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Image i = captureImage() 
for (Person p in i): 
 if isMasked(p) and (isRunning(p) or hasGun(p)): 
  soundAlarm() 
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Common Approach: Breaking it Down 

 Person detection: 
 Detect head 
 Detect arms 
 Detect hands 
 Detect legs 

 
 

                         
                                 
                               
                                

                            

3 



Common Approach: Breaking it Down 

 Person detection: 
 Detect head 
 Detect arms 
 Detect hands 
 Detect legs 

 
 

 How to write detectors? 
 If we could hard-code, we would 
 But heuristics perform poorly 
 Machine learning to the rescue 

 Functions defined via data 
  

3 



Common Approach: Breaking it Down 

 Person detection: 
 Detect head 
 Detect arms 
 Detect hands 
 Detect legs 

 
 

 How to write detectors? 
 If we could hard-code, we would 
 But heuristics perform poorly 
 Machine learning to the rescue 

 Functions defined via data 
  

3 

 A PhD Thesis… 
 Download some libraries 

 Learning algorithms 
 Inference algorithms 
 Other researchers’ detectors 

 Write some feature extractors 
 Write some scripts to run 

everything 



A (Realistic) Knowledge Management Program 

Corpus c = ReadCollection() 
List  LikedPeople = ReadPeople() 
List  DisLikedBPeople = ReadPeople() 
for (Email e in c): 
 for (Person p in body(e)): 
  Like = isLike(p) 
  if Like and (not in LikedPeople)  
   LikedPeople +v p 
  if (not Like) and (not in DisLikedPeople)    
   DisLikedPeople +v p 
Update Likedpeople, DisLikedPeople 
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Discriminative Example: Semantic Role Labeling  
[Punyakanok, et.al., CL’08] 

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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Our Learning Based Programming Thesis 

 Existing programming languages are not designed to deal with 
real-world messy data, and to describe the central 
components of modern learning-based programs:  
 constrained optimization problems whose objective function are 

 derived from data  
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real-world messy data, and to describe the central 
components of modern learning-based programs:  
 constrained optimization problems whose objective function are 

 derived from data  

 Present the Constrained Conditional Model (CCM), a 
computation model for learning and inference that is  
 Expressive enough to capture a large class of problems 
 Provides the abstraction for our language 

 Demonstrate 2 CCM-based LBP languages that compile their 
efficient implementation from data. 
 LBJava http://cogcomp.cs.illinois.edu/page/software_view/11  
 Our 2nd generation language, CCMP 
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Principles of Learning Based Programming 

 An LBP language provides: 
 

 High level primitives 
 for feature extraction, learning, inference, and their combinations 

 Relational features (a.k.a. structure) 
 Features involving multiple output variables 

 Infinite feature space 
 Cannot assume a priori how many or which features will be present 

 Customizable objective function 
 Model can’t be a black box 

7 



Principles of Learning Based Programming (2) 

 An LBP language provides: 
 

 Model composability 
 Encapsulate model in a name; re-use in larger models 

 Training & Inference decomposability 
 Facilitate tailored inference solutions via access to structure 
 In particular, support of reusability of models, pipelines, etc. 

 Algorithm independence 

8 



Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 
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Constrained Conditional Models  [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]  
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Constrained Conditional Models  [Roth & Yih ‘04, 07; Chang, et.al.,’08,’12]  

 Prediction function: assign values that maximize objective 
 
 

 Objective is linear in features and constraints 
 
 
 

 Both have free reign over input and output variables 

 Accommodates both probabilistic and discriminative 
techniques 
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argmaxy 
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Constrained Conditional Models 

Inference (Prediction) 
• This is an Integer Linear Program.  
• Any discrete MPE problem can be 

formulated this way.  
• Solution: Use ILP packages for an  

exact solution;  Cutting Planes, Dual 
Decomposition & other search 
techniques for approximate solutions 
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component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

Learning 
• Training is learning the objective 

function 
• Decoupling Left from Right allows 

incorporating independently trained 
models, pipelines, etc.   

• Model decomposition facilitates more 
flexible and efficient computation.   

argmaxy 
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Constrained Conditional Models Allow: 
 Learning a simple model  (or multiple; or pipelines) 
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-rank 

global decisions composed of simpler models’ decisions 
 More sophisticated algorithmic approaches exist to bias the output  

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]  



Discriminative Example: Semantic Role Labeling  
[Punyakanok, et.al., CL’08] 

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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 Identify argument candidates 
 Pruning  Heuristics 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Multi-class classification 
 Can choose to “trust”  
     output of identifier 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

SRL: Discriminative Decomposition 
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 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
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Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms 
 [Chang, Ratinov & Roth, Machine Learning Journal 2012] 

 
 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
  

 
 

Constrained Conditional Models—ILP Formulations 

15 

http://l2r.cs.uiuc.edu/tutorials.html


Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 
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 LBP design principles: 
 

 High level primitives 
 Relational features 
 Infinite feature space 
 Customizable objective function 
 Model composability 
 Inference decomposability (not flexible enough) 
 Algorithm independence (learning; not inference) 

 

Learning Based Java  [Rizzolo & Roth, ICSC’07, LREC’10] 
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Learning Based Java  [Rizzolo & Roth, ICSC’07] 

 Describes a particular type of CCM 
 Collection of (optionally normalized) multi-class CCMs 
 User-defined feature functions 

 
 
 
 
 

 User-defined constraints (only hard constraints) 

 How to represent constraints / perform inference? 
 First order logic  translate to ILP 

 How to integrate with user’s application? 
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Example: Semantic Role Labeling 

 Classifiers take user’s objects as input; produce features 
 Can be hard-coded or learned 
 Learned classifiers use other classifiers to extract features 

 Those can be learned too: model composability 

 LBJava compiler: 
 Indexes features for fast training / testing 
 Generates a Java class for every classifier 

19 
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Constraints 

 Declarative, FOL-style constraints 
 Learned classifiers appear as functions 
 Applied directly over user’s Java objects 
 Interspersed with arbitrary Java code 
 New quantifiers: atleast and atmost 

 

“If there’s a reference to an A0, there must be an A0.” 



Inference Problems 

 “Head” object represents entire inference problem 
 At run-time 

 Constraints translated to linear inequalities 
 ILP inference solves problem 

 Used broadly in NLP applications 

21 



LBJava: Success Stories 
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 Multiple state-of-the-art Natural Language Processing Tools 
 Part-of-speech tagger; Named Entity Recognition    
 Co-Reference Resolution; Relation and Event Extraction,… 
 Recognizing authority in dialogue [Mayfield & Rose, ACL’11] 
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Roadmap 

 Introduction 
 Desiderata 

 

 Constrained Conditional Models 
 A general, discriminative inference framework 

 

 Learning Based Java 
 A discriminative modeling language 

 
 

 CCMP: Constraint Conditional Model Processing Language 
 LBP with structure 
 Developing flexible programs over models 

 Example  
 Program structure: all you need is the paper… 

23 



2nd Generation: From LBJava to CCMP 

 What’s missing? 
 
 

 Expressivity:  
 Structures over output variables 
 

 Ease of use: from paper to program 
 Declarative definition of models 

 Declarative ways to define training and inference preferences 
 Procedural building of an application 

24 



Constrained Conditional Model Processing (CCMP) 

 General purpose language; Turing complete  
 Fully supports CCMs 
 Modular design, decomposed and reusable models  
 Flexible and expressive training and inference paradigms 

 LBP design principles: 
 

 High level primitives 
 Relational features 
 Infinite feature space 
 Customizable objective function 
 Model composability 
 Inference decomposability 
 Algorithm independence 

 
25 



CCMP’s Unified Formalism 

 Features, sparse vectors, examples, and models are all 
primitive data types. 

 Provided operators break them down and build them up. 
 Models are modular 

 Previously learned models can be imported, constrained, etc. 
 Instances store 

 learned parameters 
 feature functions 
 pointers to other models 

 

 Supports a variety of learning and inference protocols 

26 



From Paper* to Program  

 The goal of CCMP is to (almost) automatically generate a 
program from the application/model described in your paper  

 Some code is generated automatically 
 But can be modified by the programmer 
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of an application is often omitted;  
CCMP abstractions reveal these gaps.   
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 The program has five components: 
 Data  
 Y Space Definition  (the variables you want to assign values to) 
 Representation (features; constraints) 
 Prediction (inference) Paradigm 
 Training Paradigm  

 Decoupling decision time prediction and training facilitates 
reusable models, various decompositions, and pipelines  
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Is the problem well 
defined?  
Models for variables 
could be learned 
separately; 
constraints may 
come up only at 
decision time.  
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Variable indicating E 
takes value e.  

Variable indicating R 
takes value r.  

Variable relating 
E and R   

Model weight 

Constraint weight 

Consistency Constraints 



CCMP: Declarative Specification of Problem and Solution 
 1. Data  

 Readers into CCMP data structures; Edison for NLP 

 2. Defining the output space (Y) 
 The variables we need to assign values to  
 Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
          Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

 3. Representation 
 Features and Constraints 
 Most are generated automatically, but can be modified  

 4. Learning  
 Defining the decomposition in Training 

 5. Inference  
 Decision Time Prediction 
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The ability to define Learning and 
Inference paradigm 
independently is key in CCMP 



Learning Paradigms 
 There are multiple ways to train models for this problem 
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  ∑e we xe + ∑r wr xr 

 Subject to 
 Xr=LivesIn  xe1=PER  
 …. 

 
 

 



Inference Paradigms 
 There are multiple ways to assign values to target variables  

 
 {E(Phrase)};  {R(Phrase, Phrase)} 

 Mode decisions with respect to individual variables.  

 
 {E(Phrase)};  {R(Phrase, Phrase, E)} 

 Pipeline E decisions as input to inferring R.     
 

 {E(Phrase), R(Phrase, Phrase)} 
 Global Inference 
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CCMP: Declarative Specification of a Solution 

 

33 



CCMP: Declarative Specification of a Solution 

 

33 

Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 



CCMP: Declarative Specification of a Solution 

 

33 

Data:  
  From Corpus "ACL-05“ 
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Output Space: 
  Y = { Entity(Phrase) 2 {PER, LOC, ORG} ;  
         Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 

CCMP: Declarative Specification of a Solution 
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

//Here is default output definition  
  // Entity Aux Variables  
  Ei = {Bi, Ii, Li, Ui, O} 
  // Phrase Construction Procedure: 
  Phrase = BIOLU(S) 



Output Space: 
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         Relation(Phrase, Phrase) 2 {LivesIn, WorksFor } } 
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Data:  
  From Corpus "ACL-05“ 
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//Here is default FEX   
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Data:  
  From Corpus "ACL-05“ 
   Use Reader  "ACL-05-Reader" 

Training:  
  {E(Phrase)};  {R(Phrase, Phrase)} 

Inference: 
{E(Phrase), R(Phrase, Phrase)} 



CCMP Also Provides Low Level Access 

 Access to vector “slices” and individual elements 
 Access to FGFs, constraints, and sub-models 

 Enables learning and inference that was hard or impossible in LBJava 
 

 Break an FGF down to see operators and sub-formulae 
 Enables translation to ILP 
 Will be useful for other inference algorithms as well 
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CCMP Status: 1st prototype define via Maude & K 
 Maude: a language of rewriting logic    [Meseguer, ‘92] 

 Define logical functions and rewrite rules 
 Functions represent language syntax; rules give the semantics 
 Terms are programs + input; Maude deduces the output 
 Executional semantics 

 K: semantics via continuations    [Rosu & Serbanuta, ‘10] 
 Arrange program state into a configuration  of cells 
 Arrange computation as stack of continuations 
 Heating/cooling rules  bring next task to top of stack 

 CCMP is defined in 4500 lines of Maude 
 Multiple applications using a variety of learning and inference 

paradigms have been coded, trained and tested 
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 Arrange program state into a configuration  of cells 
 Arrange computation as stack of continuations 
 Heating/cooling rules  bring next task to top of stack 

 CCMP is defined in 4500 lines of Maude 
 Multiple applications using a variety of learning and inference 

paradigms have been coded, trained and tested 

 Current version is being implemented in Scala 
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Before Conclusion: Cloud NLP  
[Wu et. al. LREC’14] 
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Before Conclusion: Cloud NLP  
[Wu et. al. LREC’14] 

 Researcher as well as small/medium-sized organizations 
sometimes need to analyze large document collections. 

 They want to apply a lot of rich Natural Language Processing 
(NLP) analytics to the document text, but 
 They don’t have expertise developing them  
 They may not have  peak-time computing power  
 They may not have expertise and time to install 3rd party versions.  

 How do you make it really easy to periodically process large 
sets of documents with rich NLP analytics… 
 …in a short time 
 …at reasonable cost 
 …with minimal local compute power?  

 (HINT: IllinoisCloudNLP) 
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Illinois CloudNLP  (shortly on: http://cogcomp.cs.illinois.edu/page/software) 

 On-demand processing of large corpora 
 Using state-of-the art Illinois NLP components 
 Training and application of text classifiers 
 Maximum user privacy & user control over data 
 User runs client software from local machine 
 Client software applies NLP analytics in the cloud 



Conclusions 
 Learning Based Programming 

 LBP is the study of programming language abstractions for machine 
learning representations and techniques. 

 A platform for defining and combining decision making models. 
 Discriminative or probabilistic; Trained jointly or independently; Exact or 

approximate inference 
 All of these can be left to the programmer to decide 

 

 An LBP language makes the programmer’s life easier 
 Abstracts away details that distract from the main goal 
 Shortens the development cycle 

 Presented the case, and some details of two languages. 
 LBJava: a mature, easy to use, language that supports learning 

individual models and joint inference at decision time 
 CCMP: an in development declarative language that support the 

whole LBP development cycle  
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Thank You! 
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