
i=1

Note now we only have 1 slack variable shared among all constraints, but
we actually have exponentially more constraints
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What is the point?

@ New reformulation has constraint that binds on linear combination of
data points = support vectors are linear combinations of data
points

@ This flexibility gives a much sparser set of non-zero dual variables,
which translates into a smaller cutting plane model (constant)

@ High-level: exponentially more constraints, but only a constant
number of them matter
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1-slack: proof

It suffices to show that for any fixed w, the smallest feasible £ in the

1-slack formulation and smallest feasible %Zie; in the n-slack formulation
are equal.
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1-slack: proof

It suffices to show that for any fixed w, the smallest feasible £ in the
1-slack formulation and smallest feasible %Z, €; in the n-slack formulation
are equal.

Proof.

In n-slack, for a fixed w, for each i, each constraint gives
ei > Ay, yi) — wiV(xi, yi) — W(xi, ¥")], which shows that the smallest
feasible is

€ = n}e}x{A(y/uYi) = wiW(x;, yi) — Y (x, )]}
In 1-slack the smallest feasible £ is similarly at:

max {% D (A0 yh) = w' ¥ (xy) = V(Y )}

YisYhsenyh N

Ol

v
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1-slack: proof ctd

But this function separates over each y/ and so it is equal to:
& >0 maxy (A(yi,yf) — wiW(x;, yi) — W(x;,y')]) which as defined in the
1 slack formulation is simply %e,—. Ol
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Main Algorithm

@ Similar to the previous cutting plane algorithm, only adds 1 constraint
in each iteration.

@ What is different is that only a constant number of constraints are
sufficient to find an e-approximate solution.

Algorithm 3 for training Structural SVMs (with margin-rescaling) via the 1-Slack
Formulation (OP4).

L: Input: § = ((¥1,71),..., (%n,3m)), C, €

20 —0
3: repeat
4 (w,€) argminwyczo%wrw+C§

SV o0) €5 w7 3 [¥(xoy) ~ )] > £ AG5) 8
for i=1,...,.ndo - -
Pi — argmaxseq {A (i, 9) + W (x:,9)}

end for

8 # —#U{(,.Tn)}

9: until %;lA(,ViJ’i) —wl 2 [Fluy) - o)) < +e
10: return(w,&)

~N N W
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Correctness

Obvious; when (if) the algorithm terminates:

© The objective is optimized over a strictly smaller set of constraints,
and hence has a smaller value

@ If the algorithm terminates the solution is approximately feasible

Seth Neel (Penn) Short title September 28, 2017 18 / 33



Iteration Complexity

o Let A = max;, A(yi,y’). Let R = max;,/ ||W(x;,yi) — V(xi, y")]|.

@ Then the iteration complexity is @ + Iogz(ﬁ)
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Iteration Complexity: Outline

1
min ~||w|]> + C&
w,e>0 2
SEV(Y], Y5, yp) €V *W Z[‘V Xi, yi) =V (xi, yD] > = ZA visy)—€

@ The pair (w,&) = (0, A) is feasible in the above
@ Thus the optimal value is < CA.
@ This means that the dual program has optimal value < CA

@ We show each iteration increases the dual objective by some constant
amount, forcing constant iteration complexity.
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Classic SVM Dual

Binary classification (primal):

min |W||2 Ze,
>0

w,€;i>

s.t.Vie{l,...n}:yi(w x,) 1—¢
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Classic SVM Dual

Binary classification (primal):

min |WH2 Ze,
>0

w,e;>
st.Vie{l,...n}:yi(w'x)>1—¢

Binary classification (dual):

o 1
H t
min E aj — — E Qi YiYiXi X
a 4 7 n
1=

i
n
s.t. Zoz,-y,- =0
i=1

Vie{l,...n}:OSa;S;

@)
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The Dual Program

The dual program is easy to compute by forming the Lagrangian and
taking derivatives. First we define:

Ay)= ZA(yz,y,

Hur(y,Y) = ;lz-élj)::] [‘P(xi,yi)T ¥ (xj,95) — ¥ 0, p) T (x7,57)

8 (5, 30T (x1,9,) + ¥ (6, 70T (35,7

Optimization Problem 6 (1-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING (DUAL))
max D(et) = ZA(i)ay—— > Y o505 Hur(Y.Y)

yewn yeel/" yean

s.t. 2 og=C

yea"
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Line Search Lemma Proof

Note that the dual objective is a QP of the form ©(a) = hta — JatHa
where h = {A(¥)}yeyn, Hap = aaasHur(ya, o)

Lemma 2. For any unconstrained quadratic program
1
max {O(@)} <, O(a)=hTa - -a’Ha (32)
acHtr 2

with positive semi-definite H, and derivative 0O (@) = h— Ha., a line search start-
ing at @& along an ascent direction 1) with maximum step-size C > 0 improves the
objective by at least

1 {C, vo(a)'n

Org%aéc{e(a—i—ﬁn)}—@(a)zinﬁn nTHn }V@(a)Tn. (33)
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Proof of Line Search Lemma.

Direct calculation yields:

Oa -+ fin) — ©(a) = HIVO(a) Ty — 551" Hi]

_ N : . _ V()T
Setting the derivative with respect to S equal to 0 gives 5 = oTHT

Substituting this value of 5 gives

1(VO(a)Tn)?

TS O(fn+a)—B6(a) = T

This is the maximum value, unless the value of 5 at the optimum is > C,
in which case the optimum occurs at 8 = C, by concavity in f.
Substituting in 8 = C gives the desired result. O

v
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Iteration Complexity (Sketch)

Algorithm 3 for training Structural SVMs (with margin-rescaling) via the 1-Slack

Formulation (OP4).
1: Input: § = ((x1,31),- .-, (%n, 1)), C, €
2: W —0
3: repeat
4 (w,&) —argmin, ;o Jw w+CE

SLVGL, o 30) €2 AwT 3 [¥(xy) —¥(x30)]) > £ 3 A0 50) €

: axjeq {A (i, 9) +w ¥ (x,9)}

8 W W U{Gr,n )}

9: until 5_)_:1A(y,-,y,-) —iwl 3 ¥ np) — Pl < E+e
10: return(w,) B

~ O\ W
<
T
g

In step 8 we add a constraint.
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This adds a variable to the dual program: «;. Note can set oy = 0, and
so it only increases the objective value.

Optimization Problem 6 (1-SLACK STRUCTURAL SVM WITH MARGIN-
RESCALING (DUAL))

max D(a):_%A(?)ai-% Y, 2, ogoyHur(YY)
= ye n

ye@ny eayn
s.t. 2 og=C
yea"
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o Adding a new constraint y to the model adds a new parameter to the
dual problem; increases its objective value
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o Adding a new constraint y to the model adds a new parameter to the

dual problem; increases its objective value

@ We pick ann:ny = 1,7);, = —%ay/ such that a + (87 is always

dual-feasible (since n”1 = 0)
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o Adding a new constraint y to the model adds a new parameter to the

dual problem; increases its objective value

@ We pick ann:ny = 1,7);, = —%ay/ such that a + (87 is always

dual-feasible (since n”1 = 0)

@ The increase in objective value is lower bounded by the increase in a
line search along 7 (since we are only searching a feasible region of
the dual)
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Adding a new constraint ¥ to the model adds a new parameter to the
dual problem; increases its objective value

We pick an n:ny = 1,7);, = —%ay/ such that a + (87 is always

dual-feasible (since n”1 = 0)
The increase in objective value is lower bounded by the increase in a

line search along 7 (since we are only searching a feasible region of
the dual)

Line search lemma (with some algebra) lets us lower bound this
increase as a function of ¢, C, R.

Seth Neel (Penn) Short title September 28, 2017 27 /33



Time Complexity

Summary

O(n) calls to the separation oracle

O(n) computation time per iteration

Constant number of iterations

Each QP is of constant size, and is hence solved in constant time.

For non-linear kernel it is O(n2)
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@ Applied to binary classification, multi-class classification, linear chain
HMMs, and CFG Grammar learning
@ Two Questions:

@ Does the 1-slack algorithm achieve significant speedups in practice?
@ Is the wx value as good a solution?
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Speed: 1-slack vs. n-slack

CPU-Time # Sep. Oracle # Support Vec.
n N 1l-slack n-slack 1-slack n-slack 1-slack n-slack
MultiC 522,911 378 1.05 1180.56 4,183,288 10,981,131 98 334,524
HMM 35,531 18,573,781 090 177.00 1,314,647 4,476,906 139 83,126
CFG 9,780 154,655 2.90 8.52 224,940 479,220 70 12,890

Slower speedup with slower separation oracle - still significant gains
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Speed: 1-slack vs. ight on binary classification

Table 2 Training CPU time (in seconds) for five binary classification problems comparing the 1-
slack algorithm (without caching) with SVM-light. » is the number of training examples, N is the
number of features, and s is the fraction of non-zero elements of the feature vectors. The SVM-
light results are quoted from (Joachims, 2006), the 1-slack results are re-run with the latest version
of SVM-struct using the same experiment setup as in (Joachims, 2006).

CPU-Time # Support Vec.
n N s l-slack SVM-light 1-slack SVM-light
Reuters CCAT 804,414 47,236 0.16% 58.0 20,075.5 8 230388
Reuters Cl1 804,414 47,236 0.16% 71.3 5,187.4 6 60748
ArXiv Astro-ph 62,369 99,757 0.08% 4.4 80.1 9 11318
Covertype 1 522,911 54 22.22% 53.4 255143 27 279092
KDD04 Physics 150,000 78 38.42% 9.2 1,040.2 13 99123

Faster even on binary classification than state-of-the-art SVM training
algorithms
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Accuracy vs. n-slack

Cutting-Plane Training of Structural SVMs 31
0.09 Ml Class™-+-~
Gor crG

0.02 Task Measure 1-slack n-slack
o . MultiC Accuracy 7233 7235
Py I HMM Token Accuracy 96.71 96.69
0.03 CFG Bracket F; 7022  70.09

(Obj_1 - Obj_nyObj_n
BhbEbs o
2

100 1000 10000 100000 1e+06 1e+07
c

@ Very similar for all tasks except HMM where n-slack outperforms

@ This is because the duality gap Ce is significant part of the objective
value since the data was almost linearly separable.

@ Generalization performance for HMM was still comparable.
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