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A Hypothetical Surveillance Program 

Image i = captureImage() 
for (Person p in i): 
 if isMasked(p) and (isRunning(p) or hasGun(p)): 
  soundAlarm() 
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Common Approach: Breaking it Down 

 Person detection: 
 Detect head 
 Detect arms 
 Detect hands 
 Detect legs 
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 A PhD Thesis… 
 Download some libraries 

 Learning algorithms 
 Inference algorithms 
 Other researchers’ detectors 

 Write some feature extractors 
 Write some scripts to run 

everything 



A (Realistic) Knowledge Management Program 

Corpus c = ReadCollection() 
List  LikedPeople = ReadPeople() 
List  DisLikedBPeople = ReadPeople() 
for (Email e in c): 
 for (Person p in body(e)): 
  Like = isLike(p) 
  if Like and (not in LikedPeople)  
   LikedPeople +v p 
  if (not Like) and (not in DisLikedPeople)    
   DisLikedPeople +v p 
Update Likedpeople, DisLikedPeople 
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Discriminative Example: Semantic Role Labeling  
[Punyakanok, et.al., CL’08] 

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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Our Learning Based Programming Thesis 

 Existing programming languages are not designed to deal with 
real-world messy data, and to describe the central 
components of modern learning-based programs:  
 constrained optimization problems whose objective function are 

 derived from data  
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Our Learning Based Programming Thesis 

 Existing programming languages are not designed to deal with 
real-world messy data, and to describe the central 
components of modern learning-based programs:  
 constrained optimization problems whose objective function are 

 derived from data  

 Present the Constrained Conditional Model (CCM), a 
computation model for learning and inference that is  
 Expressive enough to capture a large class of problems 
 Provides the abstraction for our language 

 Demonstrate 2 CCM-based LBP languages that compile their 
efficient implementation from data. 
 LBJava http://cogcomp.cs.illinois.edu/page/software_view/11  
 Our 2nd generation language, CCMP 
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Principles of Learning Based Programming 

 An LBP language provides: 
 

 High level primitives 
 for feature extraction, learning, inference, and their combinations 

 Relational features (a.k.a. structure) 
 Features involving multiple output variables 

 Infinite feature space 
 Cannot assume a priori how many or which features will be present 

 Customizable objective function 
 Model can’t be a black box 

7 



Principles of Learning Based Programming (2) 

 An LBP language provides: 
 

 Model composability 
 Encapsulate model in a name; re-use in larger models 

 Training & Inference decomposability 
 Facilitate tailored inference solutions via access to structure 
 In particular, support of reusability of models, pipelines, etc. 

 Algorithm independence 

8 



Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 
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Constrained Conditional Models  [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]  
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Constrained Conditional Models  [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]  

 Prediction function: assign values that maximize objective 
 
 

 Objective is linear in features and constraints 
 
 
 

 Both have free reign over input and output variables 

 Accommodates both probabilistic and discriminative 
techniques 
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argmaxy 
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Constrained Conditional Models 

Inference (Prediction) 
• This is an Integer Linear Program.  
• Any discrete MPE problem can be 

formulated this way.  
• Solution: Use ILP packages for an  

exact solution;  Cutting Planes, Dual 
Decomposition & other search 
techniques for approximate solutions 

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

argmaxy 

11 



Constrained Conditional Models 

Inference (Prediction) 
• This is an Integer Linear Program.  
• Any discrete MPE problem can be 

formulated this way.  
• Solution: Use ILP packages for an  

exact solution;  Cutting Planes, Dual 
Decomposition & other search 
techniques for approximate solutions 
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component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

Learning 
• Training is learning the objective 

function 
• Decoupling Left from Right allows 

incorporating independently trained 
models, pipelines, etc.   

• Model decomposition facilitates more 
flexible and efficient computation.   

argmaxy 
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Constrained Conditional Models Allow: 
 Learning a simple model  (or multiple; or pipelines) 
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-rank 

global decisions composed of simpler models’ decisions 
 More sophisticated algorithmic approaches exist to bias the output  

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]  



Discriminative Example: Semantic Role Labeling  
[Punyakanok, et.al., CL’08] 

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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 Identify argument candidates 
 Pruning  Heuristics 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Multi-class classification 
 Can choose to “trust”  
     output of identifier 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 
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I left my nice pearls to her 

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  

2:14 



 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

                                                    
                                                        

 
                                                                         
  

 
 

Constrained Conditional Models—ILP Formulations 

15 

http://l2r.cs.uiuc.edu/tutorials.html


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms 
 [Chang, Ratinov & Roth, Machine Learning Journal 2012] 

 
 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
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Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 
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 LBP design principles: 
 

 High level primitives 
 Relational features 
 Infinite feature space 
 Customizable objective function 
 Model composability 
 Inference decomposability (not flexible enough) 
 Algorithm independence (learning; not inference) 

 

Learning Based Java  [Rizzolo & Roth, ICSC’07, LREC’10] 
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Learning Based Java  [Rizzolo & Roth, ICSC’07] 

 Describes a particular type of CCM 
 Collection of (optionally normalized) multi-class CCMs 
 User-defined feature functions 

 
 
 
 
 

 User-defined constraints (only hard constraints) 

 How to represent constraints / perform inference? 
 First order logic  translate to ILP 

 How to integrate with user’s application? 

18 



Example: Semantic Role Labeling 

 Classifiers take user’s objects as input; produce features 
 Can be hard-coded or learned 
 Learned classifiers use other classifiers to extract features 

 Those can be learned too: model composability 

 LBJava compiler: 
 Indexes features for fast training / testing 
 Generates a Java class for every classifier 

19 



20 

Constraints 

 Declarative, FOL-style constraints 
 Learned classifiers appear as functions 
 Applied directly over user’s Java objects 
 Interspersed with arbitrary Java code 
 New quantifiers: atleast and atmost 

 

“If there’s a reference to an A0, there must be an A0.” 



Inference Problems 

 “Head” object represents entire inference problem 
 At run-time 

 Constraints translated to linear inequalities 
 ILP inference solves problem 

 Used broadly in NLP applications 

21 



LBJava: Success Stories 

22 

 Multiple state-of-the-art Natural Language Processing Tools 
 Part-of-speech tagger; Named Entity Recognition    
 Co-Reference Resolution; Relation and Event Extraction,… 
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11] 



LBJava: Success Stories 

22 

 Multiple state-of-the-art Natural Language Processing Tools 
 Part-of-speech tagger; Named Entity Recognition    
 Co-Reference Resolution; Relation and Event Extraction,… 
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11] 



LBJava: Success Stories 

22 

 Multiple state-of-the-art Natural Language Processing Tools 
 Part-of-speech tagger; Named Entity Recognition    
 Co-Reference Resolution; Relation and Event Extraction,… 
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11] 

Developing a state-of-the-art NER takes ~half a day 



LBJava: Success Stories 

22 

 Multiple state-of-the-art Natural Language Processing Tools 
 Part-of-speech tagger; Named Entity Recognition    
 Co-Reference Resolution; Relation and Event Extraction,… 
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11] 

Developing a state-of-the-art NER takes ~half a day 



Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 
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2nd Generation: From LBJava to CCMP 

 What’s missing? 
 
 

 Expressivity:  
 Structures over output variables 
 

 Ease of use: from paper to program 
 Declarative definition of models 

 Declarative ways to define training and inference preferences 
 Procedural building of an application 

24 



Constrained Conditional Model Processing (CCMP) 

 General purpose language; Turing complete  
 Fully supports CCMs 
 Modular design, decomposed and reusable models  
 Flexible and expressive training and inference paradigms 

 LBP design principles: 
 

 High level primitives 
 Relational features 
 Infinite feature space 
 Customizable objective function 
 Model composability 
 Inference decomposability 
 Algorithm independence 
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CCMP’s Unified Formalism 

 Features, sparse vectors, examples, and models are all 
primitive data types. 

 Provided operators break them down and build them up. 
 Models are modular 

 Previously learned models can be imported, constrained, etc. 
 Instances store 

 learned parameters 
 feature functions 
 pointers to other models 

 

 Supports a variety of learning and inference protocols 

26 



From Paper* to Program  

 The goal of CCMP is to (almost) automatically generate a 
program from the application/model described in your paper  

 Some code is generated automatically 
 But can be modified by the programmer 
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program from the application/model described in your paper  

 Some code is generated automatically 
 But can be modified by the programmer 

 The program has five components: 
 Data  
 Y Space Definition  (the variables you want to assign values to) 
 Representation (features; constraints) 
 Prediction (inference) Paradigm 
 Training Paradigm  

 Decoupling decision time prediction and training facilitates 
reusable models, various decompositions, and pipelines  
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Is the problem well 
defined?  
Models for variables 
could be learned 
separately; 
constraints may 
come up only at 
decision time.  
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Variable indicating E 
takes value e.  

Variable indicating R 
takes value r.  

Variable relating 
E and R   

Model weight 

Constraint weight 

Consistency Constraints 



CCMP: Declarative Specification of Problem and Solution 
 1. Data  

 Readers into CCMP data structures; Edison for NLP 

 2. Defining the output space (Y) 
 The variables we need to assign values to  
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
          Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

 3. Representation 
 Features and Constraints 
 Most are generated automatically, but can be modified  

 4. Learning  
 Defining the decomposition in Training 

 5. Inference  
 Decision Time Prediction 
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The ability to define Learning and 
Inference paradigm 
independently is key in CCMP 



Learning Paradigms 
 There are multiple ways to train models for this problem 
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  ∑e we xe + ∑r wr xr 

 Subject to 
 Xr=LivesIn  xe1=PER  
 …. 

 
 

 



Inference Paradigms 
 There are multiple ways to assign values to target variables  

 
 {E(Phrase)};  {R(Phrase, Phrase)} 

 Mode decisions with respect to individual variables.  

 
 {E(Phrase)};  {R(Phrase, Phrase, E)} 

 Pipeline E decisions as input to inferring R.     
 

 {E(Phrase), R(Phrase, Phrase)} 
 Global Inference 

 

 

32 



Inference Paradigms 
 There are multiple ways to assign values to target variables  

 
 {E(Phrase)};  {R(Phrase, Phrase)} 

 Mode decisions with respect to individual variables.  

 
 {E(Phrase)};  {R(Phrase, Phrase, E)} 

 Pipeline E decisions as input to inferring R.     
 

 {E(Phrase), R(Phrase, Phrase)} 
 Global Inference 

 

 

32 



CCMP: Declarative Specification of a Solution 

 

33 



CCMP: Declarative Specification of a Solution 

 

33 

Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 



CCMP: Declarative Specification of a Solution 

 

33 

Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

//Here is default input structure 
  Corpus(id:Corpus) 
  Document(id1:Document,id2:Corpus) 
  Paragraph(id1:Paragraph,id2:Document) 
  Sentence(id1:Sentence,id2:Paragraph) 
  Phrase(id1:Phrase,id2:Word) 



Output Space: 
  Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
         Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

CCMP: Declarative Specification of a Solution 
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

//Here is default output definition  
  // Entity Aux Variables  
  Ei = {Bi, Ii, Li, Ui, O} 
  // Phrase Construction Procedure: 
  Phrase = BIOLU(S) 



Output Space: 
  Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
         Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

Representation: 
  Use FEX E-R 
  Use Const: If punc(w)  not E(w) 

CCMP: Declarative Specification of a Solution 
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

//Here is default FEX   
  Lexical-form(id:phrase,[0,1]) 
  parse-path(id1:phrase,id2:after(id1)) 
  ….. 



Output Space: 
  Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
         Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

Representation: 
  Use FEX E-R 
  Use Const: If punc(w)  not E(w) 

CCMP: Declarative Specification of a Solution 
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

Training:  
  {E(Phrase)};  {R(Phrase, Phrase)} 



Output Space: 
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Representation: 
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CCMP: Declarative Specification of a Solution 
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

Training:  
  {E(Phrase)};  {R(Phrase, Phrase)} 

Inference: 
{E(Phrase), R(Phrase, Phrase)} 



CCMP Also Provides Low Level Access 

 Access to vector “slices” and individual elements 
 Access to FGFs, constraints, and sub-models 

 Enables learning and inference that was hard or impossible in LBJava 
 

 Break an FGF down to see operators and sub-formulae 
 Enables translation to ILP 
 Will be useful for other inference algorithms as well 
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CCMP Status: 1st prototype define via Maude & K 
 Maude: a language of rewriting logic    [Meseguer, ‘92] 

 Define logical functions and rewrite rules 
 Functions represent language syntax; rules give the semantics 
 Terms are programs + input; Maude deduces the output 
 Executional semantics 

 K: semantics via continuations    [Rosu & Serbanuta, ‘10] 
 Arrange program state into a configuration  of cells 
 Arrange computation as stack of continuations 
 Heating/cooling rules  bring next task to top of stack 

 CCMP is defined in 4500 lines of Maude 
 Multiple applications using a variety of learning and inference 

paradigms have been coded, trained and tested 
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 Define logical functions and rewrite rules 
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 Terms are programs + input; Maude deduces the output 
 Executional semantics 

 K: semantics via continuations    [Rosu & Serbanuta, ‘10] 
 Arrange program state into a configuration  of cells 
 Arrange computation as stack of continuations 
 Heating/cooling rules  bring next task to top of stack 

 CCMP is defined in 4500 lines of Maude 
 Multiple applications using a variety of learning and inference 

paradigms have been coded, trained and tested 

 Current version is being implemented in Scala 
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Before Conclusion: Cloud NLP  
[Wu et. al. LREC’14] 
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Before Conclusion: Cloud NLP  
[Wu et. al. LREC’14] 

 Researcher as well as small/medium-sized organizations 
sometimes need to analyze large document collections. 

 They want to apply a lot of rich Natural Language Processing 
(NLP) analytics to the document text, but 
 They don’t have expertise developing them  
 They may not have  peak-time computing power  
 They may not have expertise and time to install 3rd party versions.  

 How do you make it really easy to periodically process large 
sets of documents with rich NLP analytics… 
 …in a short time 
 …at reasonable cost 
 …with minimal local compute power?  

 (HINT: IllinoisCloudNLP) 
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Illinois CloudNLP  (shortly on: http://cogcomp.cs.illinois.edu/page/software) 

 On-demand processing of large corpora 
 Using state-of-the art Illinois NLP components 
 Training and application of text classifiers 
 Maximum user privacy & user control over data 
 User runs client software from local machine 
 Client software applies NLP analytics in the cloud 



Conclusions 
 Learning Based Programming 

 LBP is the study of programming language abstractions for machine 
learning representations and techniques. 

 A platform for defining and combining decision making models. 
 Discriminative or probabilistic; Trained jointly or independently; Exact or 

approximate inference 
 All of these can be left to the programmer to decide 

 

 An LBP language makes the programmer’s life easier 
 Abstracts away details that distract from the main goal 
 Shortens the development cycle 

 Presented the case, and some details of two languages. 
 LBJava: a mature, easy to use, language that supports learning 

individual models and joint inference at decision time 
 CCMP: an in development declarative language that support the 

whole LBP development cycle  
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Thank You! 
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