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Motivating Problem: Noun Phrase Coreferencing

Task: determine which noun phrases in some piece of text refer to
the same entity.

Christopher Robin is alive and well. He lives in England. He is the same
person that you read about in the book, Winnie the Pooh. As a boy, Chris
lived in a pretty home called Cotchfield Farm. When Chris was three years
old, his father wrote a poem about him. The poem was printed in a
magazine for others to read. Mr. Robin then wrote a book.

Correlation clustering: objective function maximizes the sum of
pairwise similarities.

Chun-Nam John Yu, Thorsten Joachims Structural SVMs with Latent Variables October 19, 2017 3 / 21



Motivating Problem: Noun Phrase Coreferencing

Christopher Robin is alive and well. He lives in England. He is the same
person that you read about in the book, Winnie the Pooh. As a boy, Chris
lived in a pretty home called Cotchfield Farm. When Chris was three years
old, his father wrote a poem about him. The poem was printed in a
magazine for others to read. Mr. Robin then wrote a book.

For a cluster of size k , there are O(k2) links, the vast majority of
which contain very weak signals.

Di�cult to determine transitive coreference without searching through
an entire piece of text.
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Motivating Problem: Noun Phrase Coreferencing

Here, Y is the set of non-contradictory pairwise clusters.

Instead, model as an agglomeration problem.
Input: x , contains n noun phrases, and pairwise features xij between
the ith and jth noun phrases.
Output: y , which is a partition of the N phrases into coreferent
clusters.
To choose which clusters are strong, put a latent variable h, which is
a spanning forest of strong coreference links that is consistent with y .
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Structured SVM (SSVM)

Given examples D = {xi , yi}li=1. Say xi 2 X . The following applies margin
rescaling (Tsochantaridis et al., 2004) to give a smooth, convex upper
bound.

Optimization Problem

min
w ,⇠

1

2
w

T
w + C

X

i

⇠i

such that for 1  i  n, 8ŷ 2 Y,

w

T�(xi , yi )� w

T�(xi , ŷ) � �(yi , ŷ)� ⇠i

�(x , y) : feature vector from input x and output y

⇠ : loss to minimize
⇠i � 0 : slack, penalizes violation
�(yi , ŷ) : controls margin between incorrect predictions ŷ and correct label yi
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Extending the Structured SVM to Latent Variables

Sometimes, (x , y) 2 X ⇥ Y is not su�cient to characterize the
input-output relationship, but also may depend on a set of latent variables
(typically unobserved).

How do we enable the structural SVM to handle latent variables?

Notation: let h be a particular variable in a set of latent variables H. h
describes some structure-determining, unobserved factor.

Things to consider:

Feature representation, loss function

Training objective that is non-convex

Inference techniques and problems
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Prediction Rules for a Latent Structural SVM

Extend the joint feature map �(x , y) to �(x , y , h). The feature
vector now captures a relation between some input, some output, and
some latent variable.

We now must perform joint inference over y and h, and we can
mutate the prediction rule for some fw (x) as follows:

New Argmax Prediction Rule

fw (x) = (ȳ , h̄) = argmax(y ,h)2Y⇥H[w · �(x , y , h)]
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Latent Structural SVM Formulation

Optimization Problem for Latent Structural SVM

min
w ,⇠

1

2
w

T
w + C

nX

i=1

⇠i

such that for 1  i , 8ŷ 2 Y,

max
h2H

[w · �(xi , yi , h)]�max
ĥ2H

[w · �(xi , ŷ , ĥ)]  �(yi , ŷ , ĥ)� ⇠i

�(x , y , h) : feature vector from input x , output y , and latent variable h
�(yi , y , h) : margin; assumes no dependence on latent h
⇠i � 0 : slack, penalizes violation, which now upper bounds the loss

If the latent variable is not present, the model degenerates to a
structural SVM
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Prediction Loss with the Addition of Latent Variables

Bound on constraint loss in structural SVM (without latent variable)

�(yi , fw (xi )) 
convexz }| {

max
ŷ2Y

[w · �(xi , ŷ) +�(yi , ŷ)]�w · �(xi , yi )| {z }
linear

= ⇠i

We now need to take the maximum over all latent variables h in H.

Bound on constraint loss in latent structural SVM

�(yi ,fw (xi )) 
max

(ŷ ,ĥ)2Y⇥H
[w · �(xi , ŷ , ĥ) +�(yi , ŷ , ĥ)]

| {z }
convex

�max
h2H

[w · �(xi , yi , h)]
| {z }

concave

= ⇠i
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Latent Structural SVM Objective Formulation

Attempting to formulate the problem in the dual, a concave constraint
remains, as we must compute the maximum over H:

Objective function, with latent variable, dual formulation

min
w

convexz }| {
1

2
w

T
w + C

nX

i=1

max
(ŷ ,ĥ)2Y⇥H

[w · �(xi , ŷ , ĥ) +�(yi , ŷ , ĥ)]

�

�

C

nX

i=1

max
h2H

[w · �(xi , yi , h)]
�

| {z }
concave
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The CCCP Algorithm for Non-Convex Objectives

We have a term with convex and concave parts. How to proceed?

Concave-Convex optimization procedure (Yuille and Rangarajan ’03)

Algorithm:

1 Decompose the objective into a convex and concave part.

2 Upper bound the concave part with a hyperplane.

3 Minimize the resulting convex sum.

4 Iterate on the above until convergence.
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The CCCP Algorithm for Non-Convex Objectives

The Concave-Convex Algorithm:

1 Decompose objective into convex and concave part:

2 Upper bound concave part with a hyperplane:

3 Minimize resulting convex sum (iterate until convergence is reached):
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Applying CCCP to the Objective

We can think of computing the upper bounding hyperplane in the CCCP
algorithm as finding the latent variable that best explains the
input-output pair (xi , yi ). This is equivalent to computing the upper
bounding hyperplane on the concave problem of selecting the best
h 2 H.

Let h⇤i be that best chosen latent variable from H, equivalently defined as:

”Completing” the latent variables

h⇤i = argmaxh2Hw · �(xi , yi , h)
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Applying CCCP to the Objective

Now, we’ve converted the concave latent variable selection problem into a
linear term, and we have a final, convex objective:

Latent structural SVM objective with upper bounding hyperplane

min
w

convexz }| {
1

2
w

T
w + C

nX

i=1

max
(ŷ ,ĥ)2Y⇥H

[w · �(xi , ŷ , ĥ) +�(yi , ŷ , ĥ)]

�

�

C

nX

i=1

w · �(xi , yi , h⇤i )
�

| {z }
linear

From here, we can apply cutting plane algorithms like we can apply to any
structural SVM.
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Latent Structural SVM Summary

Final Optimization Problem

min
w ,⇠

1

2
w

T
w + C

nX

i=1

⇠i

such that for 1  i , 8ŷ 2 Y,

max
h2H

[w · �(xi , yi , h)]�max
ĥ2H

[w · �(xi , ŷ , ĥ)]  �(yi , ŷ , ĥ)� ⇠i

Three primary inference problems overall:

Prediction : argmax(y ,h)2Y⇥Hw · �(xi , y , h)
Loss-augmentation : argmax(ŷ ,ĥ)2Y⇥H[w · �(xi , ŷ , ĥ +�(yi , ŷ , ĥ)]

Latent var. determination : argmaxh2Hw · �(xi , yi , h)
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Noun Phrase Coreferencing with Clustering

We can determine a clustering y given an input x with an maximum
spanning tree algorithm (Kruskal’s algorithm), where weights for an edge
(i , j) can be written as w · xij .
Clustering score with latent spanning forest

w · �(x , y , h) =
X

(i ,j)2h
w · xij

Only consider edges (i , j) that are in the latent spanning forest.

Output the clustering defined by the forest h as y (prediction).
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Noun Phrase Coreferencing with Clustering - Loss

Loss function

�(y , ŷ , ĥ) = n(y)� k(y)�
X

(i ,j)2h
l(y , (i , j))

n(y) : number of vertices in the correct clustering y
k(y) : number of edges in the correct clustering y
l(y , (i , j)) : 1 if i and j are same-clustered in y , else -1

Works well, since we can back out ĥ, and can compute loss-augmented
inference with Kruskal’s algorithm. We can also use Kruskal’s algorithm to
complete h (to choose the optimal, in H.
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Noun Phrase Coreferencing with Clustering - Results

Start with the spanning forest as a linear chain (chronological order);
the algorithm then inserts new weights.

Modifications to incorrect-cluster-linking penalty were required
(significant decreases: mistakes were over-penalized).

Overall improvement once penalization decreased.
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Questions?
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