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Learning with high dimensional data

¢ Identifying phrase structure
[ He] [, reckons ][ the current account deficit ] [, will narrow ]
[.oto ][ only # 1.8 billion ] [, in ][ September ]

o |nformation Extraction Tasks

afternoon|| Dr. Ab C|| will talk in Ms. De. F class..
o Prepositional Phrase Attachment

buy shirt with sleeves, buy shirt with a credit card
o Context Sensitive Spelling Correction
Illinois” bored of education board
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Learning with high dimensional data

[ He] [, reckons ][ the current account deficit ] [, will narrow ]
[.oto ][ only # 1.8 billion ] [, in ][ September ]

afternoon|| Dr. Ab C|| will talk in Ms. De. F class..

buy shirt with sleeves, buy shirt with a credit card

Illinois’” bored of education board

Features include: (patterns of) words; POS tags; relational
information (location; order;structure...)

In many of these problems dimensionality is 105 or more
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Easiness of Learning

We learn well from relatively small number of examples in
very high dimensional spaces? Should we believe it?

Some high dimensional problems are naturally constrained

and become, effectively, low dimensional problems.
[Roth, Zelenko'OO; Garg, Roth’O1, Vempala'OO]

In these cases, although learning is done in high
dimension, generalization ought to depend on the true,
lower dimensionality of the problem.

Not exploited by current theories
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This work

Introduces a way to analyze learning in high dimension
in 3 way that exploits the lower, effective
dimensionality of the data.

Random projection methods are used to explicitly
exploit the margin distribution

Exhibits generalization bounds the are (sometimes)
realistic (< 0.5) for real problems in NLP and vision
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Standard Bounds

VC dimension based bounds Chyperplanes)

VC(n,m)

ERR, < ERR; +/[n(In(2m / n)+1)—In(5 / 4)]/ m

Margin Based bounds (data dependent; y — margin)

ERR, < ERR; +(2/m)((1/ 7*)logB2m)log8emy’) +log@m  5))
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Intuition

hyperplane h

Hard Problem Easy Problem
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Standard Bounds

VC dimension based bounds Chyperplanes)

VC(n,m)

ERR, < ERR; +/[n(In(2m / n)+1)—In(5 / 4)]/ m

Margin Based bounds (data dependent; y — margin)

ERR, < ERR; +(2/m)((1/ 7*)logB2m)log8emy’) +log@m  5))

Typically:  1<< VCbounds < Margin Based bound
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Real Data

17,000 dimensional context sensitive spelling
Histogram of distance of points from the hyperplane

1.2 ~0.15 ~-0.1 -0.05 0 0.05 0.1 0.15
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Standard Bounds

VC dimension based bounds Chyperplanes)

VC(n,m)

ERR, < ERR; +/[n(In(2m / n)+1)—In(5 / 4)]/ m

Margin Based bounds (data dependent; y — margin)

ERR, < ERR; +(2/m)((1/ 7*)logB2m)log8emy’) +log@m  5))

Typically:  1<< VCbounds < Margin Based bound

Value of bounds: algorithmic insight; model selection
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This work

250

Even for:
17,000 dimensional
context sensitive spelling

150
100

50

Can get bounds
that re < O,S, 0.2 “0.15  -0.1 ~0.05 0 0.05 0.1 0.15
using 3 1000-5000 examples.
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Key Idea: Projection Profile (I)

Learn 3 Hyperplane h from sample S, in high dimension n
Analysis: Project S and h randomly to low dimension (k)
w.h.P (k,S): small distortion of distances.
(Johnson-Lindenstraus) = RARENEISIELs

‘ error

Small error in the

lower dimension
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Key Idea: Projection Profile (II)

Expected amount of error introduced in projection
cap’cured bY‘ a,(D,h) =j Du(x)dD

where: l'lk (x) = min{exp(— | I(I;) J, klzl(x) ,1} l(x)=hfx
the profile:
P(D,h)=(a,(D,h),a,(D,h),..a,(D,h),..)
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Key Idea: Projection Profile (II)

Expected amount of error introduced in projection
cap’cured bY‘ a,(D,h) =j Du(x)dD

: k 1
where: l'lk (x) = mm{exp(— e J, W) ,1} [(X> =htx
the profile:

P(D.h)=(a,(D,h),a,(D,h).,..a,(D,h)...)
gives the tradeoff between dimensionality and accuracy
Resulting bound:

ERR, < ERR, +min, {@, +VC(k,m)}
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Rest of the talk

o Some details
- Random projection
- Random projection for classification

- Projection profile of 3 sample
° Analysis

¢ Future/Questions

Bounds outline Snowbird’02
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Random Projection
Random Matrix:  R[kxn] with ri ~ NCO,1/k)
x eR", x'=Rx e Rk

Theorem|[JohnsonLindenstraus 84]:
uv eR"; [u’' V] =R[u,vl], projections to R*. For any ¢

]2
||u !U” S(]."—C) Zl_e—czkfs

[l =]

where the probability is over the selection of the
random matrix R.
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Plan

o Project 3 sample and the hyperplane
¢ Bound empirical error in the projected space (k)

Bounds Detals Snowbird’02
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Random Projection:A Classification Version

Lemma:
h: h-dimensional classifier, xeRn:llhll=lIx/=1, [(x)=hTx

The probability of misclassifying x due to the
random projection R, is

P[sgn(hT x) # sgn(h"” x')]S min{exp(— 8(21—2 |(;‘():) - j, kl21(x) ,1}
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Intuition: (A Classification Version of RP)

Plsgn(h” x) # sgn(h"” x')]S exp(— F(x)k j
Since llhll=lIxll=1, I=hTx ['=h'Tx’
we have [lh-x|12 = [|hl2 + [Ix][? - 2hTx = 2-2]

82+ 1(x) )"

lh’-xlI> = IhlI> + lIx’[]? = 21"

JL: With probability at least  1-exp(c2 k/8)

(1-c)
(1-c)
(1-c)

hil2 < llh’]I2 < (1+c) |hl?,
X2 < IxI? < (1+c) |Ix]I?
h-xIl2 < lh’-xII2 < (1+c) llh-x]I~.

Can find c in JL so that [ and |" have same sign.

Bounds

Detals Snowbird’02
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Contribution of points to error

© o o ©o o o o O
N W A & N O =

Expected projected error

: 1 | |
1 —0.8 —0.6 —-0.4 -0.2 a 0.2 0.

0.6 0.8 1

distance from hyperplane
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Projection Error for a Sample (I)

Definition (projection error):

Given 3 classifier h, 3 sample S, and a random matrix R,

the classification error caused by R is defined by:

= 3 Hsign(0Ta) # sign(t" )
res

Lemma: With probability>1- & (over the choice of R)

The projection error for sample S, ISl=m is bounded by:

pm](hRS)<L m3eXp[_ lz(x)k 2]
mo 82+ 1(x) )

Errpee;(hy R, S) =
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Proof idea

¢ Bound the expectation of the projection error with
respect to the choice of the random matrix

E|Err

proj

(h,R,S)]

o Use Markov inequality
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Projection Error for a Sample (1I)

Can now establish: The difference between the
classification performance on two samples in high
dimension is similar to difference in low dimension

Lemma:

S,,S, be two samples in R", [S,=1S,/=m);

5,55 the projected sets. Then, with probability >1- 28
P[| Err(h,S,)— Err(h,S,)|> c]|< P[| Err(h',S" )—Err(h',S",) > p]

Where p=e-Err(h,S,)- Err(h,S,)
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Final Bound

Using Vapnik’s doubling trick -
- once on the n dimensional data and
- once on tne projected data, can now bound
Pr[sup | Err(h)— Err(h,S,) > €]
heH
To yield the final bound.
S Random Proj. VCat
mPHCa crror error dimenSiOn k
. \ L
ERR, < ERR, +min, {@, +VC(k,m)}
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Analysis

¢ The expected probability of error for 3 k-dimensional
image of x of distance [(x) = from an n-dimensional

min<g exXp| — L ) 91
82+ |I(x)|)" ) klI”(x)

o Given a probability distribution over the instance
space, cah compute the distribution over the margin

j mins exp| — Eok : 1
xeD 8(2+|U(x) ) ) KI* (x)

¢ E.g., if| ~N(0.3,0.1) can compute this analytically

Bounds A’ﬂygs Snowbird’02 25




Generalization Bound, | ~N

T

| T—— RP Compénent
-— - WC Component
0.9, — Bound ]
0.8 - —
0.7 —
0.0} VC component
% 0.5
0.4r-
0.3F =T —
N RP component |
0-1_{,// xhaﬁ_‘hﬁh/ |
0 1(|)0 26}0 SCI}O 460 560 GIIJO ?EI]IO 800_ - ;(;:}_ _1;}00
Projected Dimension
Bound dominated by VC component in the
projected dimension
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-RP error term -

L]

Real Data (1)

17,000 context
Sensitive spelling
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Real Data (1I)

RBF kernel face detection
Ihfinite dimension

0.9r

0.8

0.7r

0.6

0.5r

0.4r

0.3r

0.2r

1 | 1
-0.05 0 0.05 0.1 0.15

RP error term

01

0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Projected dimension

Bounds Andysis Snowbird’02 28




Conclusions

o Understanding learning in high dimensional spaces
> Analysis of error based on
- Prediction preserving projection into low dimension
- Standard VC argument at low dimension
¢ Projection proﬁle
depends on distribution of distance of points to hyperplane

¢ Gives informative bounds for some real world (very)
high dimensional problems

o Algorithmic implications? Better than random pro;j. ?

Bounds ndusion Snowbird’02 29



Puzzle

o Is it really the marqin?

o Example: Winnow vs. Perceptron.

o Perceptron tries to maximize the margin; Winnow
does not.

> Indeed, Winnow’s margin distribution is worse.

¢ Yet, Winnow performs consistently better.

Bounds ndusion Snowbird’02 30
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Comparison

Generalization Error
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Real Generalization
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