
Efficiency versus Convergence of
Boolean Kernels
for On-Line Learning Algorithms
Roni Khardon

Tufts University
Dan Roth

University of Illinois, Urbana-Champaign
Rocco Servedio

Harvard University

2

Abstract (I)

We study online learning in Boolean domains using kernels
which capture feature expansions equivalent to using
conjunctions over basic features.

We demonstrate a tradeoff between the computational
efficiency with which these kernels can be computed and the
generalization ability of the classifier.

3

Details (I)

We first describe several kernel functions which capture either
limited forms of conjunctions or all conjunctions.

We show that these kernels can be used to efficiently run the
Perceptron algorithm over an exponential number of
conjunctions.

However we also prove that using such kernels the Perceptron
algorithm can make an exponential number of mistakes even
when learning simple functions.

4

Details (II)

We also consider an analogous use of kernel functions to run the
multiplicative-update Winnow algorithm over an expanded
feature space of exponentially many conjunctions.

While known upper bounds imply that Winnow can learn DNF
formulae with a polynomial mistake bound in this setting, we
prove that it is computationally hard to simulate Winnow's
behavior for learning DNF over such a feature set, and thus
that such kernel functions for Winnow are not efficiently
computable.

5

Search Terms

• Learning Boolean functions with Perceptron and
Winnow

• Kernels for the Boolean Domain

• Computational Efficiency vs. Generalization Ability
over expended feature spaces

• Perceptron: +++++++ -------
• Winnow: ------- +++++++

6

Story

• Linear learning algorithms have been applied successfully to
several large scale real world classification problems.

• The SNoW system [Roth et.al] has successfully applied
variations of Perceptron and Winnow to problems in natural
language processing.

First, extract Boolean features from examples (e.g., text)

Generate structurally restricted conjunctions of these basic
features.

Use linear learning algorithms over these expanded higher-
dimensional examples, in which each conjunction plays the
role of a basic feature

7

Expressiveness, Efficiency, Generalization
Expansion leads to an increase in expressiveness

⇒may improve performance.
Expansion also dramatically increases the number of features

⇒ may adversely affect both the computation time and
convergence rate of learning.

Goal: study the use of kernel functions to expand the feature
space and enhance the learning abilities of Winnow and
Perceptron

Specifically: computational efficiency and convergence over
expanded feature spaces of conjunctions.

8

Background: Perceptron

• Maintains a weight vector w∈RN, w0=(0,…,0).
• Upon receiving an example x ∈ RN

• Predicts according to the linear threshold function w•x ≥ 0.
– If w•x ≥ 0, and the label is -1, w = w-x (demotion)

– If w•x < 0, and the label is 1, w = w+x (promotion)

– No weight update if there is no mistake.

Theorem 1 [Novikoff] Let (x1; y1),…,: (xt; yt), be a sequence of
labeled examples with xi ∈RN, ||xi||≤R and yi ∈{-1,1} for all i. Let
u∈RN, ξ > 0 be such that y_i u • xi ≥ ξ for all i. Then Perceptron
makes at most ||u||2 R2 / ξ2 mistakes on this example sequence.

9

Background: Winnow

• Maintains a weight vector w∈RN, w0=(1,…,1), α>1, θ >1
• Upon receiving an example x ∈ {0,1}N,
• Predicts according to the linear threshold function w•x ≥ θ.

– If w•x ≥ θ, but label is -1, wi = wi/α for i s.t. xi =1(demotion)

– If w•x < θ, but label is 1, wi = wiα for i s.t. xi =1(promotion)

– No weight update if there is no mistake.

Theorem 2 [Littlestone] Let the target function be a k-literal
monotone disjunction f(x1,…,xN) =xi1∨…∨xik. For any sequence
of examples in {0,1}N labeled according to f, the number of
prediction mistakes made by Winnow(α; θ) is at most
α/(α-1) •N/ θ + k(α + 1)(1 + logα θ) (Use, e.g. α = 2 and θ = N).

10

Result I:
Kernel Perceptron with Exponentially Many Features

Theorem 3 There is an algorithm that simulates Perceptron over
the 3n-dimensional feature space of all conjunctions of n basic
features. Given a sequence of t labeled examples in {0,1}n the
prediction and update for each example take poly(n; t) steps.

Comment Closely related to the problem of efficient learnability of DNF
expressions. However, the values of N and R in Theorem 1 can be
exponentially large, and hence the mistake bound given by Theorem 1
is exponential rather than polynomial in n.

Question Is the exponential upper bound implied by Theorem 1 tight for
kernel Perceptron?.

Answer Yes. Thus kernel Perceptron cannot efficiently learn DNF (next)

11

Result II:
Kernel Perceptron with Exponentially Many Mistakes

Theorem 4 There is a monotone DNF f over x1,,…., xn and a
sequence of examples labeled according to f which causes the
kernel Perceptron algorithm to make 2Ω(n) mistakes.

Corollary Kernel Perceptron cannot efficiently learn DNF

12

Result III:
Learning DNF with Kernel Winnow is Hard

Theorem 5 If P≠ #P then there is no polynomial time algorithm
which simulates Winnow over exponentially many monotone
conjunctive features for learning monotone DNF.

Comment An attractive feature of Winnow (Theorem 2) is that for
suitable values of α, θ the bound is logarithmic in the total number of
features N (e.g. α = 2 and θ = N). Therefore, if a Winnow analogue of
Theorem 3 existed, this would imply efficient learnability of DNF.
Theorem 5 shows that no such analogue can exist.

13

Details:
Kernel Perceptron with Exponentially Many Features

)xxw(Th f(x) n

1i ii∑ =
=)(θExamples x ∈ {0,1}N, Hypothesis w∈RN,

Let I be the set of monomials over .
Then we can write a linear function over this new feature space.

n21 ,...xx,x,....321 t,t,t

)xtw(Th f(x)
i ii∑∈

=
I

)(θ

0 (11010)xx 1 (11010)xxx :Example 43421 ==

14

Details (II):
Kernel Perceptron with Exponentially Many Features

• Assume running Perceptron over the new feature space
P:set of promoted examples; D:set of demoted examples M= P∪ D

∑ ∑∑ ∑∑ ∈
∈

∈
=∈=∈









=








−=

II
(()(

i ii
Mz

i i
1(z)tD,z1(z)tP,z

x)z)ttS(z)(Th)xt11(Th f(x)
ii

θθ

)xtw(Th f(x)
i ii∑∈

=
I

)(θ

Where S(z)=1 if z ∈P and S(z) = -1 if z ∈D. Reordering:
∑ ∑∈

∈

=
Mz

Ii
iiθ))(x(z)ttS(z)(Th f(x)

∑ ∈
=

Mzθ z))S(z)K(x,(Th f(x)

)xz)tt z)K(x,
i

ii∑
∈

=
I

((With the standard notation:

15

Details (III):
Kernel Perceptron with Exponentially Many Features

• To run Perceptron over the enhanced feature space we must
predict 1 iff wt •t(x) ≥ θ,
where wt is the weight vector in the enhanced space.

• The previous discussion shows that this holds iff

Where M - the examples on which the algorithm made mistakes,
S(Z) ∈ {-1,1}, the label of the example, and

∑ ∈
≥

Mz
 z)S(z)K(x, θ

)xz)tt z)K(x, ii∑= ((
i∈I

16

Kernel Perceptron with Exponentially Many Features
Boolean Kernels

The general case: To express all 3n conjunctions (with positive and
negative literals) we take K(x,y) = 2same(x,y) where same(x,y) is
the number of original features that have the same value in x and
y. This kernel has been obtained independently by Sadohara’01.

Monotone Monomials: To express all monotone monomials we
take K(x,y) = 2samepos(x,y) where samepos(x,y) is the number of
active features common to both x and y.
Useful where the total number n of basic features is large (or unknown
in advance) but any one example only has a few 1 features.

A parameterized kernel: Captures all conjunctions of size at most
k for some k<n: The number of such conjunctions that satisfy
both x and y is (also:Watkins’99)
Allows to trade off expressivity against #(examples) and convergence.

∑ =
=

k

0l
l)y),C(same(x, y)K(x,

17

Details
Kernel Perceptron with Exponentially Many Mistakes

Theorem 4 There is a monotone DNF f over x1,,…., xn and a
sequence of examples labeled according to f which causes the
kernel Perceptron algorithm to make 2Ω(n) mistakes.

We describe a monotone DNF target function and a sequence of
labeled examples which cause the monotone kernel Perceptron
algorithm to make exponentially many mistakes.

The target DNF is very simple: it is the single conjunction x1x2…xn
While the original Perceptron algorithm over the n features makes
at most poly(n) mistakes for this target function, we show that the
monotone kernel Perceptron algorithm which runs over all 2n

monotone monomials can make 2 + en/9600 mistakes.

18

Details (II)
Kernel Perceptron with Exponentially Many Mistakes

The first example is the negative examples 0n . The Perceptron
predicts 1. Empty coefficient is demoted. Other remain 0.

The second examples is the positive example 1n . The Perceptron
predicts -1. All coefficient are promoted (0, 1, 1,…,1).

The next en/9600 examples are given by the lemma below. All are
negative, but the Perceptron predicts 1 on all.

Lemma 6 There is a set of n-bit strings S = {x1,… xt} ⊂ {0,1}n

with t = en/9600 such that
|xi|= n/20 for 1≤ i ≤ t and |xi ∩xi |= n/80, for 1≤ i < j ≤ t

19

Details
Learning DNF with Kernel Winnow is Hard

Theorem 5 If P≠ #P then there is no polynomial time algorithm
which simulates Winnow over exponentially many monotone
conjunctive features for learning monotone DNF.

In order to run Winnow over all 2m-1 nonempty monomials to learn
monotone DNF, one must be able to solve KWP efficiently.
Theorem 5 is proved by showing that KWP is computationally
hard for any parameter settings which yield a polynomial mistake
bound for Winnow via Theorem 2.

20

Details (II)
Learning DNF with Kernel Winnow is Hard

KWP(α, θ) is reduced to the problem of counting the number of
satisfying assignment of a monotone 2-SAT.

This is used to prove the hardness results:

See paper for details.

21

Conclusions

• It is necessary to expand the feature space if linear learning
algorithms are to learn expressive functions.

• This work explores the tradeoff between computational
efficiency and convergence (i.e. generalization ability) when
using expanded feature spaces.

• We have shown that additive and multiplicative update
algorithms differ significantly in this respect.

• We believe that this fact could have significant practical
implications.

	Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms
	Abstract (I)
	Details (I)
	Details (II)
	Search Terms
	Story
	Expressiveness, Efficiency, Generalization
	Background: Perceptron
	Background: Winnow
	Result I:Kernel Perceptron with Exponentially Many Features
	Result II:Kernel Perceptron with Exponentially Many Mistakes
	Result III:Learning DNF with Kernel Winnow is Hard
	DetailsKernel Perceptron with Exponentially Many Mistakes
	Details (II)Kernel Perceptron with Exponentially Many Mistakes
	DetailsLearning DNF with Kernel Winnow is Hard
	Details (II)Learning DNF with Kernel Winnow is Hard
	Conclusions

