

Learning Based Programming: Facilitating the Programming of Data Driven Software Systems

Dan Roth

Department of Computer Science

University of Illinois at Urbana—Champaign

June 2014 ICML AutoML Workshop

Learning Based Programming: Facilitating the Programming of Data Driven Software Systems

Dan Roth

Department of Computer Science

University of Illinois at Urbana—Champaign

With thanks to:

Collaborators: Nick Rizzolo, Ming-Wei Chang, Kai-Wei Chang, Scott Yih, Parisa Kordjamshidi; Many others Funding: NSF; DHS; NIH; DARPA; IARPA, ARL, ONR DASH Optimization (Xpress-MP); Gurobi.

A Hypothetical Surveillance Program

A Hypothetical Surveillance Program

- Simple! ...except we have to
 - □ detect people
 - determine if they are masked
 - □ determine if they are running
 - □ determine if they have a gun

A Hypothetical Surveillance Program

- Simple! ...except we have to
 - □ detect people
 - determine if they are masked
 - determine if they are running
 - determine if they have a gun

All hard problems All just predicates that break problem down

Common Approach: Breaking it Down

- Person detection:
 - Detect head
 - Detect arms
 - Detect hands
 - Detect legs

Common Approach: Breaking it Down

- Person detection:
 - Detect head
 - Detect arms
 - Detect hands
 - Detect legs

- How to write detectors?
 - □ If we could hard-code, we would
 - But heuristics perform poorly
 - □ Machine learning to the rescue
 - Functions defined via data

Common Approach: Breaking it Down

- Person detection:
 - Detect head
 - Detect arms
 - Detect hands
 - Detect legs

- How to write detectors?
 - □ If we could hard-code, we would
 - But heuristics perform poorly
 - Machine learning to the rescue
 - Functions defined via data

- A PhD Thesis...
- Download some libraries
 - □ Learning algorithms
 - □ Inference algorithms
 - Other researchers' detectors
- Write some feature extractors
- Write some scripts to run everything

A (Realistic) Knowledge Management Program

```
Corpus c = ReadCollection()
List LikedPeople = ReadPeople()
List DisLikedBPeople = ReadPeople()
for (Email e in c):
    for (Person p in body(e)):
        Like = isLike(p)
        if Like and (not in LikedPeople)
        LikedPeople +v p
        if (not Like) and (not in DisLikedPeople)
        DisLikedPeople +v p
Update Likedpeople, DisLikedPeople
```


A (Realistic) Knowledge Management Program

```
Corpus c = ReadCollection()
List LikedPeople = ReadPeople()
List DisLikedBPeople = ReadPeople()
for (Email e in c):
    for (Person p in body(e)):
        Like = isLike(p)
        if Like and (not in LikedPeople)
        LikedPeople +v p
        if (not Like) and (not in DisLikedPeople)
        DisLikedPeople +v p
Update Likedpeople, DisLikedPeople
```

- Simple! ...except we have to
 - □ recognize people in text
 - determine if they are Liked in the text
 - determine if they are new to the list

A (Realistic) Knowledge Management Program

- Simple! ...except we have to
 - recognize people in text
 - determine if they are Liked in the text
 - determine if they are new to the list

Discriminative Example: Semantic Role Labeling

[Punyakanok, et.al., CL'08]

- I left my pearls to my daughter in my will .
- $[I]_{A0}$ left [my pearls]_{A1} [to my daughter]_{A2} [in my will]_{AM-LOC}.
- AO Leaver
- **A1** Things left
- A2 Benefactor
- **AM-LOC** Location
 - I left my pearls to my daughter in my will .

Our Learning Based Programming Thesis

- Existing programming languages are not designed to deal with real-world messy data, and to describe the central components of modern learning-based programs:
 - constrained optimization problems whose objective function are derived from data

Our Learning Based Programming Thesis

- Existing programming languages are not designed to deal with real-world messy data, and to describe the central components of modern learning-based programs:
 - constrained optimization problems whose objective function are derived from data
- Present the Constrained Conditional Model (CCM), a computation model for learning and inference that is
 - **Expressive enough to capture a large class of problems**
 - Provides the abstraction for our language

Our Learning Based Programming Thesis

- Existing programming languages are not designed to deal with real-world messy data, and to describe the central components of modern learning-based programs:
 - constrained optimization problems whose objective function are derived from data
- Present the Constrained Conditional Model (CCM), a computation model for learning and inference that is
 - **Expressive enough to capture a large class of problems**
 - Provides the abstraction for our language
- Demonstrate 2 CCM-based LBP languages that compile their efficient implementation from data.
 - LBJava <u>http://cogcomp.cs.illinois.edu/page/software_view/11</u>
 - Our 2nd generation language, CCMP

Principles of Learning Based Programming

An LBP language provides:

High level primitives

- for feature extraction, learning, inference, and their combinations
- □ Relational features (a.k.a. *structure*)
 - Features involving multiple output variables
- Infinite feature space
 - Cannot assume a priori how many or which features will be present
- Customizable objective function
 - Model can't be a black box

Principles of Learning Based Programming (2)

- An LBP language provides:
 - Model composability
 - Encapsulate model in a name; re-use in larger models
 - Training & Inference decomposability
 - Facilitate tailored inference solutions via access to structure
 - In particular, support of reusability of models, pipelines, etc.
 - □ Algorithm independence

Roadmap

V Introduction

- Desiderata
- Constrained Conditional Models
 - □ A general, discriminative inference framework
- Learning Based Java
 - □ A discriminative modeling language
- CCMP: Constraint Conditional Model Processing Language
 - □ LBP with structure
 - Developing flexible programs over models
 - Example
 - Program structure: all you need is the paper...

Prediction function: assign values that maximize objective

 $f(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} z(\mathbf{x}, \mathbf{y})$

Prediction function: assign values that maximize objective

 $f(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} z(\mathbf{x}, \mathbf{y})$

Objective is linear in features and constraints

$$z(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n_{\phi}} w_i \phi_i(\mathbf{x}, \mathbf{y})\right) - \left(\sum_{j=1}^{n_c} \rho_j c_j(\mathbf{x}, \mathbf{y})\right)$$

□ Both have free reign over input and output variables

Prediction function: assign values that maximize objective

 $f(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} z(\mathbf{x}, \mathbf{y})$

Objective is linear in features and constraints

$$z(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n_{\phi}} w_i \phi_i(\mathbf{x}, \mathbf{y})\right) - \left(\sum_{j=1}^{n_c} \rho_j c_j(\mathbf{x}, \mathbf{y})\right)$$

□ Both have free reign over input and output variables

Accommodates both probabilistic and discriminative techniques

$$\operatorname{argmax}_{\mathbf{y}}\left(\sum_{i=1}^{n_{\phi}} w_i \phi_i(\mathbf{x}, \mathbf{y})\right) - \left(\sum_{j=1}^{n_c} \rho_j c_j(\mathbf{x}, \mathbf{y})\right)$$

$$\operatorname{argmax}_{\mathbf{y}}\left(\sum_{i=1}^{n_{\phi}} w_i \phi_i(\mathbf{x}, \mathbf{y})\right) - \left(\sum_{j=1}^{n_c} \rho_j c_j(\mathbf{x}, \mathbf{y})\right)$$

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_{i} d(y, 1_{C_{i}(x)})$$

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{K}

$$\operatorname{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{L}

Formulate NLP Problems as ILP problems (inference may be done otherwise)1. Sequence tagging(HMM/CRF + Global constraints)2. Sentence Compression(Language Model + Global Constraints)3. SRL(Independent classifiers + Global Constraints)

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{L}

Sequential Prediction

HMM/CRF based: Argmax $\sum \lambda_{ij} \mathbf{x}_{ij}$ Linguistics Constraints

Cannot have both A states and B states in an output sequence.

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{L}

Sentence Compression/Summarization:

Language Model based: Argmax $\sum \lambda_{ijk} \mathbf{x}_{ijk}$ Linguistics Constraints

If a modifier chosen, include its head If verb is chosen, include its arguments

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{L}

Sentence Compression/Summarization:

Language Model based: Argmax $\sum \lambda_{ijk} \mathbf{x}_{ijk}$ Linguistics Constraints

If a modifier chosen, include its head If verb is chosen, include its arguments

Examples: CCM Formulations

$$\operatorname*{argmax}_{y} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, \mathbf{1}_{C_i(x)})$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

 \mathcal{L}

Formulate NLP Problems as ILP problems (inference may be done otherwise)

- 1. Sequence tagging (HMM/CRF + Global constraints)
- 2. Sentence Compression (Language Model + Global Constraints)
- 3. SRL (Independent classifiers + Global Constraints)

Constrained Conditional Models Allow:

- Learning a simple model (or multiple; or pipelines)
- Make decisions with a more complex model
- Accomplished by directly incorporating constraints to bias/re-rank global decisions composed of simpler models' decisions
- More sophisticated algorithmic approaches exist to bias the output [CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]

Discriminative Example: Semantic Role Labeling

[Punyakanok, et.al., CL'08]

- I left my pearls to my daughter in my will .
- $[I]_{A0}$ left [my pearls]_{A1} [to my daughter]_{A2} [in my will]_{AM-LOC}.
- **A**0 Leaver
- **A1** Things left
- A2 Benefactor
- **AM-LOC** Location
 - I left my pearls to my daughter in my will .

Identify argument candidates

- Pruning Heuristics
- Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier
- Inference
 - Use the estimated probability distribution given by the argument classifier
 - Use structural and linguistic constraints
 - Infer the optimal global output

- Multi-class classification
- Can choose to "trust" output of identifier
- Inference
 - Use the estimated probability distribution given by the argument classifier
 - Use structural and linguistic constraints
 - Infer the optimal global output

]

I left my nice pearls to her

- Identify argument candidates
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification

Classify argument candidates

- Multi-class classification
- Can choose to "trust" output of identifier

Inference

- Use the estimated probability distribution given by the argument classifier
- Use structural and linguistic constraints
- Infer the optimal global output

I left my nice pearls to her

Γ

1

[[

t my nice pearls to her

2:14

- Identify argument candidates
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust" output of identifier

Inference

- Use the estimated probability distribution given by the argument classifier
- Use structural and linguistic constraints

OIS AT URBANA-CHAMPAIGN

Infer the optimal global output

- Identify argument candidates
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier

Inference

- Use the estimated probability distribution
- given One inference problem for each Use st verb predicate. tic constraints

INOIS AT URBANA-CHAMPAIGN

Infer the optimal global output

I left my nice pearls to her

- Identify argument candidates
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier

argmax
$$\sum_{a,t} y^{a,t} c^{a,t} = \sum_{a,t} 1_{a=t} c_{a=t}$$

Subject to:

- One label per argument: $\sum_{t} y^{a,t} = 1$
- No overlapping or embedding
- Relations between verbs and arguments,....

NOIS AT URBANA-CHAMPAIGN

- Identify argument candid
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candida
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier

argmax
$$\sum_{a,t} y^{a,t} c^{a,t} = \sum_{a,t} 1_{a=t} c_{a=t}$$

Subject to:

- One label per argument: $\sum_{t} y^{a,t} = 1$
- No overlapping or embedding
- Relations between verbs and arguments,....

I left my nice pearls to her

SRL: Discriminative Decomposition SRL: Discriminative Decomposition Learning Based Java: allows a developer to encode constraints in First Order Logic; these are compiled into linear inequalities automatically.

- Identify argument candidates
 - Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier

argmax
$$\sum_{a,t} y^{a,t} c^{a,t} = \sum_{a,t} 1_{a=t} c_{a=t}$$

- Subject to:
- One label per argument: $\sum_{t} y^{a,t} = 1$
- No overlapping or embedding
- Relations between verbs and arguments,....

I left my nice pearls to her

- Pruning Heuristics
 - Argument Identifier
 - Binary classification
- Classify argument candidates
 - Multi-class classification
 - Can choose to "trust"
 - output of identifier

argmax
$$\sum_{a,t} y^{a,t} c^{a,t} = \sum_{a,t} 1_{a=t} c_{a=t}$$

Subject to:

- One label per argument: $\sum_{t} y^{a,t} = 1$
- No overlapping or embedding
- Relations between verbs and arguments,....

Use the **pipeline architecture's simplicity** while **maintaining uncertainty**: keep probability distributions over decisions & use global inference at decision time.

Variable y^{a,t} indicates whether candidate argument a is assigned a label t. c^{a,t} is the corresponding model score

Constrained Conditional Models—ILP Formulations

- Have been shown useful in the context of many NLP problems
- [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]
 - Summarization; Co-reference; Information & Relation Extraction; Event Identifications and causality ; Transliteration; Textual Entailment; Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,...
- Some theoretical work on training paradigms [Punyakanok et. al., 05 more; Constraints Driven Learning, PR, Constrained EM...]
- Some work on Inference, mostly approximations, bringing back ideas on Lagrangian relaxation, etc.

Constrained Conditional Models—ILP Formulations

- Have been shown useful in the context of many NLP problems
- [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]
 - Summarization; Co-reference; Information & Relation Extraction; Event Identifications and causality; Transliteration; Textual Entailment; Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,...
- Some theoretical work on training paradigms [Punyakanok et. al., 05 more; Constraints Driven Learning, PR, Constrained EM...]
- Some work on Inference, mostly approximations, bringing back ideas on Lagrangian relaxation, etc.
- Good summary and description of training paradigms
 - [Chang, Ratinov & Roth, Machine Learning Journal 2012]

Summary of work & a bibliography: <u>http://L2R.cs.uiuc.edu/tutorials.htm</u>l

Roadmap

√ Introduction

Desiderata

Constrained Conditional Models

□ A general, discriminative inference framework

- Learning Based Java
 - A discriminative modeling language
- CCMP: Constraint Conditional Model Processing Language
 - LBP with structure
 - Developing flexible programs over models
 - Example
 - Program structure: all you need is the paper...

Learning Based Java [Rizzolo & Roth, ICSC'07, LREC'10]

- LBP design principles:
 - □ High level primitives
 - Relational features
 - Infinite feature space
 - Customizable objective function
 - Model composability
 - □ Inference decomposability (not flexible enough)
 - □ Algorithm independence (learning; not inference)

Learning Based Java [Rizzolo & Roth, ICSC'07, LREC'10]

LBP design principles:

High level primitives
Relational features
Infinite feature space
Customizable objective function
Model composability
Inference decomposability (not flexible enough)
Algorithm independence (learning; not inference)

Learning Based Java [Rizzolo & Roth, ICSC'07]

Describes a particular type of CCM

- Collection of (optionally normalized) multi-class CCMs
- User-defined feature functions

$$\mathbf{y}_k \equiv \{y_t \mid t \in \mathcal{T}_k, \ y_t \in \{0, 1\}\}$$
$$z_k(\mathbf{x}, \mathbf{y}) = \left(\sum_{t \in \mathcal{T}_k} \sigma_k(\mathbf{w}_t, \Phi_k(\mathbf{x}))y_t\right) - \infty c_k^D(\mathbf{x}, \mathbf{y})$$
$$\sigma_k(\mathbf{w}, \mathbf{x}) = g_k(\mathbf{w} \cdot \mathbf{x})$$

- User-defined constraints (only hard constraints)
- How to represent constraints / perform inference?
 - First order logic
 translate to ILP
- How to integrate with user's application?

Example: Semantic Role Labeling

discrete{false, true} ArgumentIdentifier(Argument a) <learn ArgumentIdentifierLabel
using CandidateFeatures,
 PredicatePOS && PhraseType, PredicatePOS && HeadWordAndTag,
 PredicatePOS && ParsePosition, VerbNegated && LinearPosition,
 VerbNegated && Path, ContainsModal && LinearPosition,
 ContainsModal && Path
with new SparseAveragedPerceptron(.1, 0, 4)
from new FilterParser(Constants.chunkTrainingData) 50 rounds
end</pre>

Classifiers take user's objects as input; produce features

- Can be hard-coded or learned
- Learned classifiers use other classifiers to extract features
 - Those can be learned too: model composability
- LBJava compiler:
 - Indexes features for fast training / testing
 - □ Generates a Java class for every classifier

Constraints

```
constraint References(SRLSentence sentence)
{
  for (int i = 0; i < sentence.verbCount(); ++i)
  {
    ParseTreeWord verb = sentence.getVerb(i);
    LinkedList forVerb = sentence.getCandidates(verb);
    (exists (Argument a in forVerb) ArgumentTypeLearner(a) :: "R-A0")
    => (exists (Argument a in forVerb) ArgumentTypeLearner(a) :: "A0");
    (exists (Argument a in forVerb) ArgumentTypeLearner(a) :: "R-A1")
    => (exists (Argument a in forVerb) ArgumentTypeLearner(a) :: "A1");
    (exists (Argument a in forVerb) ArgumentTypeLearner(a) :: "A1");
```

$$(\exists a \in \mathcal{A}, y_{a, \text{``R-A0''}}) \Rightarrow (\exists a \in \mathcal{A}, y_{a, \text{``A0''}})$$

"If there's a reference to an AO, there must be an AO."

- Declarative, FOL-style constraints
 - Learned classifiers appear as functions
 - Applied directly over user's Java objects
 - Interspersed with arbitrary Java code
 - New quantifiers: atleast and atmost

Inference Problems

"Head" object represents entire inference problem

At run-time

- Constraints translated to linear inequalities
- ILP inference solves problem
 - Used broadly in NLP applications

- Multiple state-of-the-art Natural Language Processing Tools
 - Part-of-speech tagger; Named Entity Recognition
 - **Co-Reference Resolution; Relation and Event Extraction,...**
 - Recognizing authority in dialogue [Mayfield & Rose, ACL'11]

- Multiple state-of-the-art Natural Language Processing Tools
 - Part-of-speech tagger; Named Entity Recognition

OF ILLINOIS AT URBANA-CHAMPAIGN

- Co-Reference Resolution; Relation and Event Extraction,...
- Recognizing authority in dialogue [Mayfield & Rose, ACL'11]

SITIVE COMPUTATION G Problems? Email mssammon@illinois.edu SOFTWARE Hover over a software package to view its description. Click the title to view more details. Learning Packages NLP Tools Dataless Hierarchical Text Classification >> Illinois NLP Curator >> Learning Based Java >> Illinois Named Entity Tagger >> SNoW Learning Architecture >> Illinois Wikifier >> Feature Extraction Language (FEX) >> Illinois Quantifier >> Edison: NLP Feature Extraction Framework Illinois Lemmatizer >> IllinoisCloudNLP >> JLIS: a multi-purpose structural learning library >> Illinois Semantic Role Labeler (SRL) >> Streaming Data SVM (SBM) >> Illinois Part of Speech Tagger >> Illinois Chunker >> Other Packages Illinois Coreference Package >> Descartes: Dataless Classification >> Illinois Temporal Expression Extractor >>

- Multiple state-of-the-art Natural Language Processing Tools
 - Part-of-speech tagger; Named Entity Recognition
 - Co-Reference Resolution; Relation and Event Extraction,...
 - Recognizing authority in dialogue [Mayfield & Rose, ACL'11]

Developing a state-of-the-art NER takes ~half a day

- Multiple state-of-the-art Natural Language Processing Tools
 - Part-of-speech tagger; Named Entity Recognition
 - Co-Reference Resolution; Relation and Event Extraction,...
 - Recognizing authority in dialogue [Mayfield & Rose, ACL'11]

Developing a state-of-the-art NER takes ~half a day

Roadmap

√ Introduction

Desiderata

V Constrained Conditional Models

□ A general, discriminative inference framework

- 🗹 Learning Based Java
 - A discriminative modeling language
- CCMP: Constraint Conditional Model Processing Language
 - LBP with structure
 - Developing flexible programs over models
 - Example
 - Program structure: all you need is the paper...

COMPUTATION GROUP

2nd Generation: From LBJava to CCMP

What's missing?

- Expressivity:
 - Structures over output variables
- Ease of use: from paper to program
 - Declarative definition of models
 - Declarative ways to define training and inference preferences
 - Procedural building of an application

Constrained Conditional Model Processing (CCMP)

- General purpose language; Turing complete
- Fully supports CCMs
- Modular design, decomposed and reusable models
- Flexible and expressive training and inference paradigms
- LBP design principles:

High level primitives
Relational features
Infinite feature space
Customizable objective function
Model composability
Inference decomposability
Algorithm independence

CCMP's Unified Formalism

- Features, sparse vectors, examples, and models are all primitive data types.
- Provided operators break them down and build them up.
- Models are modular
 - Previously learned models can be imported, constrained, etc.
 - Instances store
 - learned parameters
 - feature functions
 - pointers to other models

Supports a variety of learning and inference protocols

- The goal of CCMP is to (almost) automatically generate a program from the application/model described in your paper
- Some code is generated automatically
 - But can be modified by the programmer

Information crucial to the development of an application is often omitted; CCMP abstractions reveal these gaps.

- The goal of CCMP is to (almost) automatically generate a program from the application/model described in your paper
- Some code is generated automatically
 - But can be modified by the programmer

Information crucial to the development of an application is often omitted; CCMP abstractions reveal these gaps.

- The goal of CCMP is to (almost) automatically generate a program from the application/model described in your paper
- Some code is generated automatically
 - But can be modified by the programmer
- The program has five components:
 - Data
 - Y Space Definition (the variables you want to assign values to)
 - Representation (features; constraints)
 - Prediction (inference) Paradigm
 - Training Paradigm

Information crucial to the development of an application is often omitted; CCMP abstractions reveal these gaps.

- The goal of CCMP is to (almost) automatically generate a program from the application/model described in your paper
- Some code is generated automatically
 - But can be modified by the programmer
- The program has five components:
 - Data
 - Y Space Definition (the variables you want to assign values to)
 - Representation (features; constraints)
 - Prediction (inference) Paradigm
 - Training Paradigm
- Decoupling decision time prediction and training facilitates reusable models, various decompositions, and pipelines

Recognizing Entities and Relations [Roth&Yih'04,07]

Page 28

Recognizing Entities and Relations [Roth&Yih'04,07]

Recognizing Entities and Relations [Roth&Yih'04,07]

irrelevant	0.05	irrelevant	0.10
spouse_of	0.45	spouse_of	0.05
born_in	0.50	born_in	0.85

Recognizing Entities and Relations [Roth&Yih'04,07]

R ₂₃

irrelevant	0.05	irrelevant	0.10
spouse_of	0.45	spouse_of	0.05
born_in	0.50	born_in	0.85

Recognizing Entities and Relations [Roth&Yih'04,07]

Recognizing Entities and Relations [Roth&Yih'04,07]

Prediction Paradigms

$$\min \sum_{E \in \mathcal{E}} \sum_{e \in \mathcal{L}_{\mathcal{E}}} c_E(e) \cdot x_{\{E,e\}} + \sum_{R \in \mathcal{R}} \sum_{r \in \mathcal{L}_{\mathcal{R}}} c_R(r) \cdot x_{\{R,r\}} \\ + \sum_{\substack{E_i, E_j \in \mathcal{E} \\ E_i \neq E_j}} \left[\sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_1 \in \mathcal{L}_{\mathcal{E}}} d^1(r, e_1) \cdot x_{\{R_{ij}, r, E_i, e_1\}} + \sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_2 \in \mathcal{L}_{\mathcal{E}}} d^2(r, e_2) \cdot x_{\{R_{ij}, r, E_j, e_2\}} \right]$$

subject to:

$$\sum_{e \in \mathcal{L}_{\mathcal{S}}} x_{\{E,e\}} = 1 \qquad \forall E \in \mathcal{E}$$
⁽²⁾

$$\sum_{r \in \mathcal{L}_{\mathcal{R}}} x_{\{R,r\}} = 1 \qquad \forall R \in \mathcal{R}$$
(3)

$$x_{\{E,e\}} = \sum_{r \in \mathcal{L}_{\mathcal{R}}} x_{\{R,r,E,e\}} \qquad \forall E \in \mathcal{E} \quad \text{and} \quad \forall R \in \{R : E = \mathcal{N}^1(R) \text{ or } R : E = \mathcal{N}^2(R)\}$$
(4)

$$x_{\{R,r\}} = \sum_{e \in \mathcal{L}_{\mathcal{E}}} x_{\{R,r,E,e\}} \qquad \forall R \in \mathcal{R} \text{ and } \forall E = \mathcal{N}^1(R) \text{ or } E = \mathcal{N}^2(R)$$
(5)

$$x_{\{E,e\}} \in \{0,1\} \qquad \forall E \in \mathcal{E}, e \in \mathcal{L}_{\mathcal{E}}$$
(6)

$$x_{\{R,r\}} \in \{0,1\} \qquad \forall R \in \mathcal{R}, r \in \mathcal{L}_{\mathcal{R}}$$

$$\tag{7}$$

$$x_{\{R,r,E,e\}} \in \{0,1\} \qquad \forall R \in \mathcal{R}, r \in \mathcal{L}_{\mathcal{R}}, \ E \in \mathcal{E}, e \in \mathcal{L}_{\mathcal{E}}$$

$$(8)$$

Prediction ParadigmsVariable indicating E
takes value e.Variable indicating R
takes value r.min
$$\sum_{E \in \mathcal{E}} \sum_{e \in \mathcal{L}_{\mathcal{E}}} c_E(e) \cdot x_{\{E,e\}} + \sum_{R \in \mathcal{R}} \sum_{r \in \mathcal{L}_{\mathcal{R}}} c_R(r) \cdot x_{\{R,r\}} + \sum_{E_i, E_j \in \mathcal{E}} \left[\sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_1 \in \mathcal{L}_{\mathcal{E}}} d^1(r, e_1) \cdot x_{\{R_{ij}, r, E_i, e_1\}} + \sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_2 \in \mathcal{L}_{\mathcal{E}}} d^2(r, e_2) \cdot x_{\{R_{ij}, r, E_j, e_2\}} \right]$$
subject to:
$$\sum_{e \in \mathcal{L}_{\mathcal{E}}} x_{\{E,e\}} = 1 \quad \forall E \in \mathcal{E}$$

$$\sum_{r \in \mathcal{L}_{\mathcal{R}}} x_{\{R,r\}} = 1 \quad \forall R \in \mathcal{R}$$

$$x_{\{R,r\}} = 1 \quad \forall R \in \mathcal{R}$$

$$x_{\{R,r\}} = 1 \quad \forall R \in \mathcal{R}$$

$$x_{\{R,r\}} = \sum_{r \in \mathcal{L}_{\mathcal{R}}} x_{\{R,r, E,e\}} \quad \forall E \in \mathcal{E} \text{ and } \forall R \in \{R : E = \mathcal{N}^1(R) \text{ or } R : E = \mathcal{N}^2(R)\}$$

$$x_{\{R,r\}} = \sum_{e \in \mathcal{L}_{\mathcal{E}}} x_{\{R,r, E,e\}} \quad \forall R \in \mathcal{R} \text{ and } \forall E = \mathcal{N}^1(R) \text{ or } E = \mathcal{N}^2(R)$$

$$x_{\{R,r\}} \in \{0,1\} \quad \forall E \in \mathcal{E}, e \in \mathcal{L}_{\mathcal{E}}$$

$$x_{\{R,r\}} \in \{0,1\} \quad \forall R \in \mathcal{R}, r \in \mathcal{L}_{\mathcal{R}}, E \in \mathcal{L}_{\mathcal{E}}$$

$$(0)$$

CCMP: Declarative Specification of Problem and Solution

- 1. Data
 - **Readers into CCMP data structures; Edison for NLP**
- 2. Defining the output space (Y)
 - The variables we need to assign values to
 - □ Y = { Entity(Phrase) ∈ {PER, LOC, ORG} ;
- 3. Representation
 - Features and Constraints
 - Most are generated automatically, but can be modified
- 4. Learning
 - Defining the decomposition in Training
- 5. Inference
 - Decision Time Prediction

CCMP: Declarative Specification of Problem and Solution

- 1. Data
 - **Readers into CCMP data structures; Edison for NLP**
- 2. Defining the output space (Y)
 - The variables we need to assign values to
 - □ Y = { Entity(Phrase) ∈ {PER, LOC, ORG} ;
- 3. Representation
 - Features and Constraints
 - Most are generated automatically, but can be modified
- 4. Learning
 - Defining the decomposition in Training
- 5. Inference
 - Decision Time Prediction

The ability to define Learning and Inference paradigm independently is key in CCMP

There are multiple ways to train models for this problem

- There are multiple ways to train models for this problem
- [E(Phrase)]; {R(Phrase, Phrase)]

Train independent models for Entities and Relations

- There are multiple ways to train models for this problem
- [E(Phrase)]; {R(Phrase, Phrase)]

□ Train independent models for Entities and Relations

{E(Phrase)}; {R(Phrase, Phrase, E)}
 Pipeline E decisions as input to learning R. (Variations possible).

- There are multiple ways to train models for this problem
- [E(Phrase)]; {R(Phrase, Phrase)]

Train independent models for Entities and Relations

- {E(Phrase)}; {R(Phrase, Phrase, E)}
 Pipeline E decisions as input to learning R. (Variations possible).
- {E(Phrase), R(Phrase, Phrase)}
 Train E and R jointly

- There are multiple ways to train models for this problem
- [E(Phrase)]; {R(Phrase, Phrase)]

Train independent models for Entities and Relations

- {E(Phrase)}; {R(Phrase, Phrase, E)}
 Pipeline E decisions as input to learning R. (Variations possible).
- {E(Phrase), R(Phrase, Phrase)}
 Train E and R jointly

■
$$\sum_{e} W_{e} X_{e} + \sum_{r} W_{r} X_{r}$$

■ Subject to
□ $X_{r=LivesIn} \rightarrow X_{e1=PER}$
□

Inference Paradigms

- There are multiple ways to assign values to target variables
- [E(Phrase)]; {R(Phrase, Phrase)]

□ Mode decisions with respect to individual variables.

- {E(Phrase)}; {R(Phrase, Phrase, E)}
 Pipeline E decisions as input to inferring R.
- {E(Phrase), R(Phrase, Phrase)}
 Global Inference

Inference Paradigms

- There are multiple ways to assign values to target variables
- [E(Phrase)]; {R(Phrase, Phrase)]

□ Mode decisions with respect to individual variables.

- {E(Phrase)}; {R(Phrase, Phrase, E)}
 Pipeline E decisions as input to inferring R.
- {E(Phrase), R(Phrase, Phrase)}
 Global Inference

$$\min \sum_{E \in \mathcal{E}} \sum_{e \in \mathcal{L}_{\mathcal{E}}} c_E(e) \cdot x_{\{E,e\}} + \sum_{R \in \mathcal{R}} \sum_{r \in \mathcal{L}_{\mathcal{R}}} c_R(r) \cdot x_{\{R,r\}} \\ + \sum_{\substack{E_i, E_j \in \mathcal{E} \\ E_i \neq E_j}} \left[\sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_1 \in \mathcal{L}_{\mathcal{E}}} d^1(r, e_1) \cdot x_{\{R_{ij}, r, E_i, e_1\}} + \sum_{r \in \mathcal{L}_{\mathcal{R}}} \sum_{e_2 \in \mathcal{L}_{\mathcal{E}}} d^2(r, e_2) \cdot x_{\{R_{ij}, r, E_j, e_2\}} \right]$$
subject to:
$$\sum_{\substack{e \in \mathcal{L}_{\mathcal{E}}}} x_{\{E,e\}} = 1 \quad \forall E \in \mathcal{E}$$

$$(2)$$

$$\sum_{\substack{r \in \mathcal{L}_{\mathcal{R}}}} x_{\{R,r\}} = 1 \quad \forall R \in \mathcal{R}$$

$$(3)$$

$$x_{\{E,e\}} = \sum_{r \in \mathcal{L}_{\mathcal{R}}} x_{\{R,r, E,e\}} \quad \forall E \in \mathcal{E} \text{ and } \forall R \in \{R : E = \mathcal{N}^1(R) \text{ or } R : E = \mathcal{N}^2(R)\}$$

$$(4)$$

$$x_{\{R,r\}} = \sum_{e \in \mathcal{L}_{\mathcal{E}}} x_{\{R,r, E,e\}} \quad \forall R \in \mathcal{R} \text{ and } \forall E = \mathcal{N}^1(R) \text{ or } E = \mathcal{N}^2(R)$$

$$(5)$$

$$x_{\{E,e\}} \in \{0,1\} \quad \forall E \in \mathcal{E}, e \in \mathcal{L}_{\mathcal{E}}$$

$$(6)$$

$$x_{\{R,r\}} \in \{0,1\} \quad \forall R \in \mathcal{R}, r \in \mathcal{L}_{\mathcal{R}}$$

 $\forall R \in \mathcal{R}, r \in \mathcal{L}_{\mathcal{R}}, E \in \mathcal{E}, e \in \mathcal{L}_{\mathcal{F}}$

 $x_{\{R,r,E,e\}} \in \{0,1\}$

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader

//Here is default input structure Corpus(id:Corpus) Document(id1:Document,id2:Corpus) Paragraph(id1:Paragraph,id2:Document) Sentence(id1:Sentence,id2:Paragraph) Phrase(id1:Phrase,id2:Word)

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

- $Y = \{ Entity(Phrase) \in \{PER, LOC, ORG\}; \}$
 - Relation(Phrase, Phrase) \in {LivesIn, WorksFor } }

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

 $\begin{array}{l} Y = \{ \mbox{ Entity(Phrase)} \in \{ \mbox{PER, LC} \end{tabular} \end{tabular} \end{tabular} \end{tabular} Here is default output definition Relation(Phrase, Phrase) \end{tabular} \end{tabular}$

// Phrase Construction Procedure:
Phrase = BIOLU(S)

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

 $\begin{array}{l} Y = \{ \mbox{ Entity(Phrase)} \in \{ \mbox{PER, LOC, ORG} \} ; \\ \mbox{ Relation(Phrase, Phrase)} \in \{ \mbox{LivesIn, WorksFor} \} \end{array} \} \end{array}$

Representation:

Use FEX E-R Use Const: If punc(w) \rightarrow not E(w)

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

 $\label{eq:Y} \begin{array}{l} \mathsf{Y} = \{ \ \mathsf{Entity}(\mathsf{Phrase}) \in \{\mathsf{PER}, \ \mathsf{LOC}, \ \mathsf{ORG} \} \ ; \\ & \mathsf{Relation}(\mathsf{Phrase}, \ \mathsf{Phrase}) \in \{ \mathsf{LivesIn}, \ \mathsf{WorksFor} \ \} \ \end{array}$

Representation:

Use FEX E-R Use Const: If $punc(w) \rightarrow not$

//Here is default FEX Lexical-form(id:phrase,[0,1]) parse-path(id1:phrase,id2:after(id1))

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

 $\label{eq:Y} \begin{array}{l} \mathsf{Y} = \{ \ \mathsf{Entity}(\mathsf{Phrase}) \in \{\mathsf{PER}, \ \mathsf{LOC}, \ \mathsf{ORG} \} \ ; \\ & \mathsf{Relation}(\mathsf{Phrase}, \ \mathsf{Phrase}) \in \{ \mathsf{LivesIn}, \ \mathsf{WorksFor} \ \} \ \end{array}$

Representation:

Use FEX E-R Use Const: If punc(w) \rightarrow not E(w)

Training:

{E(Phrase)}; {R(Phrase, Phrase)}

Data:

From Corpus "ACL-05" Use Reader "ACL-05-Reader"

Output Space:

 $\label{eq:Y} \begin{array}{l} \mathsf{Y} = \{ \ \mathsf{Entity}(\mathsf{Phrase}) \in \{\mathsf{PER}, \ \mathsf{LOC}, \ \mathsf{ORG} \} \ ; \\ & \mathsf{Relation}(\mathsf{Phrase}, \ \mathsf{Phrase}) \in \{\mathsf{LivesIn}, \ \mathsf{WorksFor} \ \} \end{array} \end{array}$

Representation:

Use FEX E-R Use Const: If punc(w) \rightarrow not E(w)

Training:

{E(Phrase)}; {R(Phrase, Phrase)}

Inference:

{E(Phrase), R(Phrase, Phrase)}

CCMP Also Provides Low Level Access

- Access to vector "slices" and individual elements
- Access to FGFs, constraints, and sub-models
 Enables learning and inference that was hard or impossible in LBJava
- Break an FGF down to see operators and sub-formulae
 - Enables translation to ILP
 - Will be useful for other inference algorithms as well

CCMP Status: 1st prototype define via Maude & K

- Maude: a language of *rewriting logic* [Meseguer, '92]
 - Define logical functions and rewrite rules
 - Functions represent language syntax; rules give the semantics
 - Terms are programs + input; Maude deduces the output
 - Executional semantics
 - K: semantics via continuations [Rosu & Serbanuta, '10]
 - □ Arrange program state into a *configuration* of *cells*
 - □ Arrange computation as stack of continuations
 - □ *Heating/cooling rules* bring next task to top of stack
 - CCMP is defined in 4500 lines of Maude
 - Multiple applications using a variety of learning and inference paradigms have been coded, trained and tested

CCMP Status: 1st prototype define via Maude & K

- Maude: a language of *rewriting logic* [Meseguer, '92]
 - Define logical functions and rewrite rules
 - Functions represent language syntax; rules give the semantics
 - Terms are programs + input; Maude deduces the output
 - Executional semantics
 - K: semantics via continuations [Rosu & Serbanuta, '10]
 - □ Arrange program state into a *configuration* of *cells*
 - □ Arrange computation as stack of continuations
 - □ *Heating/cooling rules* bring next task to top of stack
- CCMP is defined in 4500 lines of Maude
 - Multiple applications using a variety of learning and inference paradigms have been coded, trained and tested
- Current version is being implemented in Scala

Before Conclusion: Cloud NLP [Wu et. al. LREC'14]

Before Conclusion: Cloud NLP [Wu et. al. LREC'14]

Before Conclusion: Cloud NLP

[Wu et. al. LREC'14]

- A related save my time effort Researcher as well as small/medium-sized organizations sometimes need to analyze large document collections.
- They want to apply a lot of rich Natural Language Processing (NLP) analytics to the document text, but
 - They don't have expertise developing them
 - They may not have peak-time computing power
 - They may not have expertise and time to install 3rd party versions.
- How do you make it really easy to periodically process large sets of documents with rich NLP analytics...
 - □ ...in a short time
 - ...at reasonable cost
 - …with minimal local compute power?
- (HINT: IllinoisCloudNLP)

Before Conclusion: Cloud NLP

[Wu et. al. LREC'14]

- A related save my time effort Researcher as well as small/medium-sized organizations sometimes need to analyze large document collections.
- They want to apply a lot of rich Natural Language Processing (NLP) analytics to the document text, but
 - They don't have expertise developing them
 - They may not have peak-time computing power
 - They may not have expertise and time to install 3rd party versions.

Illinois CloudNLP (shortly on: http://cogcomp.cs.illinois.edu/page/software)

- **On-demand processing of large corpora**
- Using state-of-the art Illinois NLP components
- **Training and application of text classifiers**
- Maximum user privacy & user control over data
- User runs client software from local machine
- **Client software applies NLP analytics in the cloud**

Conclusions

- Learning Based Programming
 - □ LBP is the study of programming language abstractions for machine learning representations and techniques.
 - □ A platform for defining and combining decision making models.
 - Discriminative or probabilistic; Trained jointly or independently; Exact or approximate inference
 - All of these can be left to the programmer to decide
- An LBP language makes the programmer's life easier
 - Abstracts away details that distract from the main goal
 - □ Shortens the development cycle
- Presented the case, and some details of two languages.
 - LBJava: a mature, easy to use, language that supports learning individual models and joint inference at decision time

CCMP: an in development declarative language that support the whole LBP development cycle
COMPUTATION GROUP

Conclusions

- Learning Based Programming
 - □ LBP is the study of programming language abstractions for machine learning representations and techniques.
 - □ A platform for defining and combining decision making models.
 - Discriminative or probabilistic; Trained jointly or independently; Exact or approximate inference
 - All of these can be left to the programmer to decide
- An LBP language makes the programmer's life easier
 - Abstracts away details that distract from the main goal
 - □ Shortens the development cycle
- Presented the case, and some details of two languages.
 - LBJava: a mature, easy to use, language that supports learning individual models and joint inference at decision time

CCMP: an in development declarative language that support the whole LBP development cycle

