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Abstract

This paper presents a simple approach to capturing the appearance and structure of

immersive scenes based on the imagery acquired with an omnidirectional video camera. The

scheme proceeds by combining techniques from structure from motion with ideas from image

based rendering. An interactive photogrammetric modeling scheme is used to recover the

locations of a set of salient features in the scene (points and lines) from image measurements

in a small set of keyframe images. The estimates obtained from this process are then used

as a basis for estimating the position and orientation of the camera at every frame in the

video clip.

By augmenting the video sequence with pose information we provide the end user with

the ability to index the video sequence spatially as opposed to temporally. This allows the

user to explore the immersive scene by interactively selecting the desired viewpoint and

viewing direction.
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1 Introduction

This paper presents a simple approach to capturing the appearance and structure of immersive

scenes based on the imagery acquired with an omnidirectional video camera [15]. The scheme

proceeds by combining techniques from structure from motion with ideas from image based

rendering. An interactive photogrammetric modeling scheme is used to recover the locations of a

set of salient features in the scene (points and lines) from image correspondences in a small set of

keyframe images. In the current implementation, these correspondences are speci�ed manually

by allowing the user to select salient image features in the keyframes. The main contribution of

this work is a novel structure from motion algorithm which is used to automatically recover the

camera locations and feature positions from these measurements. The estimates obtained from

this process are then used as a basis for estimating the position and orientation of the camera at

every frame in the video clip.

By augmenting the video sequence with pose information we provide the end user with the

ability to index the video sequence spatially as opposed to temporally. This allows the user to

explore the immersive scene by interactively selecting the desired viewpoint and viewing direction.

This technology could be used to implement "Museum in a box" applications where an individual

content creator could acquire omnidirectional imagery of an environment of interest which other

users could then access over the internet or on storage media (such as DVD ROMs) and explore

interactively.

The proposed method o�ers a number of advantages. Firstly, since the scheme is based entirely

on image data, it does not require the use of a secondary positioning system. This is an advantage

since it allows us to avoid the limitations, complications, and expense associated with most

position sensing technologies. Global Positioning systems, for example, cannot be employed in

indoor environments where the satellite signals are occluded. This is an unfortunate limitation

since indoor scenes are a natural target for immersive exploration.

Odometry systems su�er from odometric drift and require fairly complex, instrumented me-

chanical platforms that often limit the freedom of movement of the camera. In contrast, the

proposed scheme can be applied to sequences acquired with a hand held camera.

Since the proposed technique is based on image measurements, the results obtained are "pixel



accurate", that is, the estimates for the camera positions and 3D feature locations are in good

agreement with the observed image features by design. It would be very diÆcult to achieve a

similar level of accuracy with an external positioning technology without signi�cant calibration

e�ort.

Another advantage of the technique is that it does not require the use of arti�cial �ducials,

beacons or other instrumentation of the environment; naturally occurring features prove to be

quite adequate. This fact signi�cantly simpli�es the process of deploying the scheme in actual

environments.
1.1 Related Work

The idea of using omnidirectional camera system for reconstructing environments from video

imagery has been explored by Yagi, Kawato, Tsuji and Ishiguro [24, 8, 7, 9]. These authors

presented an omnidirectional camera system based on a conical mirror and described how the

measurements obtained from the video imagery acquired with their camera system could be

combined with odometry measurements from the robot platform to construct maps of the robots

environment. The techniques described in this paper do not require odometry information which

means that they can be employed on simpler platforms like the one shown in Figure 13 which

are not equipped with odometers. It also simpli�es the data acquisition process since we do not

have to calibrate the relationship between the camera system and the robots odometry system.

Szeliski and Shum [18] describe an interactive approach to reconstructing scenes from panoramic

imagery. The panormaic images are constructed by stitching together video frames that are ac-

quired as a camera is spun around its center of projection. Coorg and Teller [3] describe a

system which is able to automatically extract building models from a data set of panoramic

images augmented with pose information which they refer to as pose imagery

The process of acquiring omnidirectional video imagery of an immersive environment is much

simpler than the process of acquiring panoramic images. One would not really consider con-

structing a sequence of tightly spaced panoramic images of an environment because of the time

required to acquire the imagery and stitch it together. However, this is precisely the type of data

contained in an omnidirectional video sequence. By estimating the pose at every location in the

sequence the Video Plus system is able to fully exploit the range of viewpoints represented in



the image sequence.

Boult [1] describes an interesting system which allows a user to experience remote environments

by viewing video imagery acquired with an omnidirectional camera. During playback the user

can control the direction from which she views the scene interactively. The VideoPlus system

described in this paper provides the end user with the ability to control her viewing position as

well as her viewing direction. This 
exibility is made possible by the fact that the video imagery

is augmented with pose information which allows the user to navigate the sequence in an order

that is completely di�erent from the temporal ordering of the original sequence.

The VideoPlus system in similar in spirit to the Movie Map system described by Lippman

[13] and to the QuickTime VR system developed by Chen [2] in that the end result of the

analysis is a set of omnidirectional images annotated with position. The user is able to navigate

through the scene by jumping from one image to another. The contribution of this work is to

propose a simple and e�ective way of recovering the positions of the omnidirectional views from

image measurements without having to place arti�cial �ducials in the environment or requiring

a separate pose estimation system.

Shum and He [16] describe an innovative approach to generating novel views of an environment

based on a set of images acquired while the camera is rotated around a set of concentric circles.

Takahashi et al [19] describe a similar system that uses as input a set of omnidirectional images

captured at evenly spaced locations along a linear trajectory. Both of these systems build on

the plenoptic sampling ideas described by Levoy and Hanrahan [11] and Gortler, Grzeszczuk,

Szeliski and Cohen [6].

Unlike these image based rendering schemes, the Video Plus system does not address the

problem of synthesizing images from novel vantage points. What it does provide is a mechanism

for estimating the cameras trajectory so that the user can navigate through the viewpoints

contained in the input video sequence. This approach o�ers many of the advantages of image

based rendering in that it can be used to explore arbitrarily complex environments without

requiring models for the geometric and photometric properties of the surfaces in the scene. It

can also be used to capture the appearance of extended environments, such as oÆce complexes,

which involve walls and other occluding surfaces that are not currently handled by plenoptic



sampling schemes.

2 Method

This section describes the proposed method for estimating the trajectory of a moving camera

and the locations of a set of selected scene features from image data. The basic approach, which

is outlined below and in Figure 1, is similar in spirit to the reconstruction schemes described in

[23] and [4].

1. Acquire an omnidirectional video sequence in the environment of interest.

2. Select a small set of keyframes from the sequence

3. Select a set of point and line features in the scene and indicate where they appear in the

images through a simple point and click interface.

4. Apply the reconstruction algorithm which automatically constructs estimates for the posi-

tions of the features and the locations from which the keyframes were taken.

5. Based on these estimates for keyframe and feature locations, the system then estimates the

position of the camera for every frame in the video sequence.

The problem of recovering the feature and keyframe locations is posed as an optimization

problem where the goal is to minimize an objective function which indicates the discrepancy

between the predicted image features and the observed image features as a function of the model

parameters and the camera locations. This objective function is described in more detail in

Section 2.2.
2.1 Omnidirectional Imaging Model

In order to carry out this procedure it is important to understand the relationship between the

locations of features in the world and the coordinates of the corresponding image features in the

omnidirectional imagery. The catadioptric camera system proposed by Nayar [15] consists of a

parabolic mirror imaged by an orthographic lens. With this imaging model there is an e�ective

single point of projection located at the focus of the parabola as shown in Figure 2.



a. b.

c. d.

Figure 1: The reconstruction algorithm takes as input a small set of keyframes from the video

sequence. The user selects a set of point and line features in the scene and indicates where these

appear in the images through a simple point and click interface; in a and b these correspondences

are indicated as yellow points and arcs. Part c shows a 2D projection of the 3D model produced by

the reconstruction algorithm from the image measurements. The dots and crosses in c correspond

to selected features in the scene while the circles correspond to the keyframe locations. Based

on these estimates, the system then constructs estimates for the location of the camera at every

frame in the video sequence (part d).
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Figure 2: The relationship between a point feature in the omnidirectional image and the ray

between the center of projection and the imaged point.

Given a point with coordinates (u; v) in the omnidirectional image we can construct a vector,

�, which is aligned with the ray connecting the imaged point and the center of projection of the

camera system.
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This vector is expressed in terms of a coordinate frame of reference with its origin at the center

of projection and with the z-axis aligned with the optical axis of the device as shown in Figure

2.

The calibration parameters, sx, sy, cx and cy associated with the imagery can be obtained

in a separate calibration procedure [5]. It is assumed that these calibration parameters remain

constant throughout the video sequence.

Note that since the catadioptric camera system has a single point of projection it is possible to

resample the resulting imagery to produce \normal" perspective with arbitrary viewing directions

[15]. The current system exploits this capability by providing a mechanism which allows the user

to create a virtual viewpoint which she can pan and tilt interactively.
2.2 Constructing an Objective Function

The current implementation of the reconstruction system allows the user to model two types

of features: point features and straight lines aligned with one of the vertical or horizontal axes of

the global frame of reference. These types of features were chosen because they are particularly

prevalent and salient in man-made immersive environments but other types of features, such as



lines at arbitrary orientations, could easily be included. The locations of point features can be

represented in the usual manner by vectors in R
3 , (Xi; Yi; Zi)

1. The locations of the straight

lines can be denoted with only two parameters. For example, the location of a vertical line

can be speci�ed by parameterizing the location of its intercept with the xy-plane (Xi; Yi) since

the vertical axis corresponds to the z-axis of the global coordinate frame. Note that for the

purposes of reconstruction the lines are considered to have in�nite length so no attempt is made

to represent their endpoints.

The position and orientation of the camera with respect to the world frame of reference during

frame j of the sequence is captured by two parameters, a rotation Rj 2 SO(3) and a translation

Tj 2 R
3 . This means that given the coordinates of a point in the global coordinate frame,

Piw 2 R
3 we can compute its coordinates with respect to camera frame j, Pij from the following

expression.

Pij = Rj(Piw �Tj) (2)

The reconstruction program takes as input a set of correspondences between features in the

omnidirectional imagery and features in the model. For correspondences between point features

in the image and point features in the model we can construct an expression which measures

the discrepancy between the predicted projection of the point and the vector obtained from the

image measurement, �ij, where Pij is computed from equation 2.

k(�ij �Pij)k
2
=(kPijk

2
k�ijk

2) (3)

This expression yields a result equivalent to the square of the sine of the angle between the

two vectors, �ij and Pij shown in Figure 3.

For correspondences between point features in the image and line features in the model we

consider the plane containing the line and the center of projection of the image. The normal to

this plane, mij can be computed from the following expression.

mij = Rj(vi � (di �Tj)) (4)

1the subscript i serves to remind us that these parameters describe the position of the ith feature in the model.
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Figure 3: Given a correspondence between a point feature in the omnidirectional image and a

point feature in the model we can construct an objective function by considering the disparity

between the predicted ray between the camera center and the point feature, Pij, and the vector

�ij computed from the image measurement.

Where the vector vi denotes the direction of the line in space and the vector di denotes an

arbitrary point on the line. As an example, for vertical lines the vector vi will be aligned with

the z axis (0; 0; 1)T and the vector di will have the form (Xi; Yi; 0)
T .

The following expression measures the extent to which the vector obtained from the point

feature in the omnidirectional imagery, �ij, deviates from the plane de�ned by the vector mij.

(mT
�ij)

2
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2
k�ijk
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Figure 4: Given a correspondence between a point feature in the omnidirectional image and a

line feature in the model we can construct an objective function by considering the disparity

between the predicted normal vector to the plane containing the center of projection and the

model line, mij, and the vector, �ij, computed from the image measurement.



A global objective function is constructed by considering all of the correspondences in the data

set and summing the resulting expressions together. Estimates for the structure of the scene and

the locations of the cameras are obtained by minimizing this objective function with respect to

the unknown parameters, Rj, Tj, Xi, Yi and Zi. This minimization is carried out using a variant

of the Newton-Raphson method [22, 23, 10]. For the scenes described in Section 3 which involve

on the order of 20 keyframes and 50 model features, the optimization procedure requires less

than a minute of compute time on a Pentium based laptop computer.

As with any structure from motion algorithm, the proposed scheme recovers the geometry

of the scene up to an unknown scale factor since all of the dimensions can be multiplied by an

arbitrary positive number without a�ecting the image measurements on which the reconstruction

is based.

Note that it is not necessary to have a correspondence for every scene feature in every keyframe.

This is particularly advantageous in complicated indoor environments where features are often

occluded by intervening structures.
2.3 Obtaining Initial Estimates

An initial estimate for the orientation of the camera frames, Rj, can be obtained by considering

the lines in the scene with known orientation such as lines parallel to the x, y, or z axes of the

environment. If �1 and �2 represent the vectors corresponding to two points along the projection

of a line in the image plane then the normal to the plane between them in the cameras frame of

reference can be computed as follows n = �1 � �2. If Rj represents the rotation of the camera

frame and v represents the direction of the line in world coordinates then the following objective

function represents the fact that the normal to the plane should be perpendicular to the direction

of the line in the coordinates of the camera frame.

(nT
Rjv)

2 (6)

An objective function can be created by considering all such lines in an image and summing

these penalty terms. The obvious advantage of this expression is that the only unknown param-

eter is the camera rotation Rj which means that we can minimize the expression with respect to

this parameter in isolation to obtain an initial estimate for the camera orientation.



2.4 Expressing Constraints

The current implementation of the reconstruction system also allows the user to specify con-

straints that relate the features in the model. For example the user would be able to specify

that two or more features share the same z-coordinate which would force them to lie on the

same horizontal plane. This constraint is maintained by reparameterizing the reconstruction

problem such that the z-coordinates of the points in question all refer to the same variable in

the parameter vector.

The ability to specify these relationships is particularly useful in indoor environments since it

allows the user to exploit common constraints among features such as two features belonging to

the same wall or multiple features lying on a ground plane. These constraints reduce the number

of free parameters that the system must recover and improve the coherence of the model when

the camera moves large distances in the world.
2.5 Guidelines for Selecting Features

The reconstruction procedure described in the previous sections is fairly robust to the choice of

features used. There are, however, some guidelines that should be observed. The most important

thing is to choose a set of features that are widely distributed throughout the scene as opposed

to being clustered in a small section of the image. It is also a good idea to choose subsets of

features that are linked by some constraint such as coplanarity since these constraints can be

e�ectively exploited by the reconstruction system.

For most non-trivial scenes, it is usually impossible to �nd features that are visible in all of the

images in the sequence but one should strive to choose features that are visible in at least two or

three of the keyframes used for reconstruction. Another thing to keep in mind is that extended

features like lines can often be localized more accurately in the imagery than point features.
2.6 Estimating the Camera Trajectory

Once the locations of a set of model features have been reconstructed using the image mea-

surements obtained from a set of keyframes in the sequence, these features can then be used as

�ducials to recover the pose of the camera at other frames in the sequence.

For example, if frame number 1000 and frame number 1500 were used as keyframes in the

reconstruction process then we know where a subset of the model features appears in these

frames. Correspondences between features in the intervening images and features in the model



can be obtained by applying applying standard feature tracking algorithms to the data set. The

current system employs a variant of the Lucas and Kanade [14] algorithm to localize and track

feature points through intervening frames.

Based on these correspondences, the pose of the camera during these intermediate frames

can be estimated by simply minimizing the objective function described previously with respect

to the pose parameters of the camera. The locations of the feature points are held constant

during this pose estimation step. Initial estimates for the camera pose can be obtained from

the estimates for the locations of the keyframes that were produced during the reconstruction

process.

Another approach to estimating the pose of the camera during the intervening frames is to

simply interpolate the pose parameters through the frames of the subsequence. That is, given

that the camera pose in frames 1000 and 1500 is known we could simply estimate the roll, pitch

and yaw angles of the intervening frames along with the translational position by interpolating

these parameter values linearly. This approach is most appropriate in situations where the camera

is moving with an approximately constant translational and angular velocity between keyframes.
2.7 Interactive Exploration of the Video Sequence

Once the video sequence has been fully annotated with camera pose information the user

is able index the data set spatially as well as temporally. In the current implementation the

user is able to navigate through an immersive environment such as the oÆce complex shown in

Figure 5 in a natural manner by panning and tilting his virtual viewpoint and moving forward

and backward. As the user changes the location of her viewpoint the system simply selects the

closest view in the omnidirectional video sequence and generates an image in the appropriate

viewing direction.

The current implementation also allows the user to generate movies by specifying camera

trajectories that pass through the original video sequence. The system can then automatically

generate frames corresponding to the desired trajectory by resampling the original imagery. In

this way the user can reshoot the scene with a temporal order that di�ers from the ordering of

the original video sequence.



3 Results

In order to illustrate what can be achieved with the proposed techniques we present results

obtained from three di�erent immersive environments.
3.1 Furness Library

a. b. c.

Figure 5: Three images taken from a video sequence obtained as the camera is moved through

the library.

a. b. c.

Figure 6: Images of the Fine Arts library at the University of Pennsylvania. The building was de-

signed by Frank Furness in 1891 and remains one of the most distinctive and most photographed

buildings on campus.

Figure 5 shows three images taken from a video sequence acquired in the Fine Arts Library

at the University of Pennsylvania. This building was designed by Frank Furness in 1891 and

refurbished on its centenary in 1991, images of the interior and exterior of the building are shown

in Figure 6.

The reconstruction of this environment was carried out using approximately 100 model features

viewed in 9 frames of the video sequence. Figure 7a shows a 
oor plan view of the resulting

reconstruction. The reconstructed feature locations were then used as �ducials to recover the

position of 15 other frames in the sequence. Pose interpolation was employed to estimate the

position and orientation of the camera during intervening frames. Figure 7b shows the resulting



a. b.

Figure 7: a. A 
oor plan view of the library showing the locations of the features recovered

from 9 keyframes in the video sequence.The circles correspond to the recovered camera positions

while the dots and crosses correspond to line and point features. b. Based on these �ducials the

system is able to estimate the location of the camera for all the intervening frames.

a. b. c.

d. e. f.

Figure 8: Views generated by the system as the user conducts a virtual tour of the library.



estimates for the camera position during the entire sequence. The original video sequence was 55

seconds long and consisted of 550 frames. During the sequence the camera traveled a distance of

approximately 150 feet. Figure 8 shows viewpoints generated by the system as the user conducts

a virtual tour of this environment.
3.2 GRASP Laboratory

a. b. c.

Figure 9: Three images taken from a video sequence obtained as the camera is moved through

the GRASP laboratory.

a. b. c.

Figure 10: Images of the GRASP laboratory at the University of Pennsylvania.

Figure 9 shows three images taken from a video sequence acquired in the GRASP laboratory at

the University of Pennsylvania; snapshots of the lab are shown in Figure 10. In this case the video

imagery was obtained in a sequence of short segments as the camera was moved through various

sections of the laboratory. The entire video sequence was 154 seconds long and consisted of 4646

frames. The approximate dimensions of the region of the laboratory explored are 36 feet by 56

feet and the camera moved over 250 feet during the exploration. The reconstruction of this scene

was carried out using approximately 50 model features viewed in 16 images of the sequence. The

resulting model is shown in Figure 11a, Figure 11b shows the result of applying pose estimation

and interpolation to the rest of the video sequence. Figure 12 shows some samples of images



a. b.

Figure 11: a. A 
oor plan view of the laboratory showing the locations of the features recovered

from 17 keyframes in the video sequence. The circles correspond to the recovered camera positions

while the dots and crosses correspond to line and point features. b. Based on these �ducials

the system is able to estimate the location of the camera for all the intervening frames. Notice

that during the exploration the camera is moved into two side rooms that are accessed from the

corridor surrounding the laboratory; these are represented by the two excursions at the bottom

of this �gure.

a. b. c.

d. e. f.

Figure 12: Views generated by the system as the user conducts a virtual tour of the library.



created as the user explores this environment interactively. Notice that the user can freely enter

and exit various rooms and alcoves in the laboratory.

In order to gauge the accuracy of the reconstruction procedure we compared 17 of the scene

dimensions recovered by the program to measurements obtained with a ruler. Recall that the

structure from motion algorithm provides reconstructions up to an unknown scale factor. Once

this scale factor was accounted for, the mean disparity between the estimated dimensions and

measured dimensions was 3.5 inches. Expressed as a percentage, the estimated dimensions agreed

with the measured dimensions to within 1.52% on average.
3.3 Hospital Interior

Figure 15 shows the results of applying the reconstruction procedure to 14 images acquired

from a sequence taken inside an abandoned hospital building. This �gure demonstrates the

capability of constructing polyhedral models from the recovered model features.

Figure 13: Mobile platform equipped with an omnidirectional camera system that was used to

acquire video imagery of an indoor environment.

Using the procedure outlined above we were able to reconstruct the model shown in Figure 15

from 14 images taken from a video sequence of an indoor scene.

The polyhedral model was constructed by manually attaching surfaces to the reconstructed

features. Texture maps for these surfaces were obtained by sampling the original imagery.

The fact that the reconstruction process can be carried out entirely from the video sequence

simpli�es the process of data collection. Figure 13 shows a mobile platform out�tted with an

omnidirectional camera system produced by Remote Reality inc.. This system was used to

acquire the imagery that was used to construct the model shown in Figure 15. Note that the

only sensor carried by this robot is the omnidirectional camera it does not have any odometry or



a. b.

c.

Figure 14: Two of the omnidirectional images from a set of 14 keyframes are shown in a and b.

A panoramic version of another keyframe is shown in c.

a. b.

Figure 15: a. 3D model of the environment constructed from the data set shown in Figure 14.

b. Floor plan view showing the estimated location of all the images and an overhead view of the

feature locations. The circles correspond to the recovered camera positions while the dots and

crosses correspond to vertical line and point features.



range sensors. During the data collection process the system was piloted by a remote operator

using an RC link.

The video data that was used to construct the models shown in Figures 7 and 11 was collected

with a handheld omnidirectional camera system as shown in Figure 16. In both cases the video

data was captured on a Sony Digital camcorder and transferred to a PC for processing using an

IEEE 1394 Firewire link. The images were digitized at a resolution of 720x480 at 24 bits per

pixel.

a. b.

Figure 16: a. The video imagery used to produce the reconstructions of the library and the

laboratory environments was acquired using a handheld omnidirectional camera system b. The

equipment used to acquire the data

4 Conclusions

This paper presents an e�ective scheme for estimating the trajectory of a moving camera

and the locations of a selected set of point and line features from image correspondences in

an omnidirectional image sequence. An important practical advantage of using omnidirectional

imagery in this application is that the 3D structure can be recovered from a smaller number of

images since the features of interest are more likely to remain in view as the camera moves from

one location to another.

By augmenting the video sequence with pose information we provide the end user with the

capability of indexing the video sequence spatially as opposed to temporally. This means that

the user can explore the image sequence in ways that were not envisioned when the sequence

was initially collected.

The cost of augmenting the video sequence with pose information is very slight since it only

involves storing six numbers per frame. The hardware requirements of the proposed scheme are



also quite modest since the reconstruction is performed entirely from the image data. It does

not involve a speci�c camera trajectory or a separate sensor for measuring the camera position.

As such, the method is particularly appropriate for immersive man-made structures where GPS

data is often unavailable.

We envision that this system could be used to acquire representations of immersive environ-

ments, like museums, that users could then explore interactively. It might also be appropriate

for acquiring immersive backgrounds for video games or training simulators.
4.1 Future Work

Several projects currently underway seek to improve upon various aspects of the scheme pre-

sented in this manuscript. One such e�ort aims at improving the accuracy of the method for

estimating the camera trajectory by incorporating measurements from a set of accelerometers

mounted on the omnidirectional video camera.

The method used to generate views of an environment during a walkthrough is also a target

for improvement. Currently, the system simply selects the omnidirectional image that is closest

to the users desired viewpoint and generates an image with the appropriate viewing direction.

The obvious limitation of this approach is that the viewing position is restricted to locations

which were imaged in the original video sequence.

One approach to generating novel views that is currently being pursued involves �nding corre-

spondences between salient image features in neighboring omnidirectional images in the original

sequence. These correspondences can then be used to construct warping functions which map

pixels from the original images to the virtual viewpoint [12].

The success of any view generation technique will depend upon having a set of images taken

from a suÆciently representative set of viewpoints. A better understanding of how to go about

capturing such a data set taking into account the structure of the scene and the viewpoints that

are likely to be of most interest is needed. The ultimate goal would be to produce a system where

the user could arbitrarily select the desired viewpoint and viewing direction so as to explore the

environment in an unconstrained manner.

The largest drawbacks to using omnidirectional video imagery is the reduced image resolution.

This e�ect can be mitigated by employing higher resolution video cameras. One of the tradeo�s



that is currently being explored is the possibility of acquiring higher resolution imagery at a

lower frame rate. This would allow us to produce sharper images of the scene but would either

slow down the data acquisition process or require better view interpolation strategies.
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