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 Most of the data today is unstructured 
 Text, Images, Sensory Data 
 It’s not only BIG, it’s COMPLEX & Heterogeneous 

 
 Challenge: How to understand what the data says? How to deal 

with the huge amount of unstructured data as if it was 
organized in a database with a known schema. 
 Organize, access, analyze and synthesize unstructured data. 
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 Challenge: How to understand what the data says? How to deal 

with the huge amount of unstructured data as if it was 
organized in a database with a known schema. 
 Organize, access, analyze and synthesize unstructured data. 

 
 Develop the theories, algorithms, and tools to enable 

transforming raw data into useful and understandable 
information & integrating it with existing resources          

 [data  meaning] transformation. 
 TODAY: Why is it hard – what we can do….  
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Rules of 
Evidence 
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Act 

More than a million rules, requiring companies and 
their boards to understand what their employees 
are doing and with whom they are communicating.  
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WORLD TEXT 

2012 2014 2020 

90% of the world’s text has been created in 
the last 2 years, and there will be a 50-fold 
increase by 2020.  
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  care about?  
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Large Scale Data Meaning Transformation 
Massive & Deep  
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Ambiguity  
It’s a version of Chicago – the 
standard classic Macintosh 
menu font, with that distinctive 
thick diagonal in the ”N”. 

Chicago was used by default 
for Mac menus through 
MacOS 7.6, and OS 8 was 
released mid-1997.. 

Chicago VIII was one of the 
early 70s-era Chicago 
albums to catch my 
ear, along with Chicago II. 
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with his US counterpart, Jim Carpenter. 

Former US Secretary of Defense Jim Carpenter spoke today… 
  

Variability in Natural Language Expressions 

Needs:  
 Relations, Entities and Semantic Classes, NOT keywords  
 Bring knowledge from external resources 
 Integrate over large collections of text and DBs 
 Identify, disambiguate  and track entities, events, etc.  

Standard techniques cannot 
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expressing meaning  
nor with the  
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 A law office wants to get the list of all people that were mentioned in email 

correspondence with the office. 
 For each name, determine whether is was mentioned adversarially  or not.  

 
 A training facility of a large corporation wants to provide new employees 

easy access to all relevant key concepts, entities (people, techniques, 
applications) along with relevant projects and background information 
when they read material about their new job.  
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 Models are based on Statistical Machine Learning & Inference  
Research Focus: 
 Modeling and learning algorithms for different phenomena 

 Classification models 
 Structured models 
 Learning protocols exploiting Indirect Supervision  (data abound; not supervised) 

 Inference over learned models as a way to “put things together”, introduce 
domain & task specific knowledge and constraints 
 Constrained Conditional Models: formulating inference as ILP 
 Learn models; Acquire knowledge/constraints; Make decisions.  
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Extracting Relations via Semantic Analysis 

 Semantic parsing reveals  several 
relations in the sentence along with 
their arguments.  
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His first patient died of pneumonia. Another, who arrived from NY yesterday 
suffered from flu. Most others already recovered from flu 

Cause  

Start-state 

Location 

cause 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 

Learn models; Acquire knowledge/constraints; Make decisions.  
  

Difficulty: no single 
source with 

annotation for all 
phenomena 
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Identify Entities 
Realize that  

Christopher ==Chris == Kit  ==… 

Events, Locations,  Dates 
Normalization 

Who does what to whom? 
“We”?  

Talking about  
Money  

We like you   

Attempts to analyze the email like 
a human would, but in m-secs 





TROY HENIKOFF 
Techstars 

NexLP 

APRIL 14 

CAPITALIZATION 

SHAREHOLDERS 

LETTER OF  
INTENT 

GREAT 
PLEASURE 

APRIL 16 

DUE 
DILIGENCE 

BACKGROUND 
CHECK 

CHRISTOPHER 

YE 

JASON 

ALAN 

DAN 

Builds connection within 
and across messages 



$250,000 



$250,000 

True Story (de-identified) A trading company had half 
of their sales team leave to start a rival company.  The 
CEO wanted proof they stole company information 
and broke their employee covenants. 








Identify and disambiguate 
entities; analyze communication 
flow and map who is talking to 
whom about what, when, … 

Connections 
Who, What, When  

Query 
Slice the Data 

Rank 
Access raw data 






Identify one of the people of 
interest, James.  Who he talks to, 
about what, how many times.  

A Baseball Card 
What’s known; what’s abnormal 






Exposed that James used a variety of email 
accounts and used pseudonyms.  

Common patterns as well as abnormal 
communication patterns about specific topics 

during  a certain period of time  






Looking at these specific messages showed James 
working with his mom to recruit employees.  



And, showed James sending customer information to his 
fiancé  and working with her to recruit existing clients 





It took 90 minutes to find two key 
emails in a large collection; a team 
of lawyers spent 3 weeks on the 
same collection and could not find 
this evidence….  





The goal is to provide realtime 
notifications – reduce the impact of 
compliance infractions, potential 
fraud and even customer issues 



Summary: Making Sense of Unstructured Data 

 A lot of today’s information is in text   
 80% of data corporations deal with is TEXT 
 We are trying to push the level of automatic text understanding 
 

 Very significant progress over the last 10 years or so 
 Mostly using statistical machine learning methods 

 The problem isn’t solved – a very active research area 
 We mostly work at a sentence level 
 We make a lot of mistakes 
 We don’t understand events, intention,… 
 We don’t know how to use background knowledge and common sense 
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Thank you! 
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