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Problem	Statement

• The	problem,	we	wish	to	solve:	Labelling	Sequence	Data
• POS	tagging
• Named	Entity	Recognition

• Statement:	Given	an	observation	sequence	x,	we	want	to	choose	a	
label	sequence y*	such	that	the	conditional	probability	P(y	|	x)	is	
maximized,	that	is:	

𝒚∗ = 𝒂𝒓𝒈	𝒎𝒂𝒙𝒚	𝑷 𝒚	 𝒙)
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Generative	Models:	HMM
• HMMs	can	be	used	to	solve	such	problems
• In	NER,	each	observation	(xt)	can	be	the	identity	of	the	word	at	position	t	and	each	state	
(yt)	can	be	the	named-entity	label,	i.e.	one	of	{Person,	Organization,	Location,	Other}.	
• To	be	precise,	named	entities	can	be	multi-tokens.	So,	BIO-method.	
• B:	Beginning,	I:	Intermediate,	O:	Outside.	So	each	label	is	prefixed	with	these	letters	which	indicate	
whether	it’s	the	beginning	or	continuation	of	a	named	entity.

• It	makes	2	assumptions:
1. Each	state	depends	only	on	its	immediate	predecessor,	that	is,	yt ⊥ yi given	yt-1 such	that	i={1,	2,	

…,	t-2}
2. Each	observation	xt depends	only	on	its	current	state	yt

𝑝 𝑦, 𝑥 = 	1𝑝 𝑦2 𝑦234)𝑝(𝑥2|𝑦2)
7
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• The	model	is	generative	because	it	models	the	distribution	P(y ,	x)
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Generative	Models:	Limitations
• Modelling	p(x)	is	difficult	because	it	may	consist	of	many	interdependent	
features
• For	example: In	NER,	word’s	identity	may	not	be	enough	evidence,	especially	in	case	
of	‘Person’	category	as	many	proper	nouns	may	not	occur	in	training	data.	It	may	be	
helpful	to	identify	features	like	capitalization,	neighboring	words,	suffix,	etc.

• HMMs	make	the	independence	assumption	(2)	but	that	is	not	true	above	
because,	suffix	and	capitalization	are	highly	dependent	on	the	word’s	
identity.
• Generative	Models,	in	general,	can	be	enhanced	to	model	inter-
dependencies	between	such	features,	but	then	modelling	that	becomes	
highly	intractable.
• But,	in	the	end,	there	is	a	definite	mismatch	between	the	desired	learning	
objective	and	the	prediction	objective	function.
• Discriminative	models	such	as	MEMM,	CRF	try	to	address	this	issue. 5



Discriminative	Models:	MEMM

• Maximum	Entropy	Markov	Models	(MEMMs) are	discriminative	models,	
where	each	state	has	an	exponential	model	that	takes	the	observation	
sequence	as	input	and	outputs	a	probability	distribution	over	the	next	
possible	states.

𝑃 𝒚 𝒙) = 	1𝑃(𝑦2|𝑦234, 𝑥2)
7
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• Each	of	the	𝑃(𝑦2|𝑦234, 𝑥2),	is	an	exponential	model	of	the	form:

𝑃(𝑦2|𝑦234, 𝑥2) =
1	

𝑍(𝑥2, 𝑦234)
exp	(?𝜆A𝑓A(𝑥2, 𝑦2)

�

A

)

where	Z	is	a	normalization	constant	and	the	summation	is	over	all	features
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MEMM:	Limitations	– Label	Bias	Problem

• MEMM	suffers	from	Label	Bias	Problem,	i.e.,	the	transition	
probabilities	of	leaving	a	given	state	is	normalized	for	only	that	state.

• Imagine	that	during	the	training	a	state	s only	saw	state	s’	as	the	next	
state	when	given	observation	o,	then	according	to	the	eq in	previous	
slide:

𝑃 𝑠′ 𝑠, 𝑜	 = 1
this	is	because	the	normalization	is	done	per	state	and	not	globally.
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MEMM:	Limitations	– Label	Bias	Problem
(example	borrowed	from	Dr.	Ramesh	Nallapati’s slides:	
http://www.cs.stanford.edu/~nmramesh/crf)

• We	can	observe	in	
the	diagram:
• State	1	almost	
always	intend	to	
transit	to	State	2
• State	2	almost	
always	intend	to	
stay	in	State	2
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MEMM:	Limitations	– Label	Bias	Problem
(example	borrowed	from	Dr.	Ramesh	Nallapati’s slides:	
http://www.cs.stanford.edu/~nmramesh/crf)

• P(1->1->1->1)	=	
0.4*0.45*0.5	=	0.090
• P(2->2->2->2)	=	
0.2*0.3*0.3	=	0.018
• P(1->2->2->2)	=	
0.6*0.3*0.3	=	0.054
• P(2->1->1->1)	=	
0.2*0.45*0.5	=	0.450
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Discriminative	Models:	CRF

• Conditional	Random	Fields	(CRFs)	overcomes	the	Label	Bias	problem
• X: random	variable	over	the	observation	sequence	
• Y:	random	variable	over	the	label	sequence
• Defn :	Let	G=(V,E)	be	a	graph	such	that	Y	=	(Yv)v∈V so	that	Y is	indexed	by	vertices	of	G.	Then	(X,Y)	is	a	conditional	random	field	in	case,	when	
conditioned	on	X,	the	random	variables	Yv obey	the	Markov	property	with	
respect	to	the	graph:	p(Yv |	X,	Yw,	w≠v)	=	p(Yv |	X,	Yw,	w~v),	where	w~v	
means	that	w	and	v	are	neighbors	in	G.
• These	are	Linear	Chain	CRF
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Fundamental	Theorem	of	Random	Fields
• Given	by	Hammersley	and	Clifford,	1971,	it	states	that	the	probability	
distribution	of	x	satisfies	the	Markov	property	with	respect	to	graph	G(V,E)	if	and	
only	if,	it	can	be	factored	according	to	G:

𝑃 𝒙 = 	
1
𝑍1𝜓𝒞

�

𝒞
• where	𝑍 is	the	normalization	constant	and	𝜓𝒞 is	the	potential	function	over	
clique	𝒞.
• log	(𝜓𝒞) 	≜ 𝝀𝒞7𝒇(𝒞),	where	𝒇(. ) is	the	feature	vector	defined	over	the	clique	and	
𝝀 is	the	corresponding	weight	vector	for	those	features.

𝑃 𝒙 = 	
1
𝑍1exp	(𝝀𝒞7𝒇(𝒞))

�

𝒞

=
1
𝑍 exp	(?𝝀𝒞7𝒇(𝒞)

�

𝒞

)
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CRF	Notation	Legend
• In	the	few	of	next	slides,	we	use	the	following	notation:
• N:	Number	of	training	examples
• Each	training	example	is	denoted	by	(x,y)
• x =	<𝑥4, 𝑥S, 𝑥T,…, 𝑥7>
• y =	<𝑦4, 𝑦S, 𝑦T,…,	𝑦7>
• 𝒙2U :	tth term	of	ith x
• 𝒚2U :	label	of	tth term	of	ith x
• 𝑓 (boolean edge	feature)	and	𝑔 (boolean vertex	feature)	are	feature	functions.	
• 𝑙 iterates	over	𝑓 features
• 𝑚 iterates	over	𝑔 features
• 𝑣 is	a	vertex	from	vertex	set	V	;		𝑒 is	an	edge	from	edge	set	E
• 𝑦|[:	components	of	𝑦 along	the	edge	𝑒
• 𝑦|\:	components	of	𝑦 along	the	vertex	𝑣
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Linear	Chain	CRF
• P(Y)	can	be	factored	into	the	distributions	involving	the	cliques	of	the	graph.

• Although	the	graph	contains	X and	Y, we	only	define	the	random	field	over	Y
• X	are	observables

• If	the	graph	G	forms	a	tree	or	simply	a	chain,	then	the	cliques	are	the	edges	and	vertices	of	the	graph			
(G-X),	and	the	probability	distribution	of	Y takes	the	form:

𝑃 𝒚|𝒙 ∝ exp ? 𝜆^𝑓 𝑒, 𝒚|[, 𝒙
�

[_`,^

+ ? 𝜇c𝑔c 𝑣, 𝒚|\, 𝒙
�

\_d,c

∝ 	 exp	(? ?(?𝜆^𝑓 𝑦2
U , 𝑦234

U , 𝒙2U +?𝜇c𝑔c 𝑦2
U , 𝒙

�

c

�

^

7

284

e

U84
))

• We	can	normalize	the	above	equation	by	the	following	constant:

𝑍 𝒙 = 	?exp(? ?(?𝜆^𝑓 (𝑦2
(U), 𝑦234

(U) , 𝒙2U ) +?𝜇c𝑔c(𝑦2
(U), 𝒙)

�

c

�

^

7
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e

U84
))

�

𝒚
• So	now,	the	normalization	constant	is	only	a	function	of	observation	sequence	and	not	the	current	
state.	Hence,	it	solves	the	label	bias	problem. 13



Linear	Chain	CRF	:	
Loss	Function	&	Inference

• The	loss	function	is	the	log	likelihood	of	the	probability	distribution:

𝑙 𝜃 = 	? ??𝜆g𝑓g(𝑦2
(U), 𝑦234

(U) , 𝒙2U )
�

g

7
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U84
− log	(𝑍 𝒙U )

• Here,	all	the	features	f	and	g	have	been	written	as	f	for	convenience
• The	loss	function	is	concave	,	which	follows	from	exponential	model	of	the	
probability	distribution
• This	means	that	there	is	a	global	optimal	point.
• Inference:	To	compute	the	most	likely	labelling,	we	compute	y*:

𝒚∗ = argmax
𝒚

𝑃(𝒚|𝒙)

• Viterbi	algorithm	can	be	used	to	solve	this!
14



Parameter	Estimation:	Gradient	Ascent

• Looking	at	the	nature	of	loss	function,	we	can	use	gradient	ascent	algorithm	to	
maximize	the	likelihood	function	𝑙 𝜃 :

𝛻g𝑙(𝜃) =? ?𝑓g(𝑦2
(U), 𝑦234

(U) , 𝑥2
(U))

7
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e

U84
−
1
𝑍?exp	(. )

�

mn

? ?𝑓g 𝑦n2
U , 𝑦n234

U , 𝑥2
U

7
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e

U84
	

																= ? ?𝑓g(𝑦2
(U), 𝑦234

(U) , 𝑥2
(U))

7
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e

U84
−?𝑃 𝑦n|𝑥, 𝜃

�

mn

? ?𝑓g 𝑦n2
U , 𝑦n234

U , 𝑥2
U

7
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U84
			

														= 		𝐸 𝑓g − 𝐸p 𝑓g 																																																																																																												

• Equating	the	gradient	to	zero,	we	note	that	the	optima	is	reached	when	empirical	
expectation	of	feature	𝑓g is	equal	to	the	expectation	w.r.t.	the	model.
• However,	finding	the	closed	form	solution	for	𝜃 is	not	always	possible. 15



Parameter	Estimation:	Iterative	Scaling
• The	main	idea	behind	Iterative	Scaling	is	that	parameters	are	updated	such	that	the	
new	values	are	closer	to	the	optima	than	before.
• If	𝜃 = 𝜆4, 𝜆S, … , 𝜆^, 𝜇4, 𝜇S, … 𝜇c and	∆𝜃 = 𝛿𝜆4, 𝛿𝜆S, … , 𝛿𝜆^, 𝛿𝜇4, 𝛿𝜇S, … 𝛿𝜇c ,	then	
𝜃 +	∆𝜃 will	result	in	a	model	with	higher	log	likelihood.
• Authors,	(in	this	paper)	provide	2	algorithms	to	solve	this:

• Generalized	Iterative	Scaling	(Algorithm	S)
• Improved	Iterative	Scaling	(Algorithm	T)

• However,	the	convergence	is	really	slow.	
• In	the	experiments	done	by	Lafferty	et.	al.	on	using	CRF	for	POS	tagging,	they	observed	that	CRF	did	
not	converge	to	the	optima	value	even	after	2000	iterations	(starting	from	a	uniform	distribution)

• On	the	other	hand,	MEMM	was	able	to	converge	in	~100	iterations.
• They,	then	tried	the	CRF	parameters	with	the	MEMM-optimal	parameters	as	initial	values	and	
observed	the	algorithm	to	converge	in	1000	iterations. 16



Parameter	Estimation:	Newton	method
• Consider	a	multivariate	function	𝑙 𝜃 ,	where	𝜃 = 𝜆4, 𝜆S, … , 𝜆^ .	We	want	to	
choose	∆𝜃 = 𝛿𝜆4, 𝛿𝜆S, … , 𝛿𝜆^ such	that	:

𝑙 𝜃 + ∆𝜃 < 𝑙 𝜃
• We	can	use	Taylor	expansion	to	compute	the	value	of	𝑙 at	points	nearby	𝜃u (given	
that	the	function	𝑙 is	twice	differentiable):

𝑙 𝜽u + ∆𝜽 ≈ 𝑙 𝜽u +	∆𝜽7𝛻𝑙 𝜽u +	
1
2∆𝜽

7(𝛻S𝑙 𝜽u )∆𝜽

• Here	𝛻𝑙 is	the	gradient	and	𝛻S𝑙 is	the	hessian	of	the	function	𝑙
• We	need	to	choose	∆𝜽	to	minimize	𝑙 𝜽u + ∆𝜽
• So,	differentiating	the	eqn above	w.r.t.	∆𝜽	and	setting	it	to	zero,	we	get:

∆𝜽 = −𝑯𝒏
3𝟏𝒈𝒏

where	𝑯𝒏
3𝟏 is	the	inverse	of	hessian	matrix	and	𝒈𝒏 is	the	gradient,	both	evaluated	

at	𝜽u 17



Parameter	Estimation:	Quasi-Newton	method
• Newton	method	requires	the	computation	of	inverse	of	Hessian	matrix.
• Its	quadratic	in	size
• Many	problems	use	millions	of	features.	Even	storing	the	matrix	can	be	a	big	issue.

• Idea	in	Quasi-Newton	method	is	that	instead	of	recalculating	the	hessian	matrix	
at	every	point	in	the	iteration,	we	can	approximate	the	hessian.	The	
approximation	needs	to	qualify	certain	conditions:
• Symmetricity:	Hessian	is	a	symmetric	matrix	since	the	order	of	differentiation	is	irrelevant
• Secant	Condition:	𝐻u(𝜽𝒏 − 𝜽𝒏3𝟏) = (𝒈𝒏 − 𝒈𝒏3𝟏),	that	is,	hessian	is	the	ratio	of	the	
change	in	gradients	w.r.t.	the	change	in	values,	which	is	quite	natural	of	the	hessian
• Positive	semi-definiteness

• L-BFGS	updates	are	applied	to	do	an	approximation	constrained	on	the	above	
conditions
• Advantage:	The	convergence	is	much	faster.
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Experiments	– Mixed	Order	Sources

• Objective	of	experiment	was	to	observe	the	performance	of	systems	if	the	
data	is	from	a	mixed	order	Markov	chain.
• HMM	was	used	to	generate	data:	set	of	5	labels	and	26	observation	values
• Transition	Probability:	𝑝} 𝑦U 𝑦U34, 𝑦U3S = 𝛼𝑝 𝑦U 𝑦U34, 𝑦U3S + 1 − 𝛼 𝑝(𝑦U 𝑦U34
• Emission	Probability:	𝑝} 𝑥U 𝑦U, 𝑥U34 = 𝛼𝑝 𝑥U 𝑦U, 𝑥U34 + 1 − 𝛼 𝑝 𝑥U 𝑦U
• They	don’t	mention	the	initial	probabilities
• Many	test	sets	were	generated	with	different	values	of	𝛼

• Linear	chain	CRF	with	Generalized	Iterative	Scaling,	MEMM	and	HMM	was	
used	to	train	the	model

19



Experiments	– Mixed	Order	Sources
MEMM	vs	CRF
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Experiments	– Mixed	Order	Sources
MEMM	vs	HMM
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Experiments	– Mixed	Order	Sources	
CRF	vs	HMM

• Square	points	represent	test	datasets	
that	were	generated	with	𝛼 < 0.5
and	solid	circles	represents	test	sets	
that	were	generated	with	𝛼 > 0.5
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Regularization

• A	major	thing	missing	in	the	Lafferty’s	paper	was	regularization.
• As	we	saw	in	previous	slide,	the	optimal	parameters	are	reached	when	the	model	
expectation	of	a	feature	becomes	equal	to	the	empirical	expectation	of	the	
feature.
• Thus,	the	model	can	over-fit	to	the	training	data.
• We	can	add	a	regularization	term	to	the	log	likelihood	equation	to	remedy	this:

𝑙 𝜃 = 	∑ ∑ ∑ 𝜆g𝑓g(𝑦2
(U), 𝑦234

(U) , 𝒙2U )�
g

7
284

e
U84 − log 𝑍 𝒙U − ∑ ��

�

S��
�
g

• Here,	we	have	used	L2-regularizer.	We	can	also	use	L1-regularizer	or	could	follow	
structured	sparsity	approach	by	grouping	features	on	a	template-basis.
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General	CRF

• Instead	of	assuming	the	graph	G	to	be	linear,	we	can	assume	a	more	
general	graph.
• Doing	that,	the	definition	of	cliques	would	change	in	the	slide	13	and	we	will	
take	components	of	y	corresponding	to	those	cliques

• Parameter	Estimation:
• Gradient	Descent	and	Iterative	Scaling	methods	both	require	the	calculation	
of	P(y|x)
• Its	an	NP-hard	problem	for	a	general	graph
• Approximation	algorithms	are	required.

• Inference	also	suffers	from	the	same	problem	as	above.
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Skip	Chain	CRF
• Linear	Chain	CRF	make	the	assumption	that	labels	follow	the	Markov	property	given	the	
observation	sequence.	
• In	tasks	such	as	Information	Extraction,	it	may	be	important	for	dependencies	among	
labels	for	similar	observations.
• For	example,	the	same	name	is	mentioned	multiple	times	in	a	document	(non	consecutively).	We	
may	want	to	link	the	states	for	these	observation	symbols.

𝑃 𝒚 𝒙 =
1
𝑍 [exp	(? ??𝜆^𝑓 𝑦2

U , 𝑦234
U , 𝒙2U

�

^

7
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e

U84
) + exp	(? ? ?𝜇g𝑔g 𝑦�

U , 𝑦\
U , 𝒙U	

�

g

�

(�,\)_ℒ

e

U84
)]

• The	second	term	corresponds	to	skip-edges	(edges	between	non	consecutive	states)
• The	parameters	can	be	estimated	in	the	same	way.	However,	inference	becomes	
difficult.	
• Viterbi	algorithm	can	no	longer	be	applied.
• Have	to	use	approximation	algorithms 25



Semi	CRF
• In	many	problems	such	as	NER,	observation	sequence	is	segmented	such	as	
proper	names,	locations,	etc.	and	each	segment	needs	to	be	labelled	separately.	
• Night	Watchmen	stabbed	Jon	Snow:	{(1,2,I),	(3,3,O),	(4,5,I)}:	Each	(t,u,y)	means	t:	starting	
position	;	u:	ending	position	;	y:	label	for	the	segment

• Consider	an	observation	sequence	x and	its	corresponding	segmentation	s =	
<(ti,ui,yi)>
• Define	a	vector	𝒈 =	< 𝑔4, 𝑔S, … , 𝑔� > of	K	feature	functions	each	of	which	maps	
a	particular	segment	j in	s to	a	measurement	𝑔g(𝑗, 𝒙, 𝒔).	Then,

𝑃 𝒔|𝒙, 𝜽 = 4
�
exp	( 𝜽. 𝑮(𝒙, 𝒔)),	where	𝐆 𝐱, 𝐬 = 	∑ 𝒈(𝑗, 𝒙, 𝒔)|𝒔|

�84

• Inference	can	be	done	by	Viterbi	Algorithm
• The	parameters	𝜽 can	be	estimated	using	Quasi-Newton	methods

26



References

• J.	Lafferty,	A.	McCallum,	F.	Pereira Conditional	Random	Fields:	
Probabilistic	Models	for	Segmenting	and	Labeling	Sequence	
Data ICML	2002	
• C.	Sutton	and	A.	McCallum Introduction	to	Conditional	Random	Fields	
for	Relational	Learning In	Statistical	Relational	Learning,	2007
• C.	Sutton	and	A.	McCallum	Collective	segmentation	and	labeling	of	
distant	entities	in	information	extraction	University	of	Massachusetts	
Amherst	Dept.	Of	Computer	Science,	2004.
• S.	Sarawagi and	W.	Cohen	Semi-Markov	Conditional	Random	Fields	
for	Information	Extraction	NIPS,	2005

27



Thank	You

28


