On Amortizing Inference Cost for Structured Prediction

Vivek Srikumar Gourab Kundu Dan Roth

Presenter: Zhan Xiong Chin

Overview

- Background and motivation
- Theorems and approximations
- Experimental results in Semantic Role Labeling

If we solve a lot of inference problems, can we sometimes reuse the results for new problems instead of starting from scratch?

- Integer linear programming (ILP) can be used to do inference on any structured prediction problem
 - Parts of speech tagging
 - Dependency parsing
 - Semantic role labeling

Example from Semantic Role Labeling

- From (Punyakanok et al., 2008)
- Given a **sentence** and a **verb**, label the corresponding **arguments** of the verb:

[A0 I] [V *left*] [A1 my pearls] [A2 to my daughter-in-law] [AM-LOC in my will].

Example from Semantic Role Labeling

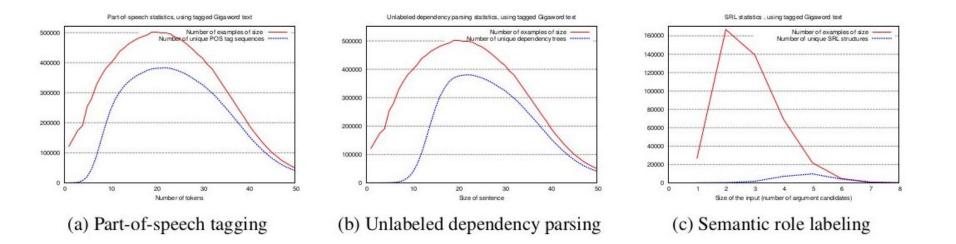
- Train classifiers that score how well each label fits each word/phrase
- Use ILP to maximize overall sum of scores given restrictions:

$$\underset{\substack{\mathbf{u} \in \{0,1\}^{|\mathbf{u}|}}{\operatorname{argmax}} \sum_{i=1}^{M} \sum_{c \in \mathcal{P}} p_{ic} u_{ic},$$
$$\sum_{c \in \mathcal{P}} u_{ic} = 1 \qquad \forall i,$$
$$\sum_{i=1}^{M} u_{iA0} \leq 1$$

- Sometimes, there are many theoretically possible structures for a problem, but only a handful of commonly-seen ones:

[I] [left] [my pearls] [to my daughter-in-law] [in my will].[He] [left] [his house] [to his son] [in a letter].

- Sometimes, there are many possible structures for a problem, but only a handful of commonly-seen ones



If we solve a lot of inference problems, can we sometimes reuse the results for new problems instead of starting from scratch?

Main theorems

Main contributions of paper

- 3 "exact" theorems
 - If conditions hold, the solution to an older ILP problem is necessarily also the optimal solution to a new ILP problem
- Approximations for the theorems
- Experimental results for Semantic Role Labeling (SRL)
 - Makes $\frac{1}{2}$ the number of ILP calls while getting exact optimal solutions
 - Makes ¹/₃ the number of ILP calls when using approximations, with minimal loss of accuracy

Review of ILP

- For the purposes of this paper, we restrict ourselves to 0-1 ILP
 - Given some linear inequalities...
 - ... find a solution that maximizes some linear objective function...
 - ... with each component of the solution either 0 or 1
- ILP (unlike the non-integer version) is NP-hard

 $\begin{aligned} &\arg \max c \cdot y \\ &\forall i \sum_{j} A_{ij} y_j \leq b_j \\ &\forall j, y_j \in \{0, 1\} \end{aligned}$

Equivalence classes of ILPs

- Two ILPs are in the same equivalence class if they have:
 - a. the same **number of inference variables**
 - b. the same **feasible set**

Equivalence classes of ILPs

- Two ILPs are in the same equivalence class if they have:
 - a. the same number of inference variables
 - b. the same **feasible set**

 $\arg \max 5y_1 + 3y_2 + 7y_3$ $2y_1 + 4y_2 + 6y_3 \le 9$ $4y_1 + 8y_2 + y_3 \le 7$ $y_1, y_2, y_3 \in \{0, 1\}$

$$\arg \max \mathbf{12}y_1 + \mathbf{3}y_2 + \mathbf{2}y_3$$
$$2y_1 + 4y_2 + 6y_3 \le 9$$
$$4y_1 + 8y_2 + y_3 \le 7$$
$$y_1, y_2, y_3 \in \{0, 1\}$$

 Increasing weights on "active" variables (variables that are set to 1) or decreasing weights on "inactive" variables (variables that are set to 0) doesn't change the optimal solution

 $\begin{array}{l} \arg\max c \cdot y \\ c = (1, \, 2, \, 2) \\ y = (1, \, 0, \, 1) \end{array}$

 Increasing weights on "active" variables (variables that are set to 1) or decreasing weights on "inactive" variables (variables that are set to 0) doesn't change the optimal solution

 $\begin{array}{l} \arg\max c \cdot y \\ \mathbf{c} = (\mathbf{4}, \, 2, \, 2) \\ \mathbf{y} = (1, \, 0, \, 1) \end{array}$

 Increasing weights on "active" variables (variables that are set to 1) or decreasing weights on "inactive" variables (variables that are set to 0) doesn't change the optimal solution

Proof of Theorem 1

 Let c be the original weights, with y* the optimal solution for the original problem. WLOG, assume c' increases the first component of c by k, and that the first component of y* is 1.

$$z'y^* = cy^* + (c' - c)y^*$$
$$= cy^* + ky_1^*$$
$$= cy^* + k$$
$$\ge cy + ky_1$$
$$= cy + (c' - c)y = cy$$

Proof of Theorem 1

- For the "inactive" case, the argument is similar
- Apply both cases repeatedly to all components of c

- Another way of putting it: take the difference between weights, compare positive and negatives of the difference to the solution found

$$c_1 = (1, 2, 2)$$

$$c_2 = (4, -1, 2)$$

$$\delta c = c_2 - c_1 = (3, -3, 0)$$

$$y = (1, 0, 1)$$

Theorem 1. Let \mathbf{p} denote an inference problem posed as an integer linear program belonging to an equivalence class [P]. Let $\mathbf{q} \sim [P]$ be another inference instance in the same equivalence class. Define $\delta \mathbf{c} = \mathbf{c}_{\mathbf{q}} - \mathbf{c}_{\mathbf{p}}$ to be the difference of the objective coefficients of the ILPs. Then, $\mathbf{y}_{\mathbf{p}}$ is the solution of the problem \mathbf{q} if for each $i \in \{1, \dots, n_{\mathbf{p}}\}$, we have

$$(2\mathbf{y}_{\mathbf{p},i}-1)\delta\mathbf{c}_i \ge 0 \tag{3}$$

- If a solution works for two different vectors of weights, it works for a (nonnegative) linear combination of them too.

$$y^* = \arg \max c_1 \cdot y$$
$$y^* = \arg \max c_2 \cdot y$$
$$\downarrow$$
$$y^* = \arg \max(5c_1 + 7c_2) \cdot y$$

Theorem 2. Let P denote a collection $\{\mathbf{p}^1, \mathbf{p}^2, \cdots, \mathbf{p}^m\}$ of m inference problems in the same equivalence class [P] and suppose that all the problems have the same solution, $\mathbf{y}_{\mathbf{p}}$. Let $\mathbf{q} \sim [P]$ be a new inference program whose optimal solution is \mathbf{y} . Then $\mathbf{y} = \mathbf{y}_{\mathbf{p}}$ if there is some $\mathbf{x} \in \Re^m$ such that $\mathbf{x} \ge \mathbf{0}$ and

$$\mathbf{c}_{\mathbf{q}} = \sum_{j} \mathbf{x}_{j} \mathbf{c}_{\mathbf{p}}^{j}.$$
 (4)

- Can we combine Theorem 1 and 2?

- 1. Look for a linear combination of vectors (Theorem 2) such that...
- 2. ... the difference between this combination and the ILP problem we are solving fulfills Theorem 1

$$\delta c = c - (5c_1 + 7c_2) = (3, -3, 0)$$

y = (1, 0, 1)

Theorem 3. Let P denote a collection $\{\mathbf{p}^1, \mathbf{p}^2, \cdots, \mathbf{p}^m\}$ of *m* inference problems belonging to the same equivalence class [P]. Furthermore, suppose all the programs have the same solution y_p . Let $q \sim [P]$ be a new inference program in the equivalence class. For any $\mathbf{x} \in \Re^m$, define $\Delta \mathbf{c}(\mathbf{x}) = \mathbf{c}_{\mathbf{q}} - \sum_{j} \mathbf{x}_{j} \mathbf{c}_{\mathbf{p}}^{j}$. The assignment $\mathbf{y}_{\mathbf{p}}$ is the optimal solution of the problem \mathbf{q} if there is some $\mathbf{x} \in \Re^m$ such that $\mathbf{x} \geq \mathbf{0}$ and for each $i \in \{1, n_{\mathbf{p}}\}$, we have

$$(2\mathbf{y}_{\mathbf{p},i}-1)\Delta\mathbf{c}_i \ge 0 \tag{5}$$

Implementation

- Theorem 1: loop through all previously solved problems in the same equivalence class, check weights to see if theorem fulfilled
- Theorem 2 and 3: solve a linear (non-integer!) program for combining the existing ILP instances
 - Can also optimize further by only selectively including ILP instances

Approximations

- Top-1/Top-K (approximation "baseline")
 - Since many similar instances tend to have the same structure, just cache the most frequently seen instances for each equivalence class, and use those as our guesses

Approximations

- Approximate Theorem 1/Theorem 3
 - Allow inequalities to be violated by some epsilon
 - Can reuse solutions more often, even if not necessarily the optimal solution

Experimental results

Recap of Semantic Role Labeling

- From (Punyakanok et al., 2008)
- Given a **sentence** and a **verb**, label the corresponding **arguments** of the verb:

[A0 I] [v *left*] [A1 my pearls] [A2 to my daughter-in-law] [AM-LOC in my will].

Experimental results

Туре	Algorithm	# instances	# solver	Speedup	Clock	F1
		5	calls		speedup	
Exact	Baseline	5127	5217	1.0	1.0	75.85
Exact	Theorem 1	5127	2134	2.44	1.54	75.90
Exact	Theorem 2	5127	2390	2.18	1.14	75.79
Exact	Theorem 3	5127	2089	2.50	1.36	75.77
Approx.	Most frequent (Support = 50)	5127	2812	1.86	1.57	62.00
Approx.	Top-10 solutions (Support = 50)	5127	2812	1.86	1.58	70.06
Approx.	Theorem 1 (approx, $\epsilon = 0.3$)	5127	1634	3.19	1.81	75.76
Approx.	Theorem 3 (approx, $\epsilon = 0.3$)	5127	1607	3.25	1.50	75.46

Extensions

- Kundu, Srikumar, Roth (2013)
 - Margin based generalization of Theorem 1
 - Also decompose each inference problem into parts, try to use technique on smaller subproblems rather than on large problems
 - Further improvements: e.g. only makes 16% of inference calls (vs 41%) in Semantic Role Labeling
- Chang, Upadhyay, Kundu, Roth (2015)
 - Another extension of Theorem 1
 - Further improvements to learning using amortized inference
 - Only makes 10%-24% of inference calls in Entity Relation Extraction

References

V. Srikumar, G. Kundu, and D. Roth. 2012. On amortizing inference cost for structured prediction. In *EMNLP*.

V. Punyakanok, D. Roth, and W. Yih. 2008. The importance of syntactic parsing and inference in semantic role labeling. *Computational Linguistics.*

Questions?