
June 2014
ICML AutoML Workshop

Learning Based Programming:
Facilitating the Programming of Data
Driven Software Systems

Dan Roth
Department of Computer Science

University of Illinois at Urbana—Champaign

June 2014
ICML AutoML Workshop

Learning Based Programming:
Facilitating the Programming of Data
Driven Software Systems

Dan Roth
Department of Computer Science

University of Illinois at Urbana—Champaign

With thanks to:
Collaborators: Nick Rizzolo, Ming-Wei Chang, Kai-Wei Chang, Scott Yih, Parisa
 Kordjamshidi; Many others
Funding: NSF; DHS; NIH; DARPA; IARPA, ARL, ONR
 DASH Optimization (Xpress-MP); Gurobi.

A Hypothetical Surveillance Program

Image i = captureImage()
for (Person p in i):
 if isMasked(p) and (isRunning(p) or hasGun(p)):
 soundAlarm()

2

A Hypothetical Surveillance Program

Image i = captureImage()
for (Person p in i):
 if isMasked(p) and (isRunning(p) or hasGun(p)):
 soundAlarm()

 Simple! …except we have to
 detect people
 determine if they are masked
 determine if they are running
 determine if they have a gun

2

A Hypothetical Surveillance Program

Image i = captureImage()
for (Person p in i):
 if isMasked(p) and (isRunning(p) or hasGun(p)):
 soundAlarm()

 Simple! …except we have to
 detect people
 determine if they are masked
 determine if they are running
 determine if they have a gun

2

Common Approach: Breaking it Down

 Person detection:
 Detect head
 Detect arms
 Detect hands
 Detect legs

3

Common Approach: Breaking it Down

 Person detection:
 Detect head
 Detect arms
 Detect hands
 Detect legs

 How to write detectors?
 If we could hard-code, we would
 But heuristics perform poorly
 Machine learning to the rescue

 Functions defined via data

3

Common Approach: Breaking it Down

 Person detection:
 Detect head
 Detect arms
 Detect hands
 Detect legs

 How to write detectors?
 If we could hard-code, we would
 But heuristics perform poorly
 Machine learning to the rescue

 Functions defined via data

3

 A PhD Thesis…
 Download some libraries

 Learning algorithms
 Inference algorithms
 Other researchers’ detectors

 Write some feature extractors
 Write some scripts to run

everything

A (Realistic) Knowledge Management Program

Corpus c = ReadCollection()
List LikedPeople = ReadPeople()
List DisLikedBPeople = ReadPeople()
for (Email e in c):
 for (Person p in body(e)):
 Like = isLike(p)
 if Like and (not in LikedPeople)
 LikedPeople +v p
 if (not Like) and (not in DisLikedPeople)
 DisLikedPeople +v p
Update Likedpeople, DisLikedPeople

4

A (Realistic) Knowledge Management Program

Corpus c = ReadCollection()
List LikedPeople = ReadPeople()
List DisLikedBPeople = ReadPeople()
for (Email e in c):
 for (Person p in body(e)):
 Like = isLike(p)
 if Like and (not in LikedPeople)
 LikedPeople +v p
 if (not Like) and (not in DisLikedPeople)
 DisLikedPeople +v p
Update Likedpeople, DisLikedPeople

 Simple! …except we have to
 recognize people in text
 determine if they are Liked in the text
 determine if they are new to the list

4

A (Realistic) Knowledge Management Program

Corpus c = ReadCollection()
List LikedPeople = ReadPeople()
List DisLikedBPeople = ReadPeople()
for (Email e in c):
 for (Person p in body(e)):
 Like = isLike(p)
 if Like and (not in LikedPeople)
 LikedPeople +v p
 if (not Like) and (not in DisLikedPeople)
 DisLikedPeople +v p
Update Likedpeople, DisLikedPeople

 Simple! …except we have to
 recognize people in text
 determine if they are Liked in the text
 determine if they are new to the list

4

Discriminative Example: Semantic Role Labeling
[Punyakanok, et.al., CL’08]

I left my pearls to my daughter in my will .
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC .

 A0 Leaver

 A1 Things left

 A2 Benefactor

 AM-LOC Location

I left my pearls to my daughter in my will .

5

Our Learning Based Programming Thesis

 Existing programming languages are not designed to deal with
real-world messy data, and to describe the central
components of modern learning-based programs:
 constrained optimization problems whose objective function are

 derived from data

6

http://cogcomp.cs.illinois.edu/page/software_view/11

Our Learning Based Programming Thesis

 Existing programming languages are not designed to deal with
real-world messy data, and to describe the central
components of modern learning-based programs:
 constrained optimization problems whose objective function are

 derived from data

 Present the Constrained Conditional Model (CCM), a
computation model for learning and inference that is
 Expressive enough to capture a large class of problems
 Provides the abstraction for our language

6

http://cogcomp.cs.illinois.edu/page/software_view/11

Our Learning Based Programming Thesis

 Existing programming languages are not designed to deal with
real-world messy data, and to describe the central
components of modern learning-based programs:
 constrained optimization problems whose objective function are

 derived from data

 Present the Constrained Conditional Model (CCM), a
computation model for learning and inference that is
 Expressive enough to capture a large class of problems
 Provides the abstraction for our language

 Demonstrate 2 CCM-based LBP languages that compile their
efficient implementation from data.
 LBJava http://cogcomp.cs.illinois.edu/page/software_view/11
 Our 2nd generation language, CCMP

6

http://cogcomp.cs.illinois.edu/page/software_view/11

Principles of Learning Based Programming

 An LBP language provides:

 High level primitives
 for feature extraction, learning, inference, and their combinations

 Relational features (a.k.a. structure)
 Features involving multiple output variables

 Infinite feature space
 Cannot assume a priori how many or which features will be present

 Customizable objective function
 Model can’t be a black box

7

Principles of Learning Based Programming (2)

 An LBP language provides:

 Model composability
 Encapsulate model in a name; re-use in larger models

 Training & Inference decomposability
 Facilitate tailored inference solutions via access to structure
 In particular, support of reusability of models, pipelines, etc.

 Algorithm independence

8

Roadmap

 Introduction
 Desiderata

 Constrained Conditional Models
 A general, discriminative inference framework

 Learning Based Java
 A discriminative modeling language

 CCMP: Constraint Conditional Model Processing Language
 LBP with structure
 Developing flexible programs over models

 Example
 Program structure: all you need is the paper…

9

Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

10

Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

 Prediction function: assign values that maximize objective

10

Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

 Prediction function: assign values that maximize objective

 Objective is linear in features and constraints

 Both have free reign over input and output variables

10

Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]

 Prediction function: assign values that maximize objective

 Objective is linear in features and constraints

 Both have free reign over input and output variables

 Accommodates both probabilistic and discriminative
techniques

10

Constrained Conditional Models

argmaxy

11

Constrained Conditional Models

argmaxy

11

Constrained Conditional Models

Weight Vector for
“local” models

argmaxy

11

Constrained Conditional Models

Weight Vector for
“local” models Features, classifiers; log-

linear models (HMM,
CRF) or a combination

argmaxy

11

Constrained Conditional Models

(Soft) constraints
component

Weight Vector for
“local” models Features, classifiers; log-

linear models (HMM,
CRF) or a combination

argmaxy

11

Constrained Conditional Models

(Soft) constraints
component

Weight Vector for
“local” models

Penalty for violating
the constraint.

How far y is from
a “legal” assignment

Features, classifiers; log-
linear models (HMM,
CRF) or a combination

argmaxy

11

Constrained Conditional Models

Inference (Prediction)
• This is an Integer Linear Program.
• Any discrete MPE problem can be

formulated this way.
• Solution: Use ILP packages for an

exact solution; Cutting Planes, Dual
Decomposition & other search
techniques for approximate solutions

(Soft) constraints
component

Weight Vector for
“local” models

Penalty for violating
the constraint.

How far y is from
a “legal” assignment

Features, classifiers; log-
linear models (HMM,
CRF) or a combination

argmaxy

11

Constrained Conditional Models

Inference (Prediction)
• This is an Integer Linear Program.
• Any discrete MPE problem can be

formulated this way.
• Solution: Use ILP packages for an

exact solution; Cutting Planes, Dual
Decomposition & other search
techniques for approximate solutions

(Soft) constraints
component

Weight Vector for
“local” models

Penalty for violating
the constraint.

How far y is from
a “legal” assignment

Features, classifiers; log-
linear models (HMM,
CRF) or a combination

Learning
• Training is learning the objective

function
• Decoupling Left from Right allows

incorporating independently trained
models, pipelines, etc.

• Model decomposition facilitates more
flexible and efficient computation.

argmaxy

11

Examples: CCM Formulations

Page 12

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Page 12

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)
 1. Sequence tagging (HMM/CRF + Global constraints)
 2. Sentence Compression (Language Model + Global Constraints)
 3. SRL (Independent classifiers + Global Constraints)

Page 12

Linguistics Constraints

Cannot have both A states and B states
in an output sequence.

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Sequential Prediction

HMM/CRF based:
 Argmax ∑ ¸ij xij

Formulate NLP Problems as ILP problems (inference may be done otherwise)
 1. Sequence tagging (HMM/CRF + Global constraints)
 2. Sentence Compression (Language Model + Global Constraints)
 3. SRL (Independent classifiers + Global Constraints)

Page 12

Linguistics Constraints

Cannot have both A states and B states
in an output sequence.

Linguistics Constraints

If a modifier chosen, include its head
If verb is chosen, include its arguments

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Sequential Prediction

HMM/CRF based:
 Argmax ∑ ¸ij xij

Sentence
Compression/Summarization:

Language Model based:
 Argmax ∑ ¸ijk xijk

Formulate NLP Problems as ILP problems (inference may be done otherwise)
 1. Sequence tagging (HMM/CRF + Global constraints)
 2. Sentence Compression (Language Model + Global Constraints)
 3. SRL (Independent classifiers + Global Constraints)

Page 12

Linguistics Constraints

Cannot have both A states and B states
in an output sequence.

Linguistics Constraints

If a modifier chosen, include its head
If verb is chosen, include its arguments

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Sequential Prediction

HMM/CRF based:
 Argmax ∑ ¸ij xij

Sentence
Compression/Summarization:

Language Model based:
 Argmax ∑ ¸ijk xijk

Formulate NLP Problems as ILP problems (inference may be done otherwise)
 1. Sequence tagging (HMM/CRF + Global constraints)
 2. Sentence Compression (Language Model + Global Constraints)
 3. SRL (Independent classifiers + Global Constraints)

Page 12

Linguistics Constraints

Cannot have both A states and B states
in an output sequence.

Linguistics Constraints

If a modifier chosen, include its head
If verb is chosen, include its arguments

Examples: CCM Formulations

CCMs can be viewed as a general interface to easily combine
declarative domain knowledge with data driven statistical models

Sequential Prediction

HMM/CRF based:
 Argmax ∑ ¸ij xij

Sentence
Compression/Summarization:

Language Model based:
 Argmax ∑ ¸ijk xijk

Formulate NLP Problems as ILP problems (inference may be done otherwise)
 1. Sequence tagging (HMM/CRF + Global constraints)
 2. Sentence Compression (Language Model + Global Constraints)
 3. SRL (Independent classifiers + Global Constraints)

Page 12

Constrained Conditional Models Allow:
 Learning a simple model (or multiple; or pipelines)
 Make decisions with a more complex model
 Accomplished by directly incorporating constraints to bias/re-rank

global decisions composed of simpler models’ decisions
 More sophisticated algorithmic approaches exist to bias the output

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]

Discriminative Example: Semantic Role Labeling
[Punyakanok, et.al., CL’08]

I left my pearls to my daughter in my will .
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC .

 A0 Leaver

 A1 Things left

 A2 Benefactor

 AM-LOC Location

I left my pearls to my daughter in my will .

13

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

SRL: Discriminative Decomposition

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

SRL: Discriminative Decomposition I left my nice pearls to her

I left my nice pearls to her
[[[[[
]]]]]

candidate arguments

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

argmax ∑a,t ya,t ca,t = ∑a,t 1a=t ca=t

Subject to:
• One label per argument: ∑t ya,t = 1
• No overlapping or embedding
• Relations between verbs and arguments,….

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

argmax ∑a,t ya,t ca,t = ∑a,t 1a=t ca=t

Subject to:
• One label per argument: ∑t ya,t = 1
• No overlapping or embedding
• Relations between verbs and arguments,….

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

Variable ya,t indicates whether candidate
argument a is assigned a label t.
ca,t is the corresponding model score

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

argmax ∑a,t ya,t ca,t = ∑a,t 1a=t ca=t

Subject to:
• One label per argument: ∑t ya,t = 1
• No overlapping or embedding
• Relations between verbs and arguments,….

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

Variable ya,t indicates whether candidate
argument a is assigned a label t.
ca,t is the corresponding model score

No duplicate
argument classes

Unique labels

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

argmax ∑a,t ya,t ca,t = ∑a,t 1a=t ca=t

Subject to:
• One label per argument: ∑t ya,t = 1
• No overlapping or embedding
• Relations between verbs and arguments,….

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

Variable ya,t indicates whether candidate
argument a is assigned a label t.
ca,t is the corresponding model score

Learning Based Java: allows a developer
to encode constraints in First Order
Logic; these are compiled into linear
inequalities automatically.

2:14

 Identify argument candidates
 Pruning Heuristics
 Argument Identifier

 Binary classification

 Classify argument candidates
 Multi-class classification
 Can choose to “trust”
 output of identifier

 Inference
 Use the estimated probability distribution

given by the argument classifier
 Use structural and linguistic constraints
 Infer the optimal global output

One inference
problem for each
verb predicate.

argmax ∑a,t ya,t ca,t = ∑a,t 1a=t ca=t

Subject to:
• One label per argument: ∑t ya,t = 1
• No overlapping or embedding
• Relations between verbs and arguments,….

SRL: Discriminative Decomposition
I left my nice pearls to her

[[[[[
]]]]]

I left my nice pearls to her

I left my nice pearls to her

Use the pipeline architecture’s simplicity while maintaining uncertainty: keep
probability distributions over decisions & use global inference at decision time.

Variable ya,t indicates whether candidate
argument a is assigned a label t.
ca,t is the corresponding model score

Learning Based Java: allows a developer
to encode constraints in First Order
Logic; these are compiled into linear
inequalities automatically.

2:14

 Have been shown useful in the context of many NLP problems

 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL …]

 Summarization; Co-reference; Information & Relation Extraction; Event
Identifications and causality ; Transliteration; Textual Entailment;
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,…

 Some theoretical work on training paradigms [Punyakanok et. al., 05 more;

Constraints Driven Learning, PR, Constrained EM…]
 Some work on Inference, mostly approximations, bringing back ideas on

Lagrangian relaxation, etc.

Constrained Conditional Models—ILP Formulations

15

http://l2r.cs.uiuc.edu/tutorials.html

 Have been shown useful in the context of many NLP problems

 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL …]

 Summarization; Co-reference; Information & Relation Extraction; Event
Identifications and causality ; Transliteration; Textual Entailment;
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,…

 Some theoretical work on training paradigms [Punyakanok et. al., 05 more;

Constraints Driven Learning, PR, Constrained EM…]
 Some work on Inference, mostly approximations, bringing back ideas on

Lagrangian relaxation, etc.

 Good summary and description of training paradigms
 [Chang, Ratinov & Roth, Machine Learning Journal 2012]

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html

Constrained Conditional Models—ILP Formulations

15

http://l2r.cs.uiuc.edu/tutorials.html

Roadmap

 Introduction
 Desiderata

 Constrained Conditional Models
 A general, discriminative inference framework

 Learning Based Java
 A discriminative modeling language

 CCMP: Constraint Conditional Model Processing Language
 LBP with structure
 Developing flexible programs over models

 Example
 Program structure: all you need is the paper…

16

 LBP design principles:

 High level primitives
 Relational features
 Infinite feature space
 Customizable objective function
 Model composability
 Inference decomposability (not flexible enough)
 Algorithm independence (learning; not inference)

Learning Based Java [Rizzolo & Roth, ICSC’07, LREC’10]

17

 LBP design principles:

 High level primitives
 Relational features
 Infinite feature space
 Customizable objective function
 Model composability
 Inference decomposability (not flexible enough)
 Algorithm independence (learning; not inference)

Learning Based Java [Rizzolo & Roth, ICSC’07, LREC’10]

17

Learning Based Java [Rizzolo & Roth, ICSC’07]

 Describes a particular type of CCM
 Collection of (optionally normalized) multi-class CCMs
 User-defined feature functions

 User-defined constraints (only hard constraints)

 How to represent constraints / perform inference?
 First order logic  translate to ILP

 How to integrate with user’s application?

18

Example: Semantic Role Labeling

 Classifiers take user’s objects as input; produce features
 Can be hard-coded or learned
 Learned classifiers use other classifiers to extract features

 Those can be learned too: model composability

 LBJava compiler:
 Indexes features for fast training / testing
 Generates a Java class for every classifier

19

20

Constraints

 Declarative, FOL-style constraints
 Learned classifiers appear as functions
 Applied directly over user’s Java objects
 Interspersed with arbitrary Java code
 New quantifiers: atleast and atmost

“If there’s a reference to an A0, there must be an A0.”

Inference Problems

 “Head” object represents entire inference problem
 At run-time

 Constraints translated to linear inequalities
 ILP inference solves problem

 Used broadly in NLP applications

21

LBJava: Success Stories

22

 Multiple state-of-the-art Natural Language Processing Tools
 Part-of-speech tagger; Named Entity Recognition
 Co-Reference Resolution; Relation and Event Extraction,…
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11]

LBJava: Success Stories

22

 Multiple state-of-the-art Natural Language Processing Tools
 Part-of-speech tagger; Named Entity Recognition
 Co-Reference Resolution; Relation and Event Extraction,…
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11]

LBJava: Success Stories

22

 Multiple state-of-the-art Natural Language Processing Tools
 Part-of-speech tagger; Named Entity Recognition
 Co-Reference Resolution; Relation and Event Extraction,…
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11]

Developing a state-of-the-art NER takes ~half a day

LBJava: Success Stories

22

 Multiple state-of-the-art Natural Language Processing Tools
 Part-of-speech tagger; Named Entity Recognition
 Co-Reference Resolution; Relation and Event Extraction,…
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11]

Developing a state-of-the-art NER takes ~half a day

Roadmap

 Introduction
 Desiderata

 Constrained Conditional Models
 A general, discriminative inference framework

 Learning Based Java
 A discriminative modeling language

 CCMP: Constraint Conditional Model Processing Language
 LBP with structure
 Developing flexible programs over models

 Example
 Program structure: all you need is the paper…

23

2nd Generation: From LBJava to CCMP

 What’s missing?

 Expressivity:
 Structures over output variables

 Ease of use: from paper to program
 Declarative definition of models

 Declarative ways to define training and inference preferences
 Procedural building of an application

24

Constrained Conditional Model Processing (CCMP)

 General purpose language; Turing complete
 Fully supports CCMs
 Modular design, decomposed and reusable models
 Flexible and expressive training and inference paradigms

 LBP design principles:

 High level primitives
 Relational features
 Infinite feature space
 Customizable objective function
 Model composability
 Inference decomposability
 Algorithm independence

25

CCMP’s Unified Formalism

 Features, sparse vectors, examples, and models are all
primitive data types.

 Provided operators break them down and build them up.
 Models are modular

 Previously learned models can be imported, constrained, etc.
 Instances store

 learned parameters
 feature functions
 pointers to other models

 Supports a variety of learning and inference protocols

26

From Paper* to Program

 The goal of CCMP is to (almost) automatically generate a
program from the application/model described in your paper

 Some code is generated automatically
 But can be modified by the programmer

27

From Paper* to Program

 The goal of CCMP is to (almost) automatically generate a
program from the application/model described in your paper

 Some code is generated automatically
 But can be modified by the programmer

27

Information crucial to the development
of an application is often omitted;
CCMP abstractions reveal these gaps.

From Paper* to Program

 The goal of CCMP is to (almost) automatically generate a
program from the application/model described in your paper

 Some code is generated automatically
 But can be modified by the programmer

 The program has five components:
 Data
 Y Space Definition (the variables you want to assign values to)
 Representation (features; constraints)
 Prediction (inference) Paradigm
 Training Paradigm

27

Information crucial to the development
of an application is often omitted;
CCMP abstractions reveal these gaps.

From Paper* to Program

 The goal of CCMP is to (almost) automatically generate a
program from the application/model described in your paper

 Some code is generated automatically
 But can be modified by the programmer

 The program has five components:
 Data
 Y Space Definition (the variables you want to assign values to)
 Representation (features; constraints)
 Prediction (inference) Paradigm
 Training Paradigm

 Decoupling decision time prediction and training facilitates
reusable models, various decompositions, and pipelines

27

Information crucial to the development
of an application is often omitted;
CCMP abstractions reveal these gaps.

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.10

spouse_of 0.05

born_in 0.85

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.10

spouse_of 0.05

born_in 0.85

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.10

spouse_of 0.05

born_in 0.85

other 0.05

per 0.50

loc 0.45

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.10

spouse_of 0.05

born_in 0.85

other 0.05

per 0.50

loc 0.45

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.10

spouse_of 0.05

born_in 0.85

other 0.05

per 0.50

loc 0.45

Recognizing Entities and Relations [Roth&Yih’04,07]

Page 28

Dole ’s wife, Elizabeth , is a native of N.C.

 E1 E2 E3
R12 R23

other 0.05

per 0.85

loc 0.10

other 0.05

per 0.50

loc 0.45

other 0.10

per 0.60

loc 0.30

irrelevant 0.10

spouse_of 0.05

born_in 0.85

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.05

spouse_of 0.45

born_in 0.50

other 0.05

per 0.85

loc 0.10

other 0.10

per 0.60

loc 0.30

other 0.05

per 0.50

loc 0.45

irrelevant 0.05

spouse_of 0.45

born_in 0.50

irrelevant 0.10

spouse_of 0.05

born_in 0.85

other 0.05

per 0.50

loc 0.45

Is the problem well
defined?
Models for variables
could be learned
separately;
constraints may
come up only at
decision time.

Prediction Paradigms

29

Prediction Paradigms

29

Variable indicating E
takes value e.

Variable indicating R
takes value r.

Variable relating
E and R

Prediction Paradigms

29

Variable indicating E
takes value e.

Variable indicating R
takes value r.

Variable relating
E and R

Model weight

Constraint weight

Prediction Paradigms

29

Variable indicating E
takes value e.

Variable indicating R
takes value r.

Variable relating
E and R

Model weight

Constraint weight

Consistency Constraints

CCMP: Declarative Specification of Problem and Solution
 1. Data

 Readers into CCMP data structures; Edison for NLP

 2. Defining the output space (Y)
 The variables we need to assign values to
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

 3. Representation
 Features and Constraints
 Most are generated automatically, but can be modified

 4. Learning
 Defining the decomposition in Training

 5. Inference
 Decision Time Prediction

30

CCMP: Declarative Specification of Problem and Solution
 1. Data

 Readers into CCMP data structures; Edison for NLP

 2. Defining the output space (Y)
 The variables we need to assign values to
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

 3. Representation
 Features and Constraints
 Most are generated automatically, but can be modified

 4. Learning
 Defining the decomposition in Training

 5. Inference
 Decision Time Prediction

30

The ability to define Learning and
Inference paradigm
independently is key in CCMP

Learning Paradigms
 There are multiple ways to train models for this problem

31

Learning Paradigms
 There are multiple ways to train models for this problem

 {E(Phrase)}; {R(Phrase, Phrase)}

 Train independent models for Entities and Relations

31

Learning Paradigms
 There are multiple ways to train models for this problem

 {E(Phrase)}; {R(Phrase, Phrase)}

 Train independent models for Entities and Relations

 {E(Phrase)}; {R(Phrase, Phrase, E)}

 Pipeline E decisions as input to learning R. (Variations possible).

31

Learning Paradigms
 There are multiple ways to train models for this problem

 {E(Phrase)}; {R(Phrase, Phrase)}

 Train independent models for Entities and Relations

 {E(Phrase)}; {R(Phrase, Phrase, E)}

 Pipeline E decisions as input to learning R. (Variations possible).

 {E(Phrase), R(Phrase, Phrase)}

 Train E and R jointly

31

Learning Paradigms
 There are multiple ways to train models for this problem

 {E(Phrase)}; {R(Phrase, Phrase)}

 Train independent models for Entities and Relations

 {E(Phrase)}; {R(Phrase, Phrase, E)}

 Pipeline E decisions as input to learning R. (Variations possible).

 {E(Phrase), R(Phrase, Phrase)}

 Train E and R jointly

31

 ∑e we xe + ∑r wr xr

 Subject to
 Xr=LivesIn  xe1=PER
 ….

Inference Paradigms
 There are multiple ways to assign values to target variables

 {E(Phrase)}; {R(Phrase, Phrase)}

 Mode decisions with respect to individual variables.

 {E(Phrase)}; {R(Phrase, Phrase, E)}

 Pipeline E decisions as input to inferring R.

 {E(Phrase), R(Phrase, Phrase)}
 Global Inference

32

Inference Paradigms
 There are multiple ways to assign values to target variables

 {E(Phrase)}; {R(Phrase, Phrase)}

 Mode decisions with respect to individual variables.

 {E(Phrase)}; {R(Phrase, Phrase, E)}

 Pipeline E decisions as input to inferring R.

 {E(Phrase), R(Phrase, Phrase)}
 Global Inference

32

CCMP: Declarative Specification of a Solution

33

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

//Here is default input structure
 Corpus(id:Corpus)
 Document(id1:Document,id2:Corpus)
 Paragraph(id1:Paragraph,id2:Document)
 Sentence(id1:Sentence,id2:Paragraph)
 Phrase(id1:Phrase,id2:Word)

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

//Here is default output definition
 // Entity Aux Variables
 Ei = {Bi, Ii, Li, Ui, O}
 // Phrase Construction Procedure:
 Phrase = BIOLU(S)

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

Representation:
 Use FEX E-R
 Use Const: If punc(w)  not E(w)

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

Representation:
 Use FEX E-R
 Use Const: If punc(w)  not E(w)

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

//Here is default FEX
 Lexical-form(id:phrase,[0,1])
 parse-path(id1:phrase,id2:after(id1))
 …..

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

Representation:
 Use FEX E-R
 Use Const: If punc(w)  not E(w)

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

Training:
 {E(Phrase)}; {R(Phrase, Phrase)}

Output Space:
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;
 Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } }

Representation:
 Use FEX E-R
 Use Const: If punc(w)  not E(w)

CCMP: Declarative Specification of a Solution

33

Data:
 From Corpus "ACL-05“
 Use Reader "ACL-05-Reader"

Training:
 {E(Phrase)}; {R(Phrase, Phrase)}

Inference:
{E(Phrase), R(Phrase, Phrase)}

CCMP Also Provides Low Level Access

 Access to vector “slices” and individual elements
 Access to FGFs, constraints, and sub-models

 Enables learning and inference that was hard or impossible in LBJava

 Break an FGF down to see operators and sub-formulae
 Enables translation to ILP
 Will be useful for other inference algorithms as well

34

CCMP Status: 1st prototype define via Maude & K
 Maude: a language of rewriting logic [Meseguer, ‘92]

 Define logical functions and rewrite rules
 Functions represent language syntax; rules give the semantics
 Terms are programs + input; Maude deduces the output
 Executional semantics

 K: semantics via continuations [Rosu & Serbanuta, ‘10]
 Arrange program state into a configuration of cells
 Arrange computation as stack of continuations
 Heating/cooling rules bring next task to top of stack

 CCMP is defined in 4500 lines of Maude
 Multiple applications using a variety of learning and inference

paradigms have been coded, trained and tested

35

CCMP Status: 1st prototype define via Maude & K
 Maude: a language of rewriting logic [Meseguer, ‘92]

 Define logical functions and rewrite rules
 Functions represent language syntax; rules give the semantics
 Terms are programs + input; Maude deduces the output
 Executional semantics

 K: semantics via continuations [Rosu & Serbanuta, ‘10]
 Arrange program state into a configuration of cells
 Arrange computation as stack of continuations
 Heating/cooling rules bring next task to top of stack

 CCMP is defined in 4500 lines of Maude
 Multiple applications using a variety of learning and inference

paradigms have been coded, trained and tested

 Current version is being implemented in Scala

35

Before Conclusion: Cloud NLP
[Wu et. al. LREC’14]

Page 36

Before Conclusion: Cloud NLP
[Wu et. al. LREC’14]

Page 36

Before Conclusion: Cloud NLP
[Wu et. al. LREC’14]

 Researcher as well as small/medium-sized organizations
sometimes need to analyze large document collections.

 They want to apply a lot of rich Natural Language Processing
(NLP) analytics to the document text, but
 They don’t have expertise developing them
 They may not have peak-time computing power
 They may not have expertise and time to install 3rd party versions.

 How do you make it really easy to periodically process large
sets of documents with rich NLP analytics…
 …in a short time
 …at reasonable cost
 …with minimal local compute power?

 (HINT: IllinoisCloudNLP)

Page 36

Before Conclusion: Cloud NLP
[Wu et. al. LREC’14]

 Researcher as well as small/medium-sized organizations
sometimes need to analyze large document collections.

 They want to apply a lot of rich Natural Language Processing
(NLP) analytics to the document text, but
 They don’t have expertise developing them
 They may not have peak-time computing power
 They may not have expertise and time to install 3rd party versions.

 How do you make it really easy to periodically process large
sets of documents with rich NLP analytics…
 …in a short time
 …at reasonable cost
 …with minimal local compute power?

 (HINT: IllinoisCloudNLP)

Page 36

Illinois CloudNLP (shortly on: http://cogcomp.cs.illinois.edu/page/software)

 On-demand processing of large corpora
 Using state-of-the art Illinois NLP components
 Training and application of text classifiers
 Maximum user privacy & user control over data
 User runs client software from local machine
 Client software applies NLP analytics in the cloud

Conclusions
 Learning Based Programming

 LBP is the study of programming language abstractions for machine
learning representations and techniques.

 A platform for defining and combining decision making models.
 Discriminative or probabilistic; Trained jointly or independently; Exact or

approximate inference
 All of these can be left to the programmer to decide

 An LBP language makes the programmer’s life easier
 Abstracts away details that distract from the main goal
 Shortens the development cycle

 Presented the case, and some details of two languages.
 LBJava: a mature, easy to use, language that supports learning

individual models and joint inference at decision time
 CCMP: an in development declarative language that support the

whole LBP development cycle
Page 37

Conclusions
 Learning Based Programming

 LBP is the study of programming language abstractions for machine
learning representations and techniques.

 A platform for defining and combining decision making models.
 Discriminative or probabilistic; Trained jointly or independently; Exact or

approximate inference
 All of these can be left to the programmer to decide

 An LBP language makes the programmer’s life easier
 Abstracts away details that distract from the main goal
 Shortens the development cycle

 Presented the case, and some details of two languages.
 LBJava: a mature, easy to use, language that supports learning

individual models and joint inference at decision time
 CCMP: an in development declarative language that support the

whole LBP development cycle
Page 37

Thank You!

	Learning Based Programming: Facilitating the Programming of Data Driven Software Systems
	Learning Based Programming: Facilitating the Programming of Data Driven Software Systems
	A Hypothetical Surveillance Program
	A Hypothetical Surveillance Program
	A Hypothetical Surveillance Program
	Common Approach: Breaking it Down
	Common Approach: Breaking it Down
	Common Approach: Breaking it Down
	A (Realistic) Knowledge Management Program
	A (Realistic) Knowledge Management Program
	A (Realistic) Knowledge Management Program
	Discriminative Example: Semantic Role Labeling �[Punyakanok, et.al., CL’08]
	Our Learning Based Programming Thesis
	Our Learning Based Programming Thesis
	Our Learning Based Programming Thesis
	Principles of Learning Based Programming
	Principles of Learning Based Programming (2)
	Roadmap
	Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]
	Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]
	Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]
	Constrained Conditional Models [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Constrained Conditional Models
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Examples: CCM Formulations
	Discriminative Example: Semantic Role Labeling �[Punyakanok, et.al., CL’08]
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	SRL: Discriminative Decomposition
	Constrained Conditional Models—ILP Formulations
	Constrained Conditional Models—ILP Formulations
	Roadmap
	Learning Based Java [Rizzolo & Roth, ICSC’07, LREC’10]
	Learning Based Java [Rizzolo & Roth, ICSC’07, LREC’10]
	Learning Based Java [Rizzolo & Roth, ICSC’07]
	Example: Semantic Role Labeling
	Constraints
	Inference Problems
	LBJava: Success Stories
	LBJava: Success Stories
	LBJava: Success Stories
	LBJava: Success Stories
	Roadmap
	2nd Generation: From LBJava to CCMP
	Constrained Conditional Model Processing (CCMP)
	CCMP’s Unified Formalism
	From Paper* to Program
	From Paper* to Program
	From Paper* to Program
	From Paper* to Program
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Recognizing Entities and Relations [Roth&Yih’04,07]
	Prediction Paradigms
	Prediction Paradigms
	Prediction Paradigms
	Prediction Paradigms
	CCMP: Declarative Specification of Problem and Solution
	CCMP: Declarative Specification of Problem and Solution
	Learning Paradigms
	Learning Paradigms
	Learning Paradigms
	Learning Paradigms
	Learning Paradigms
	Inference Paradigms
	Inference Paradigms
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP: Declarative Specification of a Solution
	CCMP Also Provides Low Level Access
	CCMP Status: 1st prototype define via Maude & K
	CCMP Status: 1st prototype define via Maude & K
	Before Conclusion: Cloud NLP �[Wu et. al. LREC’14]
	Before Conclusion: Cloud NLP �[Wu et. al. LREC’14]
	Before Conclusion: Cloud NLP �[Wu et. al. LREC’14]
	Before Conclusion: Cloud NLP �[Wu et. al. LREC’14]
	Conclusions
	Conclusions

