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 Identify units 
 Consider multiple 

interpretations and 
representations 
 Pictures, text, 

layout, spelling, 
phonetics 

 Put it all together: 
Determine “best” 
global interpretation 

 Satisfy expectations 
 Slide; puzzle 



Comprehension 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 
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This is an Inference Problem 
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 Topid rivvo den marplox. 

 
 
 

How do we Acquire Language?   
[Joint Research Program with Developmental Psycholinguist Cindy Fisher] 
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“the language” 

“the world” 

[Topid rivvo den marplox.] 

The Language-World Mapping Problem 
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Smur! Rivvo della frowler. 

Topid rivvo den marplox. 

Marplox dorinda blicket. 

Blert dor marplox, arno. 

Scene 1 

Scene 3 

Scene n 

Observe how Words are Distributed Across Situations 
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 Children can learn the meanings of some nouns via cross-
situational observation alone [Fisher 1996, Gillette, Gleitman, 
Gleitman, & Lederer, 1999; Snedeker & Gleitman, 2005]  

                                             
                                                               

                              
                                                               

                                                             
                                                      

                              

 
[Johanna rivvo den sheep.] 

Structure-Mapping: A proposed starting point for syntactic 
bootstrapping 

Nouns identified 
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Strong Predictions   [Gertner & Fisher, 2006] 
 Test 21 month olds on assigning arguments with novel verbs 
 How order of nouns influences interpretation: Transitive & Intransitive 
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Strong Predictions   [Gertner & Fisher, 2006] 
 Test 21 month olds on assigning arguments with novel verbs 
 How order of nouns influences interpretation: Transitive & Intransitive 

Agent-first: The boy and the girl are daxing! 

Agent-last: The girl and the boy are daxing! 

Error disappears by 25 months 
preferential looking paradigm 
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Current Project: BabySRL  
 Realistic Computational model for Syntactic Bootstrapping via 

Structure Mapping: 
 Verbs meanings are learned via their syntactic argument-taking roles  
 Semantic feedback to improve syntactic & meaning representation 
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Current Project: BabySRL  
 Realistic Computational model for Syntactic Bootstrapping via 

Structure Mapping: 
 Verbs meanings are learned via their syntactic argument-taking roles  
 Semantic feedback to improve syntactic & meaning representation 

 
 Develop Semantic Role Labeling System (BabySRL) to 

experiment with theories of early language acquisition 
 SRL as minimal level language understanding 
 Determine who does what to whom. 

 
 Inputs and knowledge sources  

 Only those we can defend children have access to 
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BabySRL: Key Components  
[Connor et. al.’13: Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision] 

 
 Representation: 

 Theoretically motivated representation of the input 
 Shallow, abstract, sentence representation consisting of 

 # of nouns in the sentence 
 Noun Patterns (1st of two nouns) 
 Relative position of nouns and predicates 

 Learning: 
 Guided by knowledge kids have 

 Classify words by part-of-speech 
 Identify arguments and predicates 
 Determine the role arguments take 

 Minimal Supervision that is Defensible from psycholinguistic evidence 
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Some of the representations 
are abstract (non-lexical). 
Learning is guided by 
abstract expectations.  
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Among other findings, our models reproduce mistakes kids make, and 

recover from them (with more learning).  

Some of the representations 
are abstract (non-lexical). 
Learning is guided by 
abstract expectations.  
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Comprehension 

 Dan is flying to Philadelphia this weekend. Penn is organizing 
a workshop on the Penn Discourse Treebank. 
 Dan is attending the workshop 
 The Workshop is in Philadelphia 
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Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
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Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  

Many forms of Inference; a lot boil down to determining best assignment  
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Variables are models   
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Semantic Role Labeling (SRL)  

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  



 Identify argument candidates 
 Pruning  [Xue&Palmer, EMNLP’04] 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Argument Classifier  

 Multi-class classification 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

Algorithmic Approach 
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  

Abstract representation of 
expectations/knowledge 



The Computational Process 
 The computational process used in each of these examples is 

very similar to the one used in the babySRL 
 
 Models are induced via some interactive learning process  

 Feedback goes back to improve earlier learned models 
 

 Relatively abstract knowledge, is used 
 “Output expectations”, or “constraints” on what can be represented 

guide learning and prediction (inference)  
 

 Knowledge impacts both latent representations and predictions 

 Today, the key difference between the babySRL and our other 
models is in the level of supervision 
 And consequently, the type of text we can deal with. 
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I. Coreference Resolution 
(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in England.  He 

is the same person that you read about in the book, Winnie the Pooh. As a boy, 
Chris lived in a pretty home called Cotchfield Farm.  When Chris was three years 
old, his father wrote a poem about him.  The poem was printed in a magazine for 
others to read.  Mr. Robin then wrote a book.  He made up a fairy tale land 
where Chris lived.  His friends were animals.  There was a bear called Winnie the 
Pooh.  There was also an owl and a young pig, called a piglet.  All the animals 
were stuffed toys that Chris owned.  Mr. Robin made them come to life with his 
words.  The places in the story were all near Cotchfield Farm. Winnie the Pooh 
was written in 1925.  Children still love to read about Christopher Robin and his 
animal friends.  Most people don't know he is a real person who is grown now.  
He has written two books of his own.  They tell what it is like to be famous. 
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Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi] 

 Latent Left-linking Model (L3M) model [ICML 14] 
                                                                   

                                                                           
                                                              

 Joint mention identification & co-reference resolution [CoNLL’15] 
                                                                 

                                                                          
                       

 Hard Co-reference Problems [NAACL’15] 
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 When Tina pressed Joan to the floor she was punished. 
 

 When Tina pressed Joan to the floor she was hurt. 
 

 When Tina pressed charges against Joan she was jailed. 
 
 
 

                                                                
                                     
 
 
 
 
 

 

Pronoun Resolution can be Really Hard  
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 Requires, among other things, thinking about the structure of 
the sentence – who does what to whom 
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Hard Co-reference Problems 
 Requires knowledge Acquisition 
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Hard Co-reference Problems 
 Requires knowledge Acquisition 

 The bee landed on the flower because it had/wanted pollen.  
 Lexical knowledge 

 
 John Doe robbed Jim Roy. He was arrested by the police. 

 
 The Subj of “rob” is more likely than the Obj of “rob” to be the Obj of 

“arrest” 

 
 Requires an inference framework that can make use of this 

knowledge 
 
 
 
 
 

 

Knowledge representation  
called “predicate schemas” 
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ILP Formulation of Coreference Resolution 

 𝑦𝑦 = arg max𝑦𝑦 ∑𝑢𝑢𝑢𝑢 wuv
 ⋅ 𝑦𝑦𝑢𝑢𝑢𝑢  

              s.t ∑𝑢𝑢 < 𝑢𝑢 𝑦𝑦𝑢𝑢𝑢𝑢  <= 1, ∀v 
                    𝑦𝑦𝑢𝑢𝑢𝑢  ε {0,1}  

 
 
 
 
 
 
 

 

3.1 1.5 3.1 

-1.5 1.2 
0.2 

𝒗𝒗 𝒖𝒖 
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antecedents u is linked to  v 
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Results in a state-of-the-art coreference 
that at the same time also handles hard 
instances at close to 90% Precision. 

predicate schemas 
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II. Quantities & Quantitative Reasoning 

 A crucially important natural language understanding task.  
 Election results; Stock Market; Casualties,…  
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Mapping Natural Language Text to Expressions  

 Gwen was organizing her book case making sure each of the 
shelves had exactly 9 books on it. She has 2 types of books – 
mystery books and picture books. If she had 3 shelves of 
mystery books and 5 shelves of picture books, how many 
books did she have total? 
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Inferring the Best Expression Tree 

 Decomposition: Uniqueness properties of the Τ(E) implies that it is 
determined by the unique Τ−operation between pairs of relevant quantities. 
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arithmetic word problems  



More Examples 

 A lot of our natural language understanding work addresses 
similar issues and makes use of similar principles  
 
 Temporal Reasoning 

 We have expectations of transitivity, for example 
 

 Discourse Processing 
 We have expectations on “coherency” is conveying ideas 

 
 Knowledge Acquisition  

 We have expectations dictated by our prior knowledge 
 

 See references for our work on various semantic processing 
tasks 
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Conclusion 
 Natural Language Understanding is a Common Sense Inference problem. 

 
 We would gain by thinking in a unified way on Learning, Knowledge 

(Representation and Acquisition) and Reasoning.  
 

 Provided some recent samples from a research program that addresses  
 Learning, Inference and Knowledge via a unified  approach 
 A constrained optimization framework that guides “best assignment” 

inference, with (declarative) expectations on the output. 
 

                                                               
                                                                    
                                                                  
          

Page 34 



Conclusion 
 Natural Language Understanding is a Common Sense Inference problem. 

 
 We would gain by thinking in a unified way on Learning, Knowledge 

(Representation and Acquisition) and Reasoning.  
 

 Provided some recent samples from a research program that addresses  
 Learning, Inference and Knowledge via a unified  approach 
 A constrained optimization framework that guides “best assignment” 

inference, with (declarative) expectations on the output. 
 

 One can think about whether and how, we should constrain our 
models for addressing these “cognitive” problems, and our forms of 
interaction with data, in ways that are informed by neuroscience 
research. 

  

Page 34 



Conclusion 
 Natural Language Understanding is a Common Sense Inference problem. 

 
 We would gain by thinking in a unified way on Learning, Knowledge 

(Representation and Acquisition) and Reasoning.  
 

 Provided some recent samples from a research program that addresses  
 Learning, Inference and Knowledge via a unified  approach 
 A constrained optimization framework that guides “best assignment” 

inference, with (declarative) expectations on the output. 
 

 One can think about whether and how, we should constrain our 
models for addressing these “cognitive” problems, and our forms of 
interaction with data, in ways that are informed by neuroscience 
research. 

  

Page 34 

Check out our CCM tutorial Software tools, demos, … 



Conclusion 
 Natural Language Understanding is a Common Sense Inference problem. 

 
 We would gain by thinking in a unified way on Learning, Knowledge 

(Representation and Acquisition) and Reasoning.  
 

 Provided some recent samples from a research program that addresses  
 Learning, Inference and Knowledge via a unified  approach 
 A constrained optimization framework that guides “best assignment” 

inference, with (declarative) expectations on the output. 
 

 One can think about whether and how, we should constrain our 
models for addressing these “cognitive” problems, and our forms of 
interaction with data, in ways that are informed by neuroscience 
research. 

  

Thank You! 

Page 34 

Check out our CCM tutorial Software tools, demos, … 


	���Natural Language Understanding �with�Common Sense Reasoning �� �
	���Natural Language Understanding �with�Common Sense Reasoning �� �
	Please…
	Please…
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	How do we Acquire Language?  
	The Language-World Mapping Problem
	Observe how Words are Distributed Across Situations
	Structure-Mapping: A proposed starting point for syntactic bootstrapping
	Structure-Mapping: A proposed starting point for syntactic bootstrapping
	Structure-Mapping: A proposed starting point for syntactic bootstrapping
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Strong Predictions   [Gertner & Fisher, 2006]
	Current Project: BabySRL 
	Current Project: BabySRL 
	BabySRL: Key Components �[Connor et. al.’13: Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision]�
	BabySRL: Key Components �[Connor et. al.’13: Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision]�
	BabySRL: Key Components �[Connor et. al.’13: Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision]�
	BabySRL: Key Components �[Connor et. al.’13: Starting from Scratch in Semantic Role Labeling: Early Indirect Supervision]�
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Comprehension
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Inferences
	Natural Language Understanding
	Natural Language Understanding
	Natural Language Understanding
	Natural Language Understanding
	Natural Language Understanding
	A Biased View of Common Sense Reasoning
	A Biased View of Common Sense Reasoning
	What is Needed?
	What is Needed?
	What is Needed?
	What is Needed?
	What is Needed?
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	The Neuro-Symbolic Connection
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]�Recognizing Entities and Relations 
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Semantic Role Labeling (SRL) 
	Semantic Role Labeling (SRL) 
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	Algorithmic Approach
	The Computational Process
	I. Coreference Resolution
	I. Coreference Resolution
	I. Coreference Resolution
	I. Coreference Resolution
	Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi]
	Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi]
	Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi]
	Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi]
	Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi]
	Pronoun Resolution can be Really Hard 
	Pronoun Resolution can be Really Hard 
	Pronoun Resolution can be Really Hard 
	Hard Co-reference Problems
	Hard Co-reference Problems
	Hard Co-reference Problems
	Hard Co-reference Problems
	Hard Co-reference Problems
	Hard Co-reference Problems
	Hard Co-reference Problems
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	ILP Formulation of Coreference Resolution
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	II. Quantities & Quantitative Reasoning
	Mapping Natural Language Text to Expressions 
	Mapping Natural Language Text to Expressions 
	Mapping Natural Language Text to Expressions 
	Mapping Natural Language Text to Expressions 
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	Inferring the Best Expression Tree
	More Examples
	Conclusion
	Conclusion
	Conclusion
	Conclusion

