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buy shirt with sleeves,  buy shirt with a credit card

He reckons the current account deficit will narrow to only # 1.8 billion in
September

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ]
[PP to ] [NP only # 1.8 billion ] [PP in ] [NP September ]

• Identifying phrase structure

buy shirt with sleeves,  buy shirt with a credit card
• Context Sensitive Spelling Correction

Illinois’ bored of education                              board 

• Prepositional  Phrase  Attachment

Learning with high dimensional data 

• Information Extraction Tasks
afternoon,     Dr. Ab C    will talk in Ms. De. F class..

introduction
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Learning with high dimensional data 

He reckons the current account deficit will narrow to only # 1.8 billion in
September

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ]
[PP to ] [NP only # 1.8 billion ] [PP in ] [NP September ]

afternoon,     Dr. Ab C    will talk in Ms. De. F class..

buy shirt with sleeves,  buy shirt with a credit card

Illinois’ bored of education                              board 

Features include: (patterns of) words; POS tags; relational 
information (location; order;structure…)

In many of these problems dimensionality is 105 or more
introduction
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Easiness of Learning

We learn well from relatively small number of examples in 
very high dimensional spaces? Should we believe it?

Some high dimensional problems are naturally constrained 
and become, effectively, low dimensional problems.

[Roth, Zelenko’00; Garg, Roth’01, Vempala’00]

In these cases, although learning is done in high 
dimension, generalization ought to depend on the true, 
lower dimensionality of the problem. 

Not exploited by current theories
introduction
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This work

Introduces a way to analyze learning in high dimension
in a way that exploits the lower, effective 
dimensionality of the data.

Random projection methods are used to explicitly 
exploit the margin distribution

Exhibits generalization bounds the are (sometimes) 
realistic (< 0.5) for real problems in NLP and vision   

introduction
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Standard Bounds 

VC dimension based bounds (hyperplanes)

Margin Based bounds (data dependent; γ – margin)
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introduction
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Intuition

+

hyperplane h

+

γ=minS ht x

Hard Problem Easy Problem

introduction
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Standard Bounds 

VC dimension based bounds (hyperplanes)

Margin Based bounds (data dependent; γ – margin)

Typically: 1 << VC bounds  <  Margin Based bound
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( ))/8log()8log()32log()/1()/2( 22 δγγ memmmERRSD ++≤

VC(n,m)

ERR

introduction
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Real Data  

17,000 dimensional context sensitive spelling 
Histogram of distance of points from the hyperplane

introduction
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Standard Bounds 

VC dimension based bounds (hyperplanes)

Margin Based bounds (data dependent; γ – margin)

Typically: 1 << VC bounds  <  Margin Based bound

Value of bounds: algorithmic insight; model selection
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introduction
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This work

Even for:
17,000 dimensional 
context sensitive spelling

Can get bounds
that are < 0.5, 
using a 1000-5000 examples. 

outline
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Key Idea: Projection Profile (I)

Learn a Hyperplane h from sample S, in high dimension n
Analysis: Project S and h randomly to low dimension (k)
w.h.p (k,S):  small distortion of distances. 
(Johnson-Lindenstraus)

Small error in the 
lower dimension 

{
may incur 
error

o.k. 
w.h.p.

outline
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Key Idea: Projection Profile (II)

Expected amount of error introduced in projection 
captured by:

where:
the profile: 
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Key Idea: Projection Profile (II)

Expected amount of error introduced in projection 
captured by:

where:
the profile:

gives the tradeoff between dimensionality and accuracy
Resulting bound:
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Rest of the talk

• Some details
- Random projection
- Random projection for classification
- Projection profile of a sample

• Analysis

• Future/Questions

outline
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Random Projection 

Random Matrix:      R[k×n] with rij ~ N(0,1/k)
x ∈ℜn ,  x’=Rx ∈ℜk

Theorem[JohnsonLindenstraus 84]:
u,v ∈ℜn ; [u‘,v‘] =R[u,v], projections to ℜk. For any c

where the probability is over the selection of the
random matrix R.

Details
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Plan

• Project a sample and the hyperplane
• Bound empirical error in the projected space (k) 

Details
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Random Projection:A Classification Version

Lemma:
h:  n-dimensional classifier, x∈ℜn;||h||=||x||=1, l(x)=hTx 

The probability of misclassifying x due to the
random projection R, is
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Details
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Intuition: (A Classification Version of RP)

Since ||h||=||x||=1, l=hT x  l’=h’T x’ 
we have ||h-x||2 = ||h||2 + ||x||2 - 2hT x = 2-2l

||h’-x’||2 = ||h’||2 + ||x’||2 – 2l’ 
JL:  With probability at least    1-exp(c2 k/8)

(1-c) ||h||2 ≤ ||h’||2 ≤ (1+c) ||h||2,
(1-c) ||x||2 ≤ ||x’||2 ≤ (1+c) ||x||2

(1-c) ||h-x||2 ≤ ||h’-x’||2 ≤ (1+c) ||h-x||2.
Can find c in JL so that l and l’ have same sign.
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Contribution of points to error

distance from hyperplane

Ex
pe

ct
ed

 p
ro

je
ct

ed
 e

rr
or

k increases

















−= 1,

)(
1,

|)(|
expmin)( 2 xklxl

kxuk

Details



Bounds Snowbird’02 21

Projection Error for a Sample (I)
Definition (projection error):  
Given a classifier h, a sample S, and a random matrix R,
the classification error caused by R is defined by: 

Lemma: With probability>1- δ (over the choice of R)
The projection error for sample S, |S|=m is bounded by:

∑ 
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Details
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Proof idea 
• Bound the expectation of the projection error with 

respect to the choice of the random matrix

• Use Markov inequality

)],,([ SRhErrE proj

Details
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Projection Error for a Sample (II)
Can now establish: The difference between the 

classification performance on two samples in high 
dimension is similar to difference in low dimension 

Lemma:
S1,S2 be two samples in ℜn, |S1|=|S2|=m; 
S’1,S’2 the projected sets.  Then, with probability >1- 2δ

Where ρ=ε-Err(h,S1)- Err(h,S2)
]|)','()','([|]|),(),([| 2121 ρε >−<>− ShErrShErrPShErrShErrP

Details
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Final Bound

Using Vapnik’s doubling trick –
- once on the n dimensional data and 
- once on the projected data, can now bound

To yield the final bound.
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VC at 
dimension k

Random Proj. 
errorEmprical error

Details
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Analysis 

• The expected probability of error for a k-dimensional 
image of x of distance l(x) =   from an n-dimensional 
hyperplane:

• Given a probability distribution over the instance 
space, can compute the distribution over the margin

• E.g., if l ~N(0.3,0.1) can compute this analytically
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Analysis
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Generalization Bound, l ~N

VC component

RP component

Bound

Bound dominated by VC component in the 
projected dimension

Analysis
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Real Data (I)
17,000 context
Sensitive spelling

Margin based bounds

Lo
g(

10
) 

# 
sa

m
pl

es

Margin

RP
 e

rr
or

 te
rm

Projected dimension
Analysis
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Real Data (II) 
RBF kernel face detection
Infinite dimension

RP
 e
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or

 te
rm

Projected dimension
Analysis
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Conclusions

• Understanding learning in high dimensional spaces
• Analysis of error based on

- Prediction preserving projection into low dimension 
- Standard VC argument at low dimension 

• Projection profile
depends on distribution of distance of points to hyperplane

• Gives informative bounds for some real world (very) 
high dimensional problems

• Algorithmic implications? Better than random proj. ?
Conclusion
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Puzzle 

• Is it really the margin? 

• Example: Winnow vs. Perceptron.
• Perceptron tries to maximize the margin; Winnow 

does not. 
• Indeed, Winnow’s margin distribution is worse. 

• Yet, Winnow performs consistently better. 

Conclusion



Bounds Snowbird’02 31

Puzzle 

Conclusion
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Comparison

Conclusion
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Real Generalization

Conclusion
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