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 Most of the data today is unstructured 
 Text, Images, Sensory Data 
 It’s not only BIG, it’s COMPLEX & Heterogeneous 

 
 Challenge: How to understand what the data says?  

 How to deal with the huge amount of unstructured data as if it was 
organized in a database with a known schema. 

 Organize, access, analyze and synthesize unstructured data. 
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 It’s not only BIG, it’s COMPLEX & Heterogeneous 

 
 Challenge: How to understand what the data says?  

 How to deal with the huge amount of unstructured data as if it was 
organized in a database with a known schema. 

 Organize, access, analyze and synthesize unstructured data. 
 

 Theories, algorithms, and tools to enable transforming raw 
data into useful and understandable information & integrating 
it with existing resources          
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A view on Extracting Meaning from Unstructured Text 

 Given: 
              A long contract that you need to ACCEPT 
 Determine: 
  Does it satisfy the 3 conditions that you really  
  care about?  

3 



A view on Extracting Meaning from Unstructured Text 

 Given: 
              A long contract that you need to ACCEPT 
 Determine: 
  Does it satisfy the 3 conditions that you really  
  care about?  

ACCEPT?  

3 



A view on Extracting Meaning from Unstructured Text 

 Given: 
              A long contract that you need to ACCEPT 
 Determine: 
  Does it satisfy the 3 conditions that you really  
  care about?  

ACCEPT?  

Does it say that they’ll give  
my email address away? 

3 



A view on Extracting Meaning from Unstructured Text 

 Given: 
              A long contract that you need to ACCEPT 
 Determine: 
  Does it satisfy the 3 conditions that you really  
  care about?  

(and distinguish from other candidates) 

ACCEPT?  

Does it say that they’ll give  
my email address away? 

3 



A view on Extracting Meaning from Unstructured Text 

 Given: 
              A long contract that you need to ACCEPT 
 Determine: 
  Does it satisfy the 3 conditions that you really  
  care about?  

(and distinguish from other candidates) 

ACCEPT?  

Does it say that they’ll give  
my email address away? 

3 

Large Scale Data Meaning Transformation 
Massive & Deep  
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Ambiguity  
It’s a version of Chicago – the 
standard classic Macintosh 
menu font, with that distinctive 
thick diagonal in the ”N”. 

Chicago was used by default 
for Mac menus through 
MacOS 7.6, and OS 8 was 
released mid-1997.. 

Chicago VIII was one of the 
early 70s-era Chicago 
albums to catch my 
ear, along with Chicago II. 
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Jim Carpenter works for the U.S. Government. 
The American government employed Jim Carpenter. 
Jim Carpenter was fired by the US Government. 
Jim Carpenter worked in a number of important positions.  

….  As a press liaison for the IRS, he made contacts in the 
white house.  

Russian interior minister Yevgeny Topolov met yesterday 
with his US counterpart, Jim Carpenter. 

Former US Secretary of Defense Jim Carpenter spoke today… 
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expressing meaning  
nor with the  
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Variability in Natural Language Expressions 

Needs:  
 Understanding Relations, Entities and Semantic Classes 
 Acquiring knowledge from external resources; representing knowledge 
 Identifying, disambiguating  & tracking  entities, events, etc.  
 Time, quantities, processes… 

Standard techniques cannot 
deal with the variability of 
expressing meaning  
nor with the  
ambiguity of interpretation 
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What can this give us? 
 Moving towards natural language understanding… 

 
 A law office wants to get the list of all people that were mentioned in email 

correspondence with the office. 
 For each name, determine whether is was mentioned adversarially  or not.  
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 Moving towards natural language understanding… 

 
 A law office wants to get the list of all people that were mentioned in email 

correspondence with the office. 
 For each name, determine whether is was mentioned adversarially  or not.  

 
 A political scientist studies Climate Change and its effect on Societal 

instability. He wants to identify all events related to demonstrations, 
protests, parades, analyze them (who, when, where, why) and generate a 
timeline and a causality chain. 
 

 English as a Second Language (ESL): Most people that write English today 
are non-native speakers. Nevertheless, the only assistance we can given 
them is spelling correction against a fixed, large dictionary…. 
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What can this give us (Cont.) ? 
 Compliance &  E-Discovery: A trading company had half of their sales team 

leave to start a rival company.  The CEO wanted proof they stole company 
information and broke their employee covenants. 
 Ideally, know about it before it happens   

 An analyst in a financial institution sends company A information about 
company B 
 Mistakenly? Deliberately?  
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What can this give us (Cont.) ? 
 Compliance &  E-Discovery: A trading company had half of their sales team 

leave to start a rival company.  The CEO wanted proof they stole company 
information and broke their employee covenants. 
 Ideally, know about it before it happens   

 An analyst in a financial institution sends company A information about 
company B 
 Mistakenly? Deliberately?  

 
 An electronic health record (EHR):  

 A personal health record in digital format. Includes information relating to: 
 Current and historical health, medical conditions, tests,  treatments,…  

 A write only document 
 Use it in medical advice systems; medication selection and tracking (Vioxx…); 
 Better care:  ISU patients summary average 110 pages…. 
 Science – correlating response to drugs with other conditions 

 



Machine Learning + Inference based NLP 
 It’s difficult to program predicates of interest due to  

 Ambiguity (everything has multiple meanings) 
 Variability (everything you want to say you can say in many ways) 

 Models are based on Statistical Machine Learning & Inference  
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Machine Learning + Inference based NLP 
 It’s difficult to program predicates of interest due to  

 Ambiguity (everything has multiple meanings) 
 Variability (everything you want to say you can say in many ways) 

 Models are based on Statistical Machine Learning & Inference  
Research Focus: 
 Modeling and learning algorithms for different phenomena 

 Classification models 
 Structured models 
 Learning protocols that exploit Indirect Supervision  

 Inference: make decisions that account for domain & task specific knowledge  
 Constrained Conditional Models: formulating inference as ILP 
 Learn models; Acquire knowledge/constraints; Make decisions.  
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build black box categorizers 



Comprehension 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 
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Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 
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Many forms of Inference; a lot boil down to determining best assignment  
 

Natural Language Interpretation is an Inference Problem that is best thought 
of as a knowledge constrained optimization problem, done on top of 

multiple statistically learned models.  



Technical Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding for/using Knowledge 
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose?  

How to exploit the structure to        
minimize supervision? 
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Examples: CCM Formulations 

CCMs can be viewed as a general interface to easily combine 
declarative domain knowledge with data driven statistical models 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
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Constrained Conditional Models Allow: 
 Learning a simple model  (or multiple; or pipelines) 
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-rank 

global decisions composed of simpler models’ decisions 
 More sophisticated algorithmic approaches exist to bias the output  

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]  



Semantic Role Labeling (SRL)  

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  



 Identify argument candidates 
 Pruning  [Xue&Palmer, EMNLP’04] 
 Argument Identifier  

 Binary classification 
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 Argument Classifier  

 Multi-class classification 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

Algorithmic Approach 
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  
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argument classes 

Unique labels 
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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Extended Semantic Role Labeling 

Page 23 

 Improved sentence level analysis; dealing with more phenomena  

Sentence level 
analysis may be 
influenced by 
other sentences 



Examples of Preposition Relations 

Queen of England 

City of Chicago 
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Computational Questions 

 Predict the preposition relations 
 [EMNLP, ’11] 

 Identify the relation’s arguments 
 [Trans. Of ACL, ‘13] 
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Destination [A1] 
 

Joint inference over phenomena specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

 More to do with other relations, discourse phenomena,… 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
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 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms: [Chang, Ratinov & 
Roth, Machine Learning Journal 2012] 
 

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
  

 
 

Constrained Conditional Models—ILP Formulations 
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding for/using Knowledge 
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Understanding Language Requires Supervision 
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Can I get a coffee with lots of 
sugar and no milk 

MAKE(COFFEE,SUGAR=YES,MILK=NO) 

Arggg 

Great! 

Semantic Parser 

Can we rely on this 
interaction to provide 
supervision (and 
eventually, recover 
meaning) ? 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

                                                             
                                                  
                                                                     

 

Model English Sentence Meaning Representation 

Page 30 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

 Think about some simple derivatives of the models outputs,  
 Supervise the derivative [verifier] (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Scenario I: Freecell with Response Based Learning 
 We want to learn a model to transform a natural language 

sentence to some meaning representation. 
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Play Freecell (solitaire)  
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
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Scenario II: Geoquery with Response based Learning 
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
 
 
 
 
 

 “Guess” a semantic parse.  Is [DB response == Expected response] ?  
 Expected: Pennsylvania   DB Returns: Pennsylvania Positive Response 
 Expected: Pennsylvania   DB Returns: NYC, or ????  Negative Response 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 

LEARNING:  
 Train a structured predictor (semantic parse) with this binary supervision  

 Many challenges: e.g., how to make a better use of a negative response?  
 Learning with a constrained latent representation, making used of CCM 

inference, exploiting knowledge on the structure of the meaning 
representation. 
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Geoquery: Response based Competitive with Supervised 

NOLEARN :Initialization point SUPERVISED :  Trained with annotated data  

 Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing 
with lambda calculus. ACL’07 

Response based Learning is gathering momentum:  
 Liang, M.I. Jordan, D. Klein,  Learning Dependency-Based Compositional Semantics, ACL’11. 
 Berant et-al ’ Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP’13 

Clarke, Goldwasser, Chang, Roth CoNLL’10; Goldwasser, Roth IJCAI’11, MLJ’14 

 
Algorithm Training 

Accuracy 
Testing 
Accuracy 

# Training 
Examples 

NOLEARN 22 --         - 

Response-based (2010) 82.4 73.2 250 answers 

Liang et-al 2011 -- 78.9 250 answers 

Response-based (2012) 86.8 81.6 250 answers 

Supervised -- 86.07 600 structs. 
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Response-based (2010) 82.4 73.2 250 answers 

Liang et-al 2011 -- 78.9 250 answers 

Response-based (2012) 86.8 81.6 250 answers 

Supervised -- 86.07 600 structs. 
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Outline 
 Knowledge and Inference 

 Combining the soft with the logical/declarative nature of Natural Language  
 Constrained Conditional Models: A formulation for global inference with 

knowledge modeled as expressive structural constraints 
 Some examples 

 

 Cycles of Knowledge  
 Grounding for/using Knowledge 
 

 Learning with Indirect Supervision 
 Response Based Learning: learning from the world’s feedback 

 
 Scaling Up: Amortized Inference 

 Can the k-th inference problem be cheaper than the 1st? 
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Amortized ILP Structured Output Inference 

 Imagine that you already solved many structured output 
inference problems 
 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 
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 We will show how to do it when your problem is formulated 
as a 0-1 LP,  Max cx        

                            Ax ≤ b 
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After solving n inference problems, can we 
make the (n+1)th one faster?  

 Very general: All discrete MAP problems 
can be formulated as 0-1 LPs 

 We only care about inference formulation, 
not algorithmic solution 



Inference for BIG TEXT  

 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 
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 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 

S1 

He 

is 

reading 

a 

book 

                                            
                                    

S2 

She 

is 

watching 

a 

movie 

POS 

PRP 

VBZ 

VBG 

DT 

NN 

S1 & S2 look very different 
but their output structures 
are the same   

The inference outcomes  
are the same 
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 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 

S1 

He 

is 

reading 

a 

book 

After inferring the POS structure for S1,  
Can we speed up inference for S2 ? 
  

S2 

She 

is 

watching 

a 

movie 

POS 

PRP 

VBZ 

VBG 

DT 

NN 

S1 & S2 look very different 
but their output structures 
are the same   

The inference outcomes  
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Number of structures is 
much smaller than the 
number of sentences 
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The Hope: Dependency Parsing on Gigaword 
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POS Tagging on Gigaword 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

A small # of 
structures occur 
very frequently 
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Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent? ? 
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Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent? ? 
 
 

 

Page 42 

We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  
under which the solution of a new problem Q is the 

same as the one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 



cP1 
cP2 

Feasible 
region 

Theorem II (Geometric Interpretation) 
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cP1 
cP2 

Solution x* 

Feasible 
region 

ILPs corresponding to all 
these objective vectors will 
share the same maximizer 
for this feasible region 

Theorem II (Geometric Interpretation) 
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max 2x1+4x2+2x3+0.5x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 

max 2x1+3x2+2x3+1x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 



cP1 
cP2 

Solution x* 

Feasible 
region 

All ILPs in the cone will 
share the maximizer 

Theorem II (Geometric Interpretation) 
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max 2x1+4x2+2x3+0.5x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 

max 2x1+3x2+2x3+1x4 
         x1 + x2 ≤ 1 
         x3 + x4 ≤ 1 



Amortized Inference Experiments 

 Setup 
 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 
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Amortized Inference Experiments 

 Setup 
 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 

 
 For amortization 

 Cache 250,000 inference problems (objective, solution) from Gigaword 
 For each problem in test set either call the inference engine or re-use a 

solution from the cache, if our theorems hold. 

 
 

No training data is needed for this method. 
Once you have a model, you can generate a large cache that will be then 

used to save you time at evaluation time.  
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Speedup & Accuracy 

S
p
e
e
d
u
p 

Amortization schemes [EMNLP’12, ACL’13] 
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By decomposing the objective function, building 
on the fact that “smaller structures” are more 
redundant, it is possible to get even better results. Speedup & Accuracy 
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The results show that, indeed, the inference 
formulation provides a new level of abstraction 
that can be exploited to re-use solutions 
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Analyzing Electronic Health Records  

 
The patient is a 65 year old female with post thoracotomy syndrome that 
occurred on the site of her thoracotomy incision .  
 
She had a thoracic aortic aneurysm repaired in the past and subsequently 
developed neuropathic pain at the incision site .  
 
She is currently on Vicodin , one to two tablets every four hours p.r.n. , 
Fentanyl patch 25 mcg an hour , change of patch every 72 hours , Elavil 50 
mgq .h.s. , Neurontin 600 mg p.o. t.i.d. with still what she reports as stabbing 
left-sided chest pain that can be as severe as a 7/10.  

 
She has failed conservative therapy and is admitted for a spinal cord 
stimulator trial .  
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[The patient] is a 65 year old female with [post thoracotomy syndrome] [that] 
occurred on the site of [[her] thoracotomy incision] .  
 
[She] had [a thoracic aortic aneurysm] repaired in the past and subsequently 
developed [neuropathic pain] at [the incision site] .  
 
[She] is currently on [Vicodin] , one to two tablets every four hours p.r.n. , 
[Fentanyl patch] 25 mcg an hour , change of patch every 72 hours , [Elavil] 50 
mgq .h.s. , [Neurontin] 600 mg p.o. t.i.d. with still what [she] reports as 
[stabbing left-sided chest pain] [that] can be as severe as a 7/10.  
 
[She] has failed [conservative therapy] and is admitted for [a spinal cord 
stimulator trial] .  

Identify Important Mentions 
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[The patient] is a 65 year old female with [post thoracotomy syndrome] [that] 
occurred on the site of [[her] thoracotomy incision] .  
 
[She] had [a thoracic aortic aneurysm] repaired in the past and subsequently 
developed [neuropathic pain] at [the incision site] .  
 
[She] is currently on [Vicodin] , one to two tablets every four hours p.r.n. , 
[Fentanyl patch] 25 mcg an hour , change of patch every 72 hours , [Elavil] 50 
mgq .h.s. , [Neurontin] 600 mg p.o. t.i.d. with still what [she] reports as 
[stabbing left-sided chest pain] [that] can be as severe as a 7/10.  
 
[She] has failed [conservative therapy] and is admitted for [a spinal cord 
stimulator trial] .  
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Red : Problems 
Green : Treatments 
Purple : Tests 
Blue : People Identify Concept Types 



Analyzing Electronic Health Records  

[The patient] is a 65 year old female with [post thoracotomy syndrome] [that] 
occurred on the site of [[her] thoracotomy incision] .  
 
[She] had [a thoracic aortic aneurysm] repaired in the past and subsequently 
developed [neuropathic pain] at [the incision site] .  
 
[She] is currently on [Vicodin] , one to two tablets every four hours p.r.n. , 
[Fentanyl patch] 25 mcg an hour , change of patch every 72 hours , [Elavil] 50 
mgq .h.s. , [Neurontin] 600 mg p.o. t.i.d. with still what [she] reports as 
[stabbing left-sided chest pain] [that] can be as severe as a 7/10.  
 
[She] has failed [conservative therapy] and is admitted for [a spinal cord 
stimulator trial] .  
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Coreference Resolution 
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[The patient] is a 65 year old female with [post thoracotomy syndrome] [that] 
occurred on the site of [[her] thoracotomy incision] .  
 
[She] had [a thoracic aortic aneurysm] repaired in the past and subsequently 
developed [neuropathic pain] at [the incision site] .  
 
[She] is currently on [Vicodin] , one to two tablets every four hours p.r.n. , 
[Fentanyl patch] 25 mcg an hour , change of patch every 72 hours , [Elavil] 50 
mgq .h.s. , [Neurontin] 600 mg p.o. t.i.d. with still what [she] reports as 
[stabbing left-sided chest pain] [that] can be as severe as a 7/10.  
 
[She] has failed [conservative therapy] and is admitted for [a spinal cord 
stimulator trial] .  
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Coreference Resolution 

Other needs: temporal 
recognition & reasoning, 
relations, quantities, etc.  
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Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 
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His first patient died of pneumonia. Another, who arrived from NY yesterday 
suffered from flu. Most others already recovered from flu 

Cause  

Start-state 

Location 

cause 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 

Learn models; Acquire knowledge/constraints; Make decisions.  
  

Difficulty: no single 
source with 

annotation for all 
phenomena 



Constrained Conditional Models 

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 
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Constrained Conditional Models 

A collection of probabilistic models 

Coreference: pairwise classifier 
between mentions  

Concepts: a model that determines 
boundaries for important phrases. 

Relations: Per-relation classifier 

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

Knowledge as Constraints 

Doctor cannot co-ref with a patient.  

Consistency with KB resources  

Consistency across relation types 

Legitimacy of relations 
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Multiple Clinical and Scientific Applications 

 Clinical Decisions: 
 “Please show me the reports of all patients who had headache that 

was not cured by Aspirin.” 
 Concept Recognition; Relation Identification (Problem, Treatment) 

 “Please show me the reports of all patients who have had myocardial 
infarction (heart attack) more than once.” 
 Coreference Resolution 

 Identification of sensitive data (Privacy Reasons) 
 HIV Data, Drug Abuse, Family Abuse, Genetic Information 

 Concept Recognition, Relations Recognition (drug, drug abuse),  
coreference resolution (multiple incidents, same people) 
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Multiple Clinical and Scientific Applications 

 Clinical Decisions: 
 “Please show me the reports of all patients who had headache that 

was not cured by Aspirin.” 
 Concept Recognition; Relation Identification (Problem, Treatment) 

 “Please show me the reports of all patients who have had myocardial 
infarction (heart attack) more than once.” 
 Coreference Resolution 

 Identification of sensitive data (Privacy Reasons) 
 HIV Data, Drug Abuse, Family Abuse, Genetic Information 

 Concept Recognition, Relations Recognition (drug, drug abuse),  
coreference resolution (multiple incidents, same people) 

 Generating summaries for patients 
 Creating automatic reminders of medications 
 Studying development and identification of diseases  
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Distributional Association Score 

Discourse Relation Prediction 

Causality 

Temporal 



Social, Political and Economic Event Database (SPEED) 
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Social, Political and Economic Event Database (SPEED) 

Cline Center for Democracy: 
Quantitative Political Science 
meets Information extraction  
 
Tracking Societal Stability in the 
Philippines: Civil strife, Human 
and property rights, The rule of 
law, Political regime transitions 

 



Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

This is an Inference Problem 
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 Much research into [data  meaning] attempts to tell us    

what a document says with some level of certainty 
 

 Why is it difficult to do? 
 What can we do today? 

 How?  
 What can we expect to do? 
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 Much research into [data  meaning] attempts to tell us    

what a document says with some level of certainty 
 

 Why is it difficult to do? 
 What can we do today? 

 How?  
 What can we expect to do? 

 
 But what should we believe, and who should we trust? 

 
 

Natural Language Understanding  
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 The advent of the Information Age and the Web 
 Overwhelming quantity of information 
 But uncertain quality. 

 
 Collaborative media 

 Blogs 
 Wikis 
 Tweets 
 Message boards 

 
 Established media are losing market share 

 Reduced fact-checking 

 
 

Knowing what to Believe  
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Distributed Trust 
 

 Sources may provide conflicting  
      information or mutually  
 reinforcing information.  

 Mistakenly or for a reason 
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Distributed Trust 
 

 Sources may provide conflicting  
      information or mutually  
 reinforcing information.  

 Mistakenly or for a reason 
 

 Not feasible for human to  
      read it all 
 A computational trust system  
 can be our proxy 
 Ideally, assign the trust judgments the user would 
 The user may be another system 

 A question answering system; A navigation system; A news aggregator 
 A warning system 
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Emergency Situations 
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 A distributed data stream needs to be monitored  

 
 All Data streams have Natural Language Content   

 Internet activity  
 chat rooms, forums, search activity, twitter and cell phones  

 Traffic reports; 911 calls and other emergency reports  
 Network activity, power grid reports, networks reports, security 

systems, banking 
 Media coverage 

 
 Often, stories appear on tweeter before they break the news 
 But, a lot of conflicting information, possibly misleading and 

deceiving 
 

Emergency Situations 
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Medical Domain: Many support groups and medical forums 
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Medical Domain: Many support groups and medical forums 
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Hundreds of Thousands of people get their medical information 
from the internet 

 Best treatment for….. 
 Side effects of….   
 But, some users have an agenda,… pharmaceutical companies… 



 Given:  
 Multiple content sources 
 Some target relations (“facts”) 

 E.g. [disease, treatments],  
              [treatments, side-effects] 

 Prior beliefs & background knowledge 
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 Given:  
 Multiple content sources 
 Some target relations (“facts”) 

 E.g. [disease, treatments],  
              [treatments, side-effects] 

 Prior beliefs & background knowledge 
 

 Our goal is to:  
 
 Score trustworthiness of claims and sources based on 

 Support across multiple (trusted) sources 
 Source characteristics:  

 reputation, interest-group (commercial / govt. backed / public interest),  
      verifiability of information (cited info) 

 Prior Beliefs and Background knowledge 
 Understanding content 
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Summary: Making Sense of Unstructured Data 

 A lot of today’s information is in text   
 

 Making sense of unstructured data 
 Automatic text understanding  (Natural Language Processing) is essential to 

supporting better access, analysis, and synthesis of data 
 Discussed a unified Learning and Inference approach that has had large impact 

on our ability to move forward in this direction.  
 Very active research area – the problem isn’t solve yet… 
 But we can offer practical solutions that reliably address a range a problems. 

 
 Trustworthiness of information  

 Comes up in the context of social (and “standard” media), but also in the 
context of using sensory information 

 
 Very broad applications, with huge societal impact. 
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Thank you! 

Check out our tools, demos, 
LBJava,  CCM tutorial,… 
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