
September 2015 

The 18th International Conference of Text, Speech and Dialogue 
(TSD 2015)  

Plzen, Czech Republic 

Learning and Inference  
for  

Natural Language Understanding  
 
  

Dan Roth 
Department of Computer Science 
University of Illinois at Urbana-Champaign 

Page 1 



September 2015 

The 18th International Conference of Text, Speech and Dialogue 
(TSD 2015)  

Plzen, Czech Republic 

With thanks to:  
Collaborators: Kai-Wei Chang, Xiao Chen, Dan Goldwasser, Daniel Khashabi,  
                       Gourab Kundu, Haoruo Peng, Lev Ratinov, Vivek  Srikumar; others  
Funding:   NSF; DHS; NIH; DARPA; IARPA, ARL, ONR, Google, AI2 
                    DASH Optimization (Xpress-MP); Gurobi.  

Learning and Inference  
for  

Natural Language Understanding  
 
  

Dan Roth 
Department of Computer Science 
University of Illinois at Urbana-Champaign 

Page 1 



Page 2 



Comprehension 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

Page 3 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

This is an Inference Problem 
 

Page 3 



Why is it Difficult? 

Meaning 
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Ambiguity  
It’s a version of Chicago – the 
standard classic Macintosh 
menu font, with that distinctive 
thick diagonal in the ”N”. 

Chicago was used by default 
for Mac menus through 
MacOS 7.6, and OS 8 was 
released mid-1997.. 

Chicago VIII was one of the 
early 70s-era Chicago 
albums to catch my 
ear, along with Chicago II. 
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Determine if Jim Carpenter works for the government 
 

Jim Carpenter works for the U.S. Government. 
The American government employed Jim Carpenter. 
Jim Carpenter was fired by the US Government. 
Jim Carpenter worked in a number of important positions.  

….  As a press liaison for the IRS, he made contacts in the 
white house.  

Russian interior minister Yevgeny Topolov met yesterday 
with his US counterpart, Jim Carpenter. 

Former US Secretary of Defense Jim Carpenter spoke today… 
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Variability in Natural Language Expressions 

Standard techniques cannot 
deal with the variability of 
expressing meaning  
nor with the  
ambiguity of interpretation 
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Variability in Natural Language Expressions 

Needs:  
 Understanding Relations, Entities and Semantic Classes 
 Acquiring knowledge from external resources; representing knowledge 
 Identifying, disambiguating  & tracking  entities, events, etc.  
 Time, quantities, processes… 

Standard techniques cannot 
deal with the variability of 
expressing meaning  
nor with the  
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What we do 

 Understanding natural 
language 
 Lexical inference 
 Semantic Parsing 
 Discourse phenomena 
 ….. 
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 Temporal Reasoning 
 Spatial Reasoning 
 Quantitative Reasoning 
 ……. 

 



What we do 

 Understanding natural 
language 
 Lexical inference 
 Semantic Parsing 
 Discourse phenomena 
 ….. 

Page 7 

 Understanding a lot of domains 
 Events 
 Temporal Reasoning 
 Spatial Reasoning 
 Quantitative Reasoning 
 ……. 

 
 Knowledge 

 Acquisition 
 Representation 
 …. 



What we do 

 Understanding natural 
language 
 Lexical inference 
 Semantic Parsing 
 Discourse phenomena 
 ….. 

Page 7 

 Understanding a lot of domains 
 Events 
 Temporal Reasoning 
 Spatial Reasoning 
 Quantitative Reasoning 
 ……. 

 
 Knowledge 

 Acquisition 
 Representation 
 …. 

 How to use knowledge to 
support textual inference? 
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What is Needed? 

 A computational 
Framework 

 Examples: 
 Modeling 
 Learning 
 Inference 
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1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
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he is a real person who is grown now.  He has written two books of his own.  
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Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

                       
 
 
 
 



Expectation is a knowledge 
intensive component Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

                       
 
 
 
 



Expectation is a knowledge 
intensive component Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

                       
 
 
 
 



Expectation is a knowledge 
intensive component Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

                       
 
 
 
 

Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  



Expectation is a knowledge 
intensive component Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

                       
 
 
 
 

Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  

Many forms of Inference; a lot boil down to determining best assignment  
 



Expectation is a knowledge 
intensive component Natural Language Understanding 

 Natural language understanding decisions are global decisions 
that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  

 
 
 
 
 

 How can we get there? 
 
 
 
 

Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  

Many forms of Inference; a lot boil down to determining best assignment  
 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Joint inference gives 
good improvement  

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Key Questions:  
How to guide the global inference?  
How to learn the model(s)?  

Joint inference gives 
good improvement  

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Models could be learned separately/jointly; constraints may come up only at decision time.  

Key Questions:  
How to guide the global inference?  
How to learn the model(s)?  

Joint inference gives 
good improvement  

Page 11 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Models could be learned separately/jointly; constraints may come up only at decision time.  

Key Questions:  
How to guide the global inference?  
How to learn the model(s)?  

Joint inference gives 
good improvement  

Page 11 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)    

Page 12 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)    

Page 12 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)    

Page 12 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

Weight Vector for 
“local” models Features, classifiers; log-

linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)    

Page 12 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models Features, classifiers; log-

linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 12 



Constrained Conditional Models 

                                                   

                                                          

                                                                         
                                            

                                                                                       
                         

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 12 



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

                                                                         
                                            

                                                                                       
                         

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 12 



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); Unified 
EM (Samdani et. al (12)] 

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 12 



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); Unified 
EM (Samdani et. al (12)] 

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  y = argmaxy ∑ 1Á(x,y) wx,y     subject to Constraints C(x,y) 
 

Page 12 



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); Unified 
EM (Samdani et. al (12)] 

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  y = argmaxy ∑ 1Á(x,y) wx,y     subject to Constraints C(x,y) 
 

Any MAP problem w.r.t. any probabilistic 
model, can be formulated as an ILP  
[Roth+ 04, Taskar 04] 

Page 12 



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); Unified 
EM (Samdani et. al (12)] 

                                                                                

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  y = argmaxy ∑ 1Á(x,y) wx,y     subject to Constraints C(x,y) 
 

Any MAP problem w.r.t. any probabilistic 
model, can be formulated as an ILP  
[Roth+ 04, Taskar 04] 

Page 12 

Variables are models   



Constrained Conditional Models 

 Training:  learning the objective function (w, u) 

 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); Unified 
EM (Samdani et. al (12)] 

 The benefits of thinking about it as an ILP are conceptual and computational.  

  

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  y = argmaxy ∑ 1Á(x,y) wx,y     subject to Constraints C(x,y) 
 

Any MAP problem w.r.t. any probabilistic 
model, can be formulated as an ILP  
[Roth+ 04, Taskar 04] 

Page 12 

Variables are models   



Examples: CCM Formulations 
y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 



Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 



Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 
 3. SRL                                      (Independent classifiers + Global Constraints)  



Knowledge/Linguistics Constraints 
 
Cannot have both A states and B states 
in an output sequence.  

Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

Sequential Prediction 
 
HMM/CRF based: 
                     Argmax ∑ ¸ij xij 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 
 3. SRL                                      (Independent classifiers + Global Constraints)  



Knowledge/Linguistics Constraints 
 
Cannot have both A states and B states 
in an output sequence.  

Knowledge/Linguistics Constraints 
 
If a modifier chosen, include its head 
If verb is chosen, include its arguments  

Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

Sequential Prediction 
 
HMM/CRF based: 
                     Argmax ∑ ¸ij xij 

Sentence 
Compression/Summarization: 
Language Model based: 
                     Argmax ∑ ¸ijk xijk 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 
 3. SRL                                      (Independent classifiers + Global Constraints)  



Knowledge/Linguistics Constraints 
 
Cannot have both A states and B states 
in an output sequence.  

Knowledge/Linguistics Constraints 
 
If a modifier chosen, include its head 
If verb is chosen, include its arguments  

Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

Sequential Prediction 
 
HMM/CRF based: 
                     Argmax ∑ ¸ij xij 

Sentence 
Compression/Summarization: 
Language Model based: 
                     Argmax ∑ ¸ijk xijk 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  

Page 13 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 
 3. SRL                                      (Independent classifiers + Global Constraints)  



Knowledge/Linguistics Constraints 
 
Cannot have both A states and B states 
in an output sequence.  

Knowledge/Linguistics Constraints 
 
If a modifier chosen, include its head 
If verb is chosen, include its arguments  

Examples: CCM Formulations 

While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  

Sequential Prediction 
 
HMM/CRF based: 
                     Argmax ∑ ¸ij xij 

Sentence 
Compression/Summarization: 
Language Model based: 
                     Argmax ∑ ¸ijk xijk 

Constrained Conditional Models Allow: 
 Decouple complexity of the learned model from that of the desired output 
 Learn a simple model  (multiple; pipelines); reason with a complex one. 
 Accomplished by incorporating constraints to bias/re-rank global decisions 

to satisfy (minimally violate) expectations.   
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding/Acquisition – knowledge – inference  
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Semantic Role Labeling (SRL)  

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  



 Identify argument candidates 
 Pruning  [Xue&Palmer, EMNLP’04] 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Argument Classifier  

 Multi-class classification 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

Algorithmic Approach 
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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Extended Semantic Role Labeling 

Page 18 

 Improved sentence level analysis; dealing with more phenomena  

Sentence level 
analysis may be 
influenced by 
other sentences 



Examples of Preposition Relations 

Queen of England 

City of Chicago 
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Predicates Expressed by Prepositions 
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at:1 
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at:2 

cooler in the evening 
in:3 

drive at 50 mph 
at:5 

arrive on the 9th 

on:17 

the camp on the island 
on:7 

look at the watch 
at:9 

Index of definition on Oxford English Dictionary 
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 John, a fast-rising politician, slept on the train to Chicago. 
 Verb Predicate: sleep 
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 What was John’s destination? 

 Relation: Destination (preposition)  
 train to Chicago 

Computational Questions 
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Computational Challenges 

 Predict the preposition relations 
 [EMNLP, ’11] 

 Identify the relation’s arguments 
 [Trans. Of ACL, ‘13] 
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Input & 
relation 



The bus was heading for Nairobi in  Kenya. 

Prepositional Relations: Coherence of predictions 

Location 

Destination 
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The bus was heading for Nairobi in  Kenya. 

Prepositional Relations: Coherence of predictions 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Predicate arguments from different triggers should be consistent 

Joint constraints 
linking the two tasks. 
 
Destination  ⇔ A1 
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Joint inference (CCMs) 

Verb arguments Preposition relations 
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Verb arguments Preposition relations 

Constraints: 

Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Page 24 

+ …. 

+ Joint constraints between tasks; easy with ILP formulations 

Joint Inference – no (or minimal) joint learning 



Poor care led to her death from flu.  
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“Knowledge” of the hidden structure (abstractions captured 
via wordnet classes and distributional clustering) supports 
better relation prediction.  (Similarly: hidden word senses) 
Inference relating latent and observed variables is a CCM 

…………….her to suffer from infection.  
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Initialization
+ Latent

Learned to predict 
predicates,  

arguments, types 
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Using types helps. Joint 
inference with word 

sense helps too 
More components 
constrain inference 
results and improve 

performance 
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Destination [A1] 
 

Joint inference over phenomena specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

 More to do with other relations, discourse phenomena,… 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
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 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms: [Chang, Ratinov & 
Roth, Machine Learning Journal 2012] 
 

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding/Acquisition – knowledge – inference  
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Wikification: The Reference Problem  

Blumenthal (D) is a candidate for the U.S. Senate seat now held by 
Christopher Dodd (D), and he has held a commanding lead in the race 
since he entered it. But the Times report has the potential to 
fundamentally reshape the contest in the Nutmeg State. 

Page 31 



Wikification: The Reference Problem  

Blumenthal (D) is a candidate for the U.S. Senate seat now held by 
Christopher Dodd (D), and he has held a commanding lead in the race 
since he entered it. But the Times report has the potential to 
fundamentally reshape the contest in the Nutmeg State. 

Blumenthal (D) is a candidate for the U.S. Senate seat now held by 
Christopher Dodd (D), and he has held a commanding lead in the race 
since he entered it. But the Times report has the potential to 
fundamentally reshape the contest in the Nutmeg State. 

Page 31 



Wikification: The Reference Problem  

Blumenthal (D) is a candidate for the U.S. Senate seat now held by 
Christopher Dodd (D), and he has held a commanding lead in the race 
since he entered it. But the Times report has the potential to 
fundamentally reshape the contest in the Nutmeg State. 

Blumenthal (D) is a candidate for the U.S. Senate seat now held by 
Christopher Dodd (D), and he has held a commanding lead in the race 
since he entered it. But the Times report has the potential to 
fundamentally reshape the contest in the Nutmeg State. 

Knowledge Acquisition 

Page 31 



Who is Alex Smith? 



Who is Alex Smith? 

Alex Smith 

Smith 



Who is Alex Smith? 

Alex Smith 

Smith 

Alex Smith 

Smith 



Who is Alex Smith? 

Quarterback of the 
Kansas City Chief 

Alex Smith 

Smith 

Alex Smith 

Smith 



Who is Alex Smith? 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

Alex Smith 

Smith 

Alex Smith 

Smith 



Who is Alex Smith? 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

San Diego:  The San Diego 
Chargers (A Football team) 

Alex Smith 

Smith 

Alex Smith 

Smith 



Who is Alex Smith? 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

San Diego:  The San Diego 
Chargers (A Football team) Ravens:  The Baltimore 

Ravens (A Football team) 

Alex Smith 

Smith 

Alex Smith 

Smith 



Who is Alex Smith? 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

San Diego:  The San Diego 
Chargers (A Football team) Ravens:  The Baltimore 

Ravens (A Football team) 
Contextual Disambiguation 

Alex Smith 

Smith 

Alex Smith 

Smith 



Middle Eastern Politics 

Quarterback of the 
Kansas City Chief 



Middle Eastern Politics 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

Mahmoud Abbas  

Abu Mazen 



Middle Eastern Politics 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

Mahmoud Abbas  

Abu Mazen 

Mahmoud Abbas: 
http://en.wikipedia.org/wiki/Mahmoud_Abbas 

Abu Mazen: 
http://en.wikipedia.org/wiki/Mahmoud_Abbas 



Middle Eastern Politics 

Quarterback of the 
Kansas City Chief 

Tight End of the 
Cincinnati Bengals 

Mahmoud Abbas  

Abu Mazen 

Mahmoud Abbas: 
http://en.wikipedia.org/wiki/Mahmoud_Abbas 

Abu Mazen: 
http://en.wikipedia.org/wiki/Mahmoud_Abbas 

Variability: Getting around 
multiple surface representations.  
Co-reference resolution within & 
across documents, with 
grounding 
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 , the          of deposed                                                                , …  

Relational Inference 

Mubarak wife Egyptian President Hosni Mubarak 
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Relational Inference 

Mubarak 

wife Egyptian President 

Hosni Mubarak 

 What are we missing with Bag of Words (BOW) models? 
 Who is Mubarak? 

 Textual relations provide another dimension of text understanding 
 Can be used to constrain interactions between concepts 

 (Mubarak, wife, Hosni Mubarak) 
 Has impact in several steps in the Wikification process: 

 From candidate selection to ranking and global decision 
 

Mubarak, the wife of deposed Egyptian President Hosni Mubarak, … 
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 Goal: Promote concepts that are coherent with textual relations 
 Formulate as an Integer Linear Program (ILP): 

 
 
 
 
 
 
 
 
 

 If no relation exists, collapses to the non-structured decision 

Formulation 
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Formulation 

Boolean variable: 
a relation exists 
between 𝑒𝑒𝑖𝑖𝑘𝑘 and 
𝑒𝑒𝑗𝑗𝑙𝑙  (or not) 

weight of a 
relation 𝑟𝑟𝑖𝑖𝑖𝑖(𝑘𝑘,𝑙𝑙) 

Boolean variable: 𝑘𝑘th candidate 
corresponds to 𝑖𝑖th mention (or not)  weight of variable 𝑒𝑒𝑖𝑖𝑘𝑘 

Knowledge + Ability to use it (Inference) 
facilitates additional knowledge acquisition 
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding/Acquisition – knowledge – inference  
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Can I get a coffee with lots of 
sugar and no milk 

MAKE(COFFEE,SUGAR=YES,MILK=NO) 

Arggg 

Great! 

Semantic Parser 

Can we rely on this 
interaction to provide 
supervision (and 
eventually, recover 
meaning) ? 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
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Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

 Think about some simple derivatives of the models outputs,  
 Supervise the derivative [verifier] (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Scenario I: Freecell with Response Based Learning 
 We want to learn a model to transform a natural language 

sentence to some meaning representation. 
 
  
 

 
 
 

 

Model English Sentence Meaning Representation 

A top card can be moved to the tableau if 
it has a different color than the color of 
the top tableau card, and the cards have 

successive values.   

Move (a1,a2) top(a1,x1) card(a1) 
tableau(a2) top(x2,a2) color(a1,x3) 

color(x2,x4) not-equal(x3,x4) value(a1,x5) 
value(x2,x6) successor(x5,x6) 
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Model English Sentence Meaning Representation 

A top card can be moved to the tableau if 
it has a different color than the color of 
the top tableau card, and the cards have 

successive values.   

Move (a1,a2) top(a1,x1) card(a1) 
tableau(a2) top(x2,a2) color(a1,x3) 

color(x2,x4) not-equal(x3,x4) value(a1,x5) 
value(x2,x6) successor(x5,x6) 

 Simple derivatives of the 
models outputs: game API 
 Supervise the derivative and 
 Propagate it to learn the 

transformation model 
 

Play Freecell (solitaire)  
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
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 Simple derivatives of the 
models outputs  Query a GeoQuery Database.  
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
 
 
 
 
 

 “Guess” a semantic parse.  Is [DB response == Expected response] ?  
 Expected: Pennsylvania   DB Returns: Pennsylvania Positive Response 
 Expected: Pennsylvania   DB Returns: NYC, or ????  Negative Response 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 

            
                                                                             

                                                                          
                                                                        

                                                                 
                

 
 

Model English Sentence Meaning Representation 

Page 44 



Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 

LEARNING:  
 Train a structured predictor (semantic parse) with this binary supervision  

 Many challenges: e.g., how to make a better use of a negative response?  
 Learning with a constrained latent representation, making used of CCM 

inference, exploiting knowledge on the structure of the meaning 
representation. 

 
 

Model English Sentence Meaning Representation 

Page 44 



Geoquery: Response based Competitive with Supervised 

NOLEARN :Initialization point SUPERVISED :  Trained with annotated data  

 Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing 
with lambda calculus. ACL’07 

Response based Learning is gathering momentum:  
 Liang, M.I. Jordan, D. Klein,  Learning Dependency-Based Compositional Semantics, ACL’11. 
 Berant et-al ’ Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP’13 

Clarke, Goldwasser, Chang, Roth CoNLL’10; Goldwasser, Roth IJCAI’11, MLJ’14 

 
Algorithm Training 

Accuracy 
Testing 
Accuracy 

# Training 
Examples 

NOLEARN 22 --         - 

Response-based (2010) 82.4 73.2 250 answers 

Liang et-al 2011 -- 78.9 250 answers 

Response-based (2012) 86.8 81.6 250 answers 

Supervised -- 86.07 600 structs. 
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding/Acquisition – knowledge – inference  
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
 Computational significance of ILP formulations 
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Inference for BIG TEXT  

 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 
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 Beyond improving the inference algorithm, what can be done? 

S1 

He 

is 

reading 

a 

book 

                                            
                                    

S2 

She 

is 

watching 

a 

movie 

POS 

PRP 

VBZ 

VBG 

DT 

NN 

S1 & S2 look very different 
but their output structures 
are the same   

The inference outcomes  
are the same 

Page 47 



Inference for BIG TEXT  

 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
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S1 

He 
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reading 
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book 

After inferring the POS structure for S1,  
Can we speed up inference for S2 ? 
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Amortized ILP based Inference 

 Imagine that you already solved many structured output 
inference problems 
 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 
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Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 

 How can we exploit this fact to save inference cost? 
 
 

 We will show how to do it when your problem is formulated 
as a 0-1 LP,  Max cx        

                            Ax ≤ b 
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After solving n inference problems, can we make the 
(n+1)th one faster?  

 Very general: All discrete MAP problems 
can be formulated as 0-1 LPs 

 We only care about inference formulation, 
not algorithmic solution 
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The Hope: Dependency Parsing on Gigaword 
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A small # of 
structures occur 
very frequently 
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Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent? ? 
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mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent? ? 
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We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  
under which the solution of a new problem Q is the 

same as the one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 
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for this feasible region 

Theorem II (Geometric Interpretation) 

Page 54 

max 2x1+4x2+2x3+0.5x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 

max 2x1+3x2+2x3+1x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 



cP1 
cP2 

Solution x* 

Feasible 
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All ILPs in the cone will 
share the maximizer 

Theorem II (Geometric Interpretation) 
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Amortized Inference Experiments 

 Setup 
 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 
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 Setup 
 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 

 
 For amortization 

 Cache 250,000 inference problems (objective, solution) from Gigaword 
 For each problem in test set either call the inference engine or re-use a 

solution from the cache, if our theorems hold. 

 
 

No training data is needed for this method. 
Once you have a model, you can generate a large cache that will be then 

used to save you time at evaluation time.  
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Speedup & Accuracy 

Amortization schemes [EMNLP’12, ACL’13] 
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