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Please… 
 Identify units 
 Consider multiple 

interpretations and 
representations 
 Pictures, text, 

spell/phonetics 
 Put it all together: 

Determine “best” 
global interpretation 

 Satisfy expectations 
 Slide; puzzle 
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Comprehension 

 Dan is flying to Philadelphia this weekend. Penn is organizing 
a workshop on the Penn Discourse Treebank. 
 Dan is attending the workshop 
 The Workshop is in Philadelphia 
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 Interpretation builds on expectations that rely on  knowledge.  
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Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
                                                       

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 



Natural Language Inferences 

 At least 14 people have been killed in southern Sri Lanka, 
police say. The telecoms minister was among about 35 injured 
in the blast site at the town of Akuressa, 160km (100 miles) 
south of the capital, Colombo. Government officials were 
attending a function at a mosque to celebrate an Islamic 
holiday at the time.           The defense ministry said the 
suicide attack was carried out by …. 
  49 people were hit by a suicide bomber in Akuressa. 

 

visitors 

Page 4 

This is an Inference Problem 
 



Natural Language Understanding 
 Natural language understanding decisions are global decisions 

that require  
 Making (local) predictions driven by different models trained in 

different ways, at different times/conditions/scenarios 
 The ability to put these predictions together coherently 
 Knowledge, that guides the decisions so they satisfy our expectations  
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Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  
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Natural Language Interpretation is a Common Sense driven Inference Process 
that is best thought of as a knowledge constrained optimization problem, 

done on top of multiple statistically learned models.  

Many forms of Inference; a lot boil down to determining best assignment  
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Hayes&McCarthy 
Frame Problem 

Quillian 
Semantic 
Networks 

ConceptNet 

Brooks 
Subsumption 

Minsky, Filmore 
Frames 

           2000              1990                1980             1970               1960               1950              1940 

Bobrow 
STUDENT 

Winograd 
SHRDLU 

Description 
Logic 

Lenant 
Cyc 

McCarthy 
Formalizing 

Commonsense 
Simon&Newell 

General Problem 
Solver 

A Biased View of Common Sense Reasoning 

Common Sense Reasoning was formulated  
traditionally as a “reasoning” process, irrespective of 
learning and the resulting knowledge representation.  
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 A computational 
Framework 

 Two Examples: 
 Pronoun 

Resolution 
 Quantitative 

Reasoning 

 



Joint Inference with General Constraint Structure [Roth&Yih’04,07,….] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 
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 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang et. al (07, 12); Posterior Regularization, Ganchev et. al (10); 
Unified EM (Samdani et. al (12)] 
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Unified EM (Samdani et. al (12)] 

  

Knowledge component:   
(Soft) constraints  

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal/expected” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  y = argmaxy ∑ 1Á(x,y) wx,y     subject to Constraints C(x,y) 
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Any MAP problem w.r.t. any probabilistic 
model, can be formulated as an ILP  
[Roth+ 04, Taskar 04] 
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Language Model based: 
                     Argmax ∑ ¸ijk xijk 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 

Constrained Conditional Models Allow: 
 Decouple complexity of the learned model from that of the desired output 
 Learn a simple model  (multiple; pipelines); reason with a complex one. 
 Accomplished by incorporating constraints to bias/re-rank global decisions 

to satisfy (minimally violate) expectations.   
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I. Coreference Resolution 
(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in England.  He 

is the same person that you read about in the book, Winnie the Pooh. As a boy, 
Chris lived in a pretty home called Cotchfield Farm.  When Chris was three years 
old, his father wrote a poem about him.  The poem was printed in a magazine for 
others to read.  Mr. Robin then wrote a book.  He made up a fairy tale land 
where Chris lived.  His friends were animals.  There was a bear called Winnie the 
Pooh.  There was also an owl and a young pig, called a piglet.  All the animals 
were stuffed toys that Chris owned.  Mr. Robin made them come to life with his 
words.  The places in the story were all near Cotchfield Farm. Winnie the Pooh 
was written in 1925.  Children still love to read about Christopher Robin and his 
animal friends.  Most people don't know he is a real person who is grown now.  
He has written two books of his own.  They tell what it is like to be famous. 
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Recent Advances in Co-reference [Chang, Peng, Samdani, Khashabi] 

 Latent Left-linking Model (L3M) model [ICML 14] 
                                                                   

                                                                           
                                                              

 Joint mention identification & co-reference resolution [CoNLL’15] 
                                                                 

                                                                          
                       

 Hard Co-reference Problems [NAACL’15] 
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 When Tina pressed Joan to the floor she was punished. 
 

 When Tina pressed Joan to the floor she was hurt. 
 

 When Tina pressed charges against Joan she was jailed. 
 
 
 
 

 

Pronoun Resolution can be Really Hard  
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Co-reference 

State-of-the-art co-reference resolution makes 
random decisions on problems of this type. 
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 When Tina pressed Joan to the floor she was punished. 
 

 When Tina pressed Joan to the floor she was hurt. 
 

 When Tina pressed charges against Joan she was jailed. 
 
 Requires, among other things, thinking about the structure of the 

sentence – who does what to whom 
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Hard Co-reference Problems 
 Requires knowledge Acquisition 
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 John Doe robbed Jim Roy. He was arrested by the police. 
 The Subj of “rob” is more likely than the Obj of “rob” to be the Obj of 

“arrest” 

 
 Requires an inference framework that can make use of this 

knowledge 
 
 
 
 
 

 

Knowledge representation  
called “predicate schemas” 
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ILP Formulation of Coreference Resolution 
 𝑦𝑦 = arg max𝑦𝑦 ∑𝑢𝑢𝑢𝑢 wuv

 ⋅ 𝑦𝑦𝑢𝑢𝑢𝑢  
              s.t ∑𝑢𝑢 < 𝑣𝑣 𝑦𝑦𝑦𝑦𝑣𝑣  <= 1, ∀v 
                    𝑦𝑦𝑢𝑢𝑢𝑢  ε {0,1}  

 
 
 
 
 
 
 

 

3.1 1.5 3.1 

-1.5 1.2 
0.2 

𝒗𝒗 𝒖𝒖 

Page 17 



ILP Formulation of Coreference Resolution 
 𝑦𝑦 = arg max𝑦𝑦 ∑𝑢𝑢𝑢𝑢 wuv

 ⋅ 𝑦𝑦𝑢𝑢𝑢𝑢  
              s.t ∑𝑢𝑢 < 𝑣𝑣 𝑦𝑦𝑦𝑦𝑣𝑣  <= 1, ∀v 
                    𝑦𝑦𝑢𝑢𝑢𝑢  ε {0,1}  

 
 
 
 
 
 
 

 

3.1 1.5 3.1 

-1.5 1.2 
0.2 

𝒗𝒗 𝒖𝒖 

Page 17 



Variable 𝒚𝒚𝒖𝒖𝒖𝒖 indicates a 
coreference link uv ILP Formulation of Coreference Resolution 

 𝑦𝑦 = arg max𝑦𝑦 ∑𝑢𝑢𝑢𝑢 wuv
 ⋅ 𝑦𝑦𝑢𝑢𝑢𝑢  

              s.t ∑𝑢𝑢 < 𝑣𝑣 𝑦𝑦𝑦𝑦𝑣𝑣  <= 1, ∀v 
                    𝑦𝑦𝑢𝑢𝑢𝑢  ε {0,1}  

 
 
 
 
 
 
 

 

3.1 1.5 3.1 

-1.5 1.2 
0.2 

𝒗𝒗 𝒖𝒖 

Page 17 



Variable 𝒚𝒚𝒖𝒖𝒖𝒖 indicates a 
coreference link uv ILP Formulation of Coreference Resolution 

 𝑦𝑦 = arg max𝑦𝑦 ∑𝑢𝑢𝑢𝑢 wuv
 ⋅ 𝑦𝑦𝑢𝑢𝑢𝑢  

              s.t ∑𝑢𝑢 < 𝑣𝑣 𝑦𝑦𝑦𝑦𝑣𝑣  <= 1, ∀v 
                    𝑦𝑦𝑢𝑢𝑢𝑢  ε {0,1}  

 
 
 
 
 
 
 

 

3.1 1.5 3.1 

-1.5 1.2 
0.2 

𝒗𝒗 𝒖𝒖 

Best Link Approach: only one of the 
antecedents u is linked to  v 
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 Constraints over predicate schemas are instantiated given a new 

instance (document) and are incorporated “on-the-fly”  into the ILP-
based inference formulation to support preferred interpretations.  

 
 
 
 
 

 

Results in a state-of-the-art coreference 
that at the same time also handles hard 
instances at close to 90% Precision. 
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II. Quantities & Quantitative Reasoning 

 A crucially important natural language understanding task.  
 Election results; Stock Market; Casualties,…  
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Mapping Text to Expressions  

 Gwen was organizing her book case making sure each of the 
shelves had exactly 9 books on it. She has 2 types of books – 
mystery books and picture books. If she had 3 shelves of 
mystery books and 5 shelves of picture books, how many 
books did she have total? 
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Inferring the Best Expression Tree 

 Decomposition: Uniqueness properties of the Τ(E) implies that it is 
determined by the unique Τ−operation between pairs of relevant quantities. 
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Results in a state-of-the-art 
results on multiple types of 
arithmetic word problems  



Conclusion 
 Natural Language Understanding is a Common Sense Inference problem. 

 
 We would gain by thinking in a unified way on Learning, Knowledge 

(Representation and Acquisition) and Reasoning.  
 

 Provided some recent samples from a research program that addresses  
 Learning, Inference and Knowledge via 
 A constrained optimization framework that guides “best assignment” 

inference, with (declarative) output expectations. 
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