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Abstract

This paper presents an approach to the problem of control-
ling the configuration of a team of mobile agents equipped
with cameras so as to optimize the quality of the estimates
derived from their measurements. The issue of optimizing
the robots’ configuration is particularly important in the
context of teams equipped with vision sensors since most
estimation schemes of interest will involve some form of tri-
angulation.

We provide a theoretical framework for tackling the sen- Figure 1. A single Clodbuster robot (left) and the team performing
sor planning problem and a practical computational strat- @ distributed manipulation task.
egy, inspired by work on patrticle filtering, for implement-
ing the approach. The ideas have been demonstrated bo%f other features in the environment. In fact, one could
in simulation and on actual robotic platforms. The results . j ' .
indicate that the framework is able to solve fairly difficult choose to view the team as a three eyed stereo rig where

sensor planning problems online without requiring exces- th(_arlhn'd|V|dua;'tle%/e.s c.:;m at(;]tu?ll?ll be. moved ?.n the .ﬂy' that
sive amounts of computational resources. IS capabriity Invites the toflowing question. given tha
the robot platforms are mobile, how should they be de-

ployed in order to maximize the quality of the estimates
1. Introduction returned by the team? This is a particularly important ques-
tion in the context of robots equipped with vision sensors
The idea of using teams of small, inexpensive robotic agentssince most of the estimation techniques of interest in this
to accomplish various tasks is one that has gained increasease are based on some form of triangulation.
ing currency in the field of robotics research. Figure 1  Similar questions arise when one considers the problem
shows a picture of a Clodbuster robot which is based onof integrating information from a sea of distributed sensors.
a standard remote controlled motion platform and outfit- Given that there is some cost associated with transmitting
ted with an omnidirectional video camera — its only sen- and processing data, which sensor readings should one use
sor. Using teams of these modest robots, fairly sophisti- to form an estimate for the parameters of interest?
cated applications such as distributed mapping, formation This paper presents a theoretical framework for dis-
control and distributed manipulation have been successfullycussing such questions and a practical computational ap-
demonstrated [1, 2]. proach, inspired by work on particle filtering, for tackling
One of the more interesting aspects of these platforms isthem. The suggested approach could be viewed as an appli-
that estimates for relevant quantities in the world are formed cation of the theory of games since the problem of control-
by combining information from multiple distributed sen- ling the robots’ configuration is reformulated as the prob-
sors. For example, the robots in the team shown in Figurelem of optimizing a quality function that reflects the ex-
1 obtain an estimate for their relative configuration by com- pected value of assuming a particular formation. Results
bining the angular measurements obtained from all of the obtained by applying this approach to practical problems
omnidirectional images and performing a simple triangula- are presented in Section 4.
tion operation. It is important to note that while the approach was de-
Similar techniques can be used to estimate the locationsreloped to handle the problems faced by teams of robots




equipped with vision sensors, it could also be used to de-order to ground the terminology, we will describe how var-
ploy robots equipped with other types of sensors like laserious elements in the framework would relate to the scenario
range finders or sonar systems. depicted Figure 2. In this example, three robots are tasked

ith localizi . .
1.1. Related Work with localizing a moving target

The problem of controlling sensors to optimize information
gathering was considered by Bajcsy and others under the
heading of Active Perception [3]. This involved fusing data
from both homogeneous and heterogeneous dynamic sen-
sors to improve various performance metrics that included
ranging accuracy [4]. In this vein, our framework can be
viewed as an extension of the active perception paradigm to
the field of distributed mobile robots.

A significant amount of research has been directed to the
problems associated with getting teams of robots to coop-
erate on high level tasks such as distributed manipulation,
explqratlon and mapping [5, 6, 7].' I_-|qwever, far Ie,ss €M | et C,- denote the configuration space of the robotic plat-
pha5|s h"?‘s been p'."".“:ed upon optimizing the team’s COIIeC_forms. In this case, one can consider the set of vectors
tive sensing capabilities. Perhaps T“OS‘ relevant to our aP%ormed by concatenating the positions and orientations of
proach was a methodology for distributed control proposedthe three platforms with respect to the base frame of refer-
by Parker [8], which maximized the observability of a set ence(z1, 1,601, s, ys, 02, 3, ys, 05). Letp € C, denote
of moving targets by a team of robots. In this scheme, thean elem(’ent,of t’his’co;lfig’ura,tiogl sp.ace "
objective was maximization of the collective time that each i

target was observable by at least one robot. The accuracy of Similarly |etC, den.ote th_e conflgl_Jratlon shace of the pa-
. . rameters under consideration. In Figure 2 this space is par-
target pose estimates was not considered.

. S ticularly simple since we need only consider the position of
The theory of games has also provided inspiration for . )
o - : . . the moving target with respect to the base frame denoted by
similar research in target tracking. The pursuit-evasion

problem was investigated by LaVali al [9]. They pre- the vector(zs, y:). .In general, however, this space can be
. : . L much more complicated. Let € C,, denote an element of
sented motion planning strategies that maximized the prob-

. . ) . this configuration space.
"’.‘b""y of keeping sight of a target_as_ it moved through a Let Z denote the measurements obtained by the robot
field of obstacles. Results were limited to the case of a

single pursuer/evader. Hespardtal also investigated the team. For this example the vector formed by concatenating

pursuit-evasion problem, but from a multi-agent perspective :E;thlﬂerec?snegleﬁhrgehaa‘:’u;::\jlsg tger;:ﬁiﬁgs 3; ’tﬁg)t fﬁé\;ismea-
[10]. They proposed a greedy approach to control a group purpose.

of agents so as to maximize the probability of finding one surements are corrupted by noise. In the sequel it will be
. assumed that the designer has some model for or bounds on
or more evaders. In both cases, the focus was on locatin

. . g[he noise process.
and/or tracking one or more evaders. The quality of the es- . .
g qua’y Let Est(p, 2) denote a function which can be used to pro-

timates for target position was again not investigated. q timate for th p i f the woldf
In the Next Best View (NBV) problem, sensor placement uce an estimate forthe configuration otthe w rom
the noisy measurements,and the robots configuratiop,

is of primary concern [11, 12]. Given, for example, pre- Di -V is & funci hich ret | lue indi
vious range scans of an object, an NBV system attempts5P(«, @) is @ function which returns a scalar value indi-

to determine the next best position of the scanner for ac_cating the expected dispar_ity betweep the estimated value
quiring the object's complete surface geometry. As in our w and the actual valug. This value will depend upon the
framework, the emphasis is optimizing sensor placement.

distribution of errors ort.
However, NBV is intended for use in a static environment.

P(w) denotes a probability density function on the con-
Inherent in our approach is the ability to handle dynamic figuration spacé,, which can be used to model prior infor-
scenes which makes it more akin to a control law for dis-

mation about the values of the parameters of interest. For
tributed sensors example, one may have some information about where the
' target could be based on prior measurements.

. Given this terminology, one can define a quality function
2. Theoretical Approach Q(p) as follows:

Figure 2: Target localization by a robot team.

This section describes the theoretical framework that will . .
be used to discuss the problem of sensor deployment. In Qlp) = /C Disp(w, Est(p, 2)) P(w)dw 1)



This function captures how the expected error in the esti- the current robot configuration. The controller then moves
mate,w, varies as the robots configuration changes. the robot configuration in the direction indicated by this gra-

Note that there are, of course, several alternative defini-dient. Alternatively one could employ standard optimiza-
tions for this quality function that are equally reasonable. tion techniques, like the simplex method [14] to choose the
One could consider the maximum expected error in the esti-best achievable robot configuration in the vicinity for the
mate or the median expected error. Different choices for thenext time instant.
@ function may be more appropriate in certain situations. Note that it is possible to incorporate knowledge of the

With these notions in place, one can formulate the prob- dynamics of the observed system into this framework by
lem of choosing an appropriate configuration for the robots projecting the set of particles used to represent the distribu-
as an optimization problem as shown below. tion P(w) through the dynamic model in the usual manner

as described by Isard and Blake [13].

min Q(p) 2

pEA

The goal in this case is to find a choice& A, where 4. Experimental Results
A C C,, which minimizes the quality functiof?(p). Limit- ] ) )
ing the optimization to a subset6f, A, allows us to model ~ 4.1. Simulation Experiments

situations where (_:ertam coqﬁguraﬂons cannot be acr_uevedm order to demonstrate the utility of the proposed frame-
due to obstacles in the environment, sensor constraints or

. work, we hav liedi hr nsor planning problem
limitations on the range of motion of the robots. ork, we have applied it to three sensor pla g problems

. . _in simulation: tracking a single point target, tracking multi-
Not(_a that the framework is ge_neral enough to be app_hgd ple pointtargets, and tracking a box. Each of these scenarios
to a wide range of sensor planning problems. The specifics

of the task would be reflected in the definitiongofC,, 5, 'S SxPiainedin more detail below.
Est andDisp. Specific instances of this framework will be

discussed in Section 4. 4.1.1 Tracking a single point target
For the first scenario we considerrobots equipped with
3. Computational Approach omnidirectional cameras, and tasked with tracking a single

static or randomly moving point target as shown in Figure
For most interesting systems the optimization problem 2. C, represents the concatenation of the robot positions,
given in equation 2 is difficult to solve analytically. Itis C, the target position space, addhen angles to the tar-
however, possible to approximate this process computation-get measured by the members of the robot team. We as-
ally. To do this we draw inspiration from prior work on sumez to be corrupted with random bounded noise gener-

particle filtering [13]. ated from our sensor modeEst(p, 2) returns an estimate
In particle filtering, probability distributions such as for the target positiony, which minimizes the squared dis-
P(w) are approximated by sets of tuples;, 7;), wherew; parity with the measurements, and Disp(w,w) simply

is a single sample frord,, andr; a weight that reflects the  returns the Euclidean distance between the estimated target
likelihood of w; representing the state By making use of  position and the actual value.
this approximation, we can replace the integral of equation
1 with a weighted summation.
Q(p) > _ Disp(w;, Est(p, 2))x; 3)
J

Recall that the proposed technique is intended for use in
online applications where the robot team has an evolving es-
timate for the state of the system being observed and the ob-
jective is to determine how the robots should move in order
to improve the quality of this estimate at the next time in- Figure 3: Generated trajectories (left)and disparity measurements
stant. In this context, the maximum velocities of the robots for 2 robots tracking a static point target.
serve to limit the configurations that need to be considered
and the current configuration of the team serves as a natural Since our sensor noise model is assumed bourfdgd),
starting point for the optimization procedure. is approximated from a randomly generated set of exem-

One simple but effective approach to optimizing the robot plars that are constrained to lie within the intersection of the
configuration s to first approximate the gradient of the qual- sensors’ error cones and all of the samples are given equal
ity function, %Q(p), by sampling its value in the vicinity of ~ weight.
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In our simulations, robot motions are constrained by the simulation runs can be found in Figures 5 and 6. In these tri-
maximum robot velocity and the robots positions are lim- als, 3 unpredictable targets were tracked by 5 and 4 robots,
ited by mandating a minimum standoff distance to the tar- respectively. In both runs, 25 exemplars were used for each
get. These serve to define the limits of the set over whichtarget to approximat®(w).
the optimization occurs). Results from Matlab simula- Note the behavior of the robots as they move from their
tions for two robots with both static and dynamic targets original positions to more advantageous vantage points.
are provided below. For these trials, 100 exemplars wereThe robots automatically split off to track the targets with-
used to approximaté(w), and the sensor model (for all out any need for sophisticated switching rules to decide
trials) was assumed to be bounded Gaussian noigehdf  which robots are assigned to which targets. The final con-
with o = 1°. figuration is simply a consequence of the definition of the

Figure 3 shows the static target case for two robots. Tra- (@ function that the system attempts to optimize. Note also
jectories for this symmetric case are predictable and con-that it is not possible in these scenarios to assign two robots
sistent with simulation results, as are the dramatic drops into every target so the robots distribute themselves automat-
estimation error over time. Similar results are obtained for ically to come up with the best composite estimate.
the case of an unpredictably moving target, as shown in Fig-
ure 4.
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o

Figure 6: Generated trajectories and summed disparity measure-

ments for 4 robots tracking 3 point targets.
Figure 4: Generated trajectories (left) and disparity measurements
for 2 robots tracking an unpredictable moving point target.

4.1.3 Tracking a box

4.1.2 Tracking multiple point targets For the third case, we consider the problem of using the
measurements from the robots to estimate the configuration
For the second scenario, we examine the more interestingf a box in the scene. This example demonstrates how the
problem ofn robots trackingn independently moving, un-  proposed framework can be applied to scenarios where the
predictable point targets. This problem can be tackled instate estimate is not simply the concatenation of a set of
much the same manner as the previous aignow rep-  point locations. Here the configuration spakeis identi-
resents the concatenation of possible target positions; and fied with S £(2) and elements of this set denote the position
the corresponding x m angles measured from robots to and orientation of the box. The robots can measure the an-
targets. E'st(p, 2) approximates the position of every tar- gles to all of the visible box corners, The estimation func-
get, andDisp(w, ) returns the sum of disparities between tion Est(p, 2) as always is nonlinear, and minimizes the
estimated and true target positions. Results from a pair ofdisparity between the predicted angles to the visible corners
and the actual measuremenf3isp(w, @) returns the sum
of the distances between the recovered box corners and the
actual corners. For these trials, 20 “box” exemplars were
used to estimat®(w). Sample simulation results can be
found in Figures 7 and 8.

In both cases we can see that the robots not only migrate
to positions more advantageous for tracking the corner fea-
Lopees " SR tures, but also for maximizing theumber of visible fea-

' tures. The latter effect is a result of tl&st function using
only the visible corners to estimate the box pose. Inherently

Figure 5: Generated trajectories and summed disparity measurepetter estimates are obtained when more features are avail-
ments for 5 robots tracking 3 point targets. able.
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Figure 7: Generated trajectories and summed disparity measure-

ments for 2 robots tracking a static box.

For the sake of simplicity we have assumed in all of these

scenarios that the robots can accurately measure their posi-

tion and orientation with respect to a global frame of refer-
ence. Note that we could consider error in the positioning
of the robots within this framework by adding extra noise

terms to the measurements or by including the robots con-

figuration as part of the state to be estimated.
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Figure 9: Clodbuster team used for experiments.

sured values were typically lowes# (= 0.1 — 0.3°). How-
ever, we expect dynamic levels to be higher and increased
o accordingly.

Experimental implementation followed closely with that
used in the corresponding simulation experiment. Deriva-
tive estimation techniques were used to approximate the
gradient of the@ function for optimizing the pursuers’
headings. The maximum robot speed and a prescribed
standoff distance served to defidefor a given time-step.
Using 100 particles to approximate the probabilRyw)
over the target configuration space, we were able to com-
pute locally optimal robot configurations at a rate of 15Hz.
A representative trial from our experiments is shown in Fig-

Figure 8: Generated trajectories and summed disparity measureyres 10 and 11. Figure 10 shows a series of images from

ments for 3 robots tracking a static box.

4.2. Experiments with the Clodbusters

an overhead view of the scene. Figure 11 shows the corre-
sponding position error estimates. Both the trajectory and
the dramatic drop in the error estimate correlate well with
the corresponding simulation results presented previously
in Figure 4.

The proposed framework has also been implemented on our

team of Clodbuster robots. In this experiment, a pair of
robot pursuers were tasked with tracking a third robot which
played the role of a moving target. A picture of the robot
team can be seen in Figure 9.

Each of the robots was fitted with a colored cylindrical
color which yielded &860° symmetrical target about each
robot’s optical axis. A color extractor operating in YUV

space was used to isolate these targets in each pursuer’s im-
age. The pursuers used these measurements to localize each
other and to estimate the targets position. The complete lo-
calization process ran at a rate of 15Hz.

For the sake of experimental expediency, the sensor
model assumed that the angular measurements obtained by
the robots were corrupted with additive errors drawn from a
normal distribution with a variance af = 0.5°. This was

based upon several thousand measurements from numerol$gure 10: Trajectory for two pursuer robots tracking a moving

representative static team poses. In truth, the statically meatarget robot.




It should again be noted that no explicit controllers were

needed for maneuvering the formation. Trajectories were [2]

implicitly generated by th&) function which captured the

notion of a good configuration. Additionally, as imple-
mented the computational complexity of this framework
scales linearly with both the number of targets and the num-
ber of robots, making it well suited for distributed, multi-

robot applications
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Figure 11: Estimated RMS position error (cm) vs. time for the

single target case.

5. Conclusions

This paper presents an approach to the problem of control-
ling the configuration of a team of mobile agents so as to op-
timize the quality of the estimates derived from their mea-
surements. We provide a theoretical framework for tack- [13]
ling the sensor planning problem, and a practical compu-
tational strategy for implementing the approach. The ideas
have been demonstrated both in simulation and on an actuaf-!
robotic platform, and the results indicate that the system is
able to solve fairly difficult sensor planning problems on-

line without requiring excessive amounts of computational

resources.

Future work will investigate the issues involved in ap-
plying the framework to scenarios involving occluding ob-

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[12]

stacles and to teams of robots with heterogeneous sensing

capabilities.
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