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Abstract

In this paper we propose a vision-based stabilization and output
tracking control method for a model helicopter. A novel two-camera
method is introduced for estimating the full six-degrees-of-freedom
pose of the helicopter. One of these cameras is located on-board the
helicopter, and the other camera is located on the ground. Unlike
previous work, these two cameras are set to see each other. The pose
estimation algorithm is compared in simulation to other methods and
is shown to be less sensitive to errors on feature detection. In order to
build an autonomous helicopter, two methods of control are studied:
one using a series of mode-based, feedback linearizing controllers
and the other using a backstepping-like control law. Various simula-
tions demonstrate the implementation of these controllers. Finally,
we present flight experiments where the proposed pose estimation al-
gorithm and non-linear control techniques have been implemented
on a remote-controlled helicopter.

KEY WORDS—helicopter control, pose estimation, un-
manned aerial vehicle, vision-based control

1. Introduction

The purpose of this study is to explore control methodolo-
gies and pose estimation algorithms that will provide some
level of autonomy to an unmanned aerial vehicle (UAV). An
autonomous UAV will be suitable for applications such as
search and rescue, surveillance, and remote inspection. Ro-
tary wing aerial vehicles have distinct advantages over con-
ventional fixed wing aircraft on surveillance and inspection
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tasks, since they can take-off/land in limited spaces and easily
hover above any target. Moreover, rotary wing aerial vehicles
(such as helicopters) are highly maneuverable making them
preferable for various tasks. Unfortunately this agility makes
control harder, due to the dynamical instabilities and sensitiv-
ity to disturbances.

A quadrotor (Altuğ, Ostrowski, and Mahony 2002; Altu˘g,
Ostrowski, and Taylor 2003), as shown in Figure 1, is a
four-rotor helicopter. This helicopter design dates back to the
early twentieth century, with the first full-scale four-rotor heli-
copter being built by De Bothezat in 1921 (Gessow and Myers
1967). Recent work in quadrotor design and control includes
much smaller scale versions of quadrotors, such as the X4-
Flyer (Hamel, Mahony, and Chriette 2002) and the Mesicopter
(Kroo and Printz 2005). Also, related models for controlling
the VTOL aircraft are studied by Hauser, Sastry, and Meyer
(1992) and Martin, Devasia, and Paden (1996).

A quadrotor is an underactuated, dynamic vehicle with four
input forces (basically, the thrust provided by each of the pro-
pellers) and six output coordinates (fully spatial movements).
Unlike regular helicopters that have variable pitch angle ro-
tors, a quadrotor helicopter has fixed pitch angle rotors. It
can be controlled by varying the rotor speeds of all four ro-
tors, thereby changing the lift forces. In a quadrotor, rotors
are paired to spin in opposite directions in order to cancel out
the resultant moment found in single-rotor helicopters. This
eliminates the need for a tail rotor to stabilize the yaw motions
of the quadrotor. Some of the advantages of using a multi-
rotor helicopter include high maneuverability and increased
payload capacity, due to the increased load area. Also, as the
number of engines on an aircraft increase, the total weight of
the engines (which give the same total thrust) tend to decrease
(Gessow and Myers 1967). The most important disadvantage
is the increased energy consumption due to the extra motors.
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Fig. 1. Quadrotor helicopter.

The basic motions of a quadrotor are generated by tilting
the helicopter.As the rotor speeds decrease, the helicopter tilts
toward that direction, which enables acceleration along that
direction. For this reason, control of the tilt angles and the
motion of the helicopter are closely related and estimation of
orientation (roll and pitch) is critical. Helicopter motions are
coupled. Slowing one rotor results in not only tilting toward
that direction, but also a change in total yaw moment and
thrust. Because of the coupled nature of the helicopter, to
create any motion all of the rotor speeds should be controlled.

The main contribution of this work is the use of non-linear
control techniques to stabilize and perform output tracking
control of a helicopter. A feedback linearizing controller and
a backstepping-like (Sastry 1999) controller have been im-
plemented and shown to be effective on simulations. Since
motions along thex- andy-axis are related to tilt anglesθ
andψ , respectively, a backstepping controller can be used to
control tilt angles, which enables the precise control of thex

andymotions. Convergence of the backstepping controllers is
guaranteed with iterative development of the controller, where
at each step a successful Lyapunov function is generated.

In this study we also use a novel two-camera system for
pose estimation. Unlike previous work that either utilizes
monocular views or stereo pairs (Amidi 1996; Ma, Kosecká,
and Sastry 1998; Shim 2000), our two cameras are set to
see each other. A ground camera and an on-board camera
are used to obtain accurate pose information. The proposed
pose estimation algorithm is compared in simulation with
other methods such as the four-point algorithm (Ansar et al.
2001), a state estimation algorithm (Sharp, Shakernia, and
Sastry 2001), and the direct area method that uses the area
estimations of the blobs. The proposed pose estimation algo-
rithm and the control techniques have been implemented on
a remote-controlled, battery-powered model helicopter. The
helicopter was attached to a tether in order to provide power
and to capture video more easily, as well as to enhance safety
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Fig. 2. The three-dimensional quadrotor model.

by bounding the translation motion in the lateral (x andy)
directions.

2. Helicopter Model

It is not an easy task to model a complex helicopter such as
a quadrotor. In this section, our goal is to model a four-rotor
helicopter as realistically as possible, and to derive control
methodologies that would stabilize and control its motions.

For a rigid body model of a three-dimensional quadrotor
given in Figure 2, a body-fixed frame (frame B) is assumed to
be at the center of gravity of the quadrotor, where thez-axis
is pointing upwards. This body axis is related to the inertial
frame by a position vector�p = (x, y, z) ∈ O whereO is
the inertial frame and a rotation matrixR : O → B, where
R ∈ SO(3). A ZYX (Fick angles) Euler angle representation
has been chosen for the representation of the rotations, which
is composed of three Euler angles, (φ, θ , ψ), representing
yaw, pitch, and roll respectively:

RPY(φ, θ, ψ) = Rot(z, φ) · Rot(y, θ) · Rot(x, ψ). (1)

Let �V and �w ∈ O represent the linear and angular ve-
locities of the rigid body with respect to the inertial frame.
Similarly, let �V b and �wb ∈ B represent the linear and angu-
lar velocities of the rigid body with respect to the body-fixed
frame. Let�ζ be the vector of Euler angles,�ζ = [ψ, θ, φ]T

and �wb = [p, q, r]T. The body angular velocity is related
to Euler angular velocity by�wb = unskew(RTṘ), where the
unskew( ) term, represents obtaining vector�wb from the skew
symmetric matrix, skew(�wb). The skew( �w) ∈ so(3) is the
skew symmetric matrix of�w.
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The Euler angle velocities to body angular velocities are

mapped by�̇ζ = J �wb


 ψ̇

θ̇

φ̇


 =


 1 sψ tθ cψ tθ

0 cψ −sψ
0 sψ/cθ cψ/cθ




 p

q

r


 , (2)

wheresφ denotes sin(φ) andcφ denotes cos(φ).
Using the Newton–Euler equations, we can represent the

dynamics of the quadrotor as follows

�̇V b = 1

m
�Fext − �wb × �V b (3)

I b �̇wb = �Mext − �wb × I b �wb (4)

�̇ζ =J �wb. (5)

Here,I b is the inertia matrix, and�Fext and �Mext are the external
forces and moments on the body-fixed frame given as

�Fext = −dragx î − dragy ĵ + (T − dragz)k̂ (6)

−R ·mgk̂
�Mext = Mxî +Myĵ +Mzk̂, (7)

whereT is the total thrust,Mx , My , andMz are the body
moments, and̂i, ĵ , andk̂ are the unit vectors along thex-, y-,
andz-axis, respectively. A drag force acts on a moving body
opposite to the direction it moves. The termsdragx , dragy , and
dragz are the drag forces along the appropriate axis. Letting
ρ be the density of air,A the frontal area perpendicular to
the axis of motion,Cd the drag coefficient andV the velocity,
then the drag force on a moving object is

drag = 1

2
CdρV

2A. (8)

Assuming the density of air is constant, then the constants
at above equation can be collected, and the equation can be
written as

drag = CdV
2. (9)

The total thrust (Prouty 1995) is

F = bL = ρ

4
w2R3abc(θt − φt), (10)

wherea is the slope of the airfoil lift curve,b is the number
of blades on a rotor,c is the lift coefficient,L is the lift of a
single blade,θt is the pitch at the blade tip,φt is the inflow
angle at the tip,w is the rotor speed, andR is the rotor radius.
Note that the quadrotor has fixed pitch rotors, and therefore
the angleθt is constant.Also, we assume thatφt = 0, implying
that we ignore the change in direction of the airflow due to
the motion of the quadrotor through the air. By collecting the

constant terms asD, for hover or near-hover flight conditions,
this equation simplifies to

Fi = Dwi
2. (11)

Successful control of the helicopter requires direct control
of the rotor speeds,wi . Rotor speeds can be controlled by
controlling the motor torque. The torque of motori, Mi , is
related to the rotor speedwi as

Mi = Irwi
2 +Kwi

2, (12)

whereIr is the rotational inertia of rotori, andK is the reactive
torque due to the drag terms.

For simplicity, we assume that the inertia of the rotor
is small compared to the drag terms, so that the moment
generated by the rotor is proportional to the lift force, i.e.,
Mi = CFi , whereC is the force-to-moment scaling factor.
For simulations, a suitableC value has been experimentally
calculated.

The total thrust forceT and the body momentsMx , My ,
andMz are related to the individual rotor forces through


T

Mx

My

Mz


 =




1 1 1 1
−l −l l l

−l l l −l
C −C C −C





F1

F2

F3

F4


 , (13)

whereFi are the forces generated by the rotors, as given by
eq. (11). The matrix above, which we denote byN ∈ R4×4,
is full rank for l, C �= 0. This is logical sinceC = 0 would
imply that the moment around thez-axis is zero, making the
yaw-axis control impossible. Whenl = 0, this corresponds
to moving the rotors to the center of gravity, which eliminates
the possibility of controlling the tilt angles, again implying a
lack of control over the quadrotor states.

In summary, to move the quadrotor, motor torquesMi

should be selected to produce the desired rotor velocities (wi)
in eq. (12), which will change the body forces and moments
in eq. (13). This will produce the desired body velocities and
accelerations in eqs. (3) and (4).

3. Control of a Quadrotor Helicopter

In this section we present some control methods for the he-
licopter. We also give details of the implementation of feed-
back linearization and a backstepping controller to the three-
dimensional quadrotor model and show that it can be stabi-
lized and controlled.

3.1. Introduction

Development of the controllers for a model helicopter is a
complex task. There are two basic types of controllers. The



332 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2005

first class considers the system as a whole and attempts to
solve full non-linear problem to obtain suitable controllers.
This method involves highly complex equations. The second
class attempts to break the control into easily controllable
modes and finds suitable control methods for each of the
modes. This approach to make the quadrotor helicopter au-
tonomous involves the use of a controller that can switch be-
tween many modes, such as hover, take-off, landing, left/right,
search, tilt-up, tilt-down, etc. Each mode requires only a sim-
ple controller, so that the overall problem is broken down
into simpler subproblems. The helicopter is stabilized at the
hover mode by keeping the positions (x, y, z) constant and
angles (θ , ψ , φ) zero. Climb and descend modes change the
z-value, while keeping the other values constant. These modes
will terminate only when the desiredz-value is achieved. The
left/right mode is responsible for controlling they-axis mo-
tions.As the model tilts around thex-axis, it will start moving
on they-axis. The forward/reverse mode tilts around they-
axis by changing theψ angle. The hover mode will switch to
the landing mode when the flight is complete. These low-level
control tasks can be connected to a higher-level controller that
does the switching between modes, setting the goal points
and performing the motion planning. Similarly, Koo et al.
(1998) used hybrid control methodologies for autonomous
helicopters. A natural starting place for this is to ask what
modes can be controlled.

The helicopter model given in the previous section is a
complicated, non-linear system. It includes rotor dynamics,
Newton–Euler equations, dynamical effects, and drag. Under
some assumptions, it is possible to simplify the above model.
Such a simplified model will be useful for derivation of the
controllers.

Let us assume that

1. the higher-order terms can be ignored (�Fext. � m �wb ×
�V b and �Mext. � �wb × I b �wb);

2. the inertia matrix (I b) is diagonal.

To simplify further, let us assume that the pitch (ψ) and roll
(θ ) angles are small, so thatJ in eq. (5) is the identity matrix,

giving �̇ζ = �wb.
This leads to the following dynamical equations:

�̇V b = 1

m
�Fext. (14)

I b �̇wb = �Mext. (15)

�̇ζ = �wb. (16)

The equations of motion can be written using the force and
moment balance on the inertial frame:

ẍ =
[(

4∑
i=1

Fi

)
(cosφ sinθ cosψ+sinφ sinψ)−K1ẋ

]
/m

ÿ =
[(

4∑
i=1

Fi

)
(sinφ sinθ cosψ−cosφ sinψ)−K2ẏ

]
/m

z̈ =
[(

4∑
i=1

Fi

)
(cosθ cosψ)−mg −K3ż

]
/m (17)

θ̈ = l(−F1 − F2 + F3 + F4 −K4θ̇ )/J1

ψ̈ = l(−F1 + F2 + F3 − F4 −K5ψ̇)/J2

φ̈ = (M1 −M2 +M3 −M4 −K6φ̇)/J3.

Ji given above are the moments of inertia with respect to the
corresponding axes, andKi are the drag coefficients. In the
following, we assume the drag is zero, since drag is negligible
at low speeds.

For convenience, we define the inputs to be

u1 = (F1 + F2 + F3 + F4)/m = T/m

u2 = (−F1 − F2 + F3 + F4)/J1 = Tx/J1 (18)

u3 = (−F1 + F2 + F3 − F4)/J2 = Ty/J2

u4 = C(F1 − F2 + F3 − F4)/J3 = Tz/J3,

whereC is the force-to-moment scaling factor.u1 represents
a total thrust/mass on the body in thez-axis,u2 andu3 are
the pitch and roll inputs, andu4 is the input to control yawing
motion. Therefore, the equations of motion become

ẍ = u1(cosφ sinθ cosψ + sinφ sinψ) θ̈ = u2l

ÿ = u1(sinφ sinθ cosψ − cosφ sinψ) ψ̈ = u3l

z̈ = u1(cosθ cosψ)− g φ̈ = u4. (19)

3.2. Feedback Linearization

One can use exact input–output linearization and pick the
outputs to bez, x, y, andφ, which results in a complex equa-
tion with higher derivatives. Our goal is to use a vision system
which is subject to noise, and therefore the use of higher-order
derivatives of the states is not desirable.

We can alternatively choose outputs to bez, θ , ψ , and
φ, in order to control the altitude, yaw, and tilt angles of the
quadrotor. However, this controller introduces zero dynamics,
which results in the drift of the helicopter in thex–y-plane.
The main reason for the zero dynamics is the fact that even
small tilt angles result in acceleration along thex- or y-axis,
and the only way to control these accelerations is to tilt in
the opposite direction to generate negative accelerations. The
zero dynamics for this system are

ẍ = g(sinθ + tanφ tanψ)

ÿ = g(tanφ sinθ − tanψ). (20)
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These zero dynamics are not desirable, and so another con-
troller or a combination of controllers is needed.

3.3. Proportional Derivative Controllers

One can design controllers separately by considering the he-
licopter motions. Noticing that the motion along they-axis
is related to theψ tilt angle by eq. (19), one can design a
proportional derivative (PD) controller to control theψ angle
in order to controly motions. From thëy term in eq. (19),
settingθ = φ = 0 andu1 = 1 gives

ÿ = −Kpy −Kdẏ = − sinψ. (21)

The desired tilt angle (ψd) can be written as

ψd = arcsin(Kpy +Kdẏ). (22)

By taking the derivative of this expression, one can obtain the
expression forψ̇d , the desired tilt angle velocity. The maxi-
mum tilt angle depends on the helicopter model. Let us as-
sume that the maximum tilt angle isTiltMax . Therefore, for
experiments theψd value calculated will be bounded with the
appropriateTiltMax value. If we can select the desired tilt angle
and tilt angle velocity based on they position andẏ, we can
control the motion along that axis with a PD controller of the
form

u3 = Kp1(ψd − ψ)+Kd1(ψ̇d − ψ̇), (23)

where

ψd = arcsin(Kpy +Kdẏ)

ψ̇d = Kpẏ +Kdÿ√
1 −K2

p
y2 − 2KpKdyẏ −K2

d ẏ
2
. (24)

Similarly aθ–x controller of the form can be used to gen-
erate theu2 input

u2 = Kp2(θd − θ)+Kd2(θ̇d − θ̇ ) (25)

where

θd = arcsin(−Kpx −Kdẋ)

θ̇d = − Kpẋ +Kdẍ√
1 −K2

p
x2 − 2KpKdxẋ −K2

d ẋ
2
. (26)

The altitude and the yaw, on the other hand, can be con-
trolled by PD controllers

u1 = g +Kp1(zd − z)+Kd1(żd − ż)

cosθ cosψ
(27)

u4 = Kp2(φd − φ)+Kd2(φ̇d − φ̇).

Figure 3 shows the quadrotor simulation, where it moves
from (40, 20, 60) to the origin with initial zero yaw and tilt
angles.
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Fig. 3. PD controller simulation results.

3.4. Backstepping Controller

Backstepping controllers (Sastry 1999) are especially useful
when some states are controlled through other states. To move
the quadrotor along thex- andy-axis, the tilt angles need to
be controlled. One can use backstepping controllers to control
these motions. Similar ideas of using backstepping with vi-
sual servoing have been developed for a traditional helicopter
by Hamel and Mahony (2000). The approach here is slightly
simpler in implementation, and relies on simple estimates of
pose.

Thex motion of the helicopter is related to theθ angle, and
similarly they motion is related to theψ angle. A backstep-
ping controller can be used to control these angles to control
thex andy motions of the helicopter. The use of a small angle
assumption onψ in theẍ term, and a small angle assumption
on θ in the ÿ term of eq. (19) gives

ẍ = u1 cosφ sinθ (28)

ÿ = −u1 cosφ sinψ.

The detailed derivation of the controllers is given in the Ap-
pendix.After simplifications of the above equations, this leads
to a backstepping controller forx–θ of

u2 = 1

u1 cosθ cosφ
(−5x − 10ẋ − 9u1 sinθ cosφ

−4u1θ̇ cosθ cosφ + u1θ̇
2 sinθ cosφ

+2u1φ̇ sinθ sinφ + u1θ̇ φ̇ cosθ sinφ

−u1φ̇θ̇ cosθ sinφ − u1φ̇
2 sinθ cosφ). (29)

This controller controls the inputu2, and therefore angle
θ , in order to controlx motions. To develop a controller for



334 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2005

Rotor Dynamics Thrust

V

wb

b

.

.

Controllers

u1
u2
u3
u4

integ

integ
V

w
b

b

integ

integmap

P

euler
angles

Helicopter
Posn. & Orientation

Euler
velocities

Pose

w
i

Desired posn. &
orientations

Fig. 4. Simulation model.

motion along they-axis, similar analysis is needed. This leads
to a backstepping controller fory–ψ control given by

u3 = 1

u1 cosψ cosφ
(−5y − 10ẏ − 9u1 sinψ cosφ

−4u1ψ̇ cosψ cosφ + u1ψ̇
2 sinψ cosφ

+2u1ψ̇ sinψ sinφ + u1ψ̇φ̇ cosψ sinφ

−u1φ̇ψ̇ cosψ sinφ − u1φ̇
2 sinψ cosφ). (30)

The sequential derivation of the backstepping controller
involves finding suitable Lyapunov functions, and therefore
the controllers are guaranteed to exponentially stabilize the
helicopter. The altitude and the yaw, on the other hand, can
be controlled by PD controllers given in eq. (27). If these
controllers are placed in eq. (19), this gives

z̈ = Kp1(zd − z)+Kd1(żd − ż)

φ̈ = Kp2(φd − φ)+Kd2(φ̇d − φ̇). (31)

Therefore, the proposed controllers exponentially stabilize the
helicopter.

The proposed controllers are implemented on a MATLAB
Simulink simulation as shown in Figure 4. The helicopter
model is based on the model given by eqs. (3)–(5). The follow-
ing values are used for the simulation. The force-to-moment
ratio,C, was found experimentally to be 1.3. The length be-
tween rotors and center of gravity,l, was taken as 21 cm.
The inertia matrix elements are calculated with a point mass
analysis asIx = 0.0142 kg m2, Iy = 0.0142 kg m2 and
Iz = 0.0071 kg m2. The mass of the helicopter is taken
as 0.56 kg. The drag coefficients are taken asCx = 0.6,
Cy = 0.6, andCz = 0.9. Gravity isg = 9.81 m s−2.

In reality, thrust forces are limited. Therefore, the maxi-
mum thrust is taken as 10 N, and the inputs are limited by

Fig. 5. Backstepping controller simulation results.

−Fmax/m ≤ u1 ≤ 4Fmax/m

−2Fmax/ l ≤ u2 ≤ 2Fmax/ l

−2Fmax/ l ≤ u3 ≤ 2Fmax/ l (32)

−2CFmax ≤ u4 ≤ 2CFmax.

The simulation results in Figure 5 show the motion of the
quadrotor from position (20, 10, 100) to the origin, while
reducing the yaw angle from−20◦ to zero. Figure 6 represents
the motion of the quadrotor during this motion.

The controller is strong enough to handle random errors
that simulate the pose estimation errors and disturbances, as
shown in Figure 7. The error introduced onx andy has vari-
ance of 0.5 cm and the error onzhas variance of 2 cm.The yaw
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Fig. 6. Backstepping controller path.
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Fig. 7. Backstepping controller simulation with random noise
atx, y, z, andφ values.

variance is 1.5◦. The helicopter moves from 100 to 150 cm,
while reducing the yaw angle from 30◦ to zero. The mean and
standard deviations are found to be 150 and 1.7 cm forz and
2.4◦ and 10.1◦ for φ, respectively.

One of the biggest problems in vision-based control is the
fact that the vision system is not a continuous feedback device.
Unlike sensors that have a much higher rate than the vision
updates, such as an accelerometer or potentiometer, the read-
ings (images) have to be captured, transferred, and analyzed.
Therefore, to simulate the discrete nature of the feedback sys-

Fig. 8. The effect of the delay on the simulation.

tem, this problem has to be included in the model. Usually,
the frame rate of many cameras is 20–30 Hz. A frame rate
of 15 Hz will be used for the overall sampling rate of this
sensory system. Figure 8 shows the results of the simulation,
where thex, y, andz positions are sampled at 15 Hz. The
controllers are robust enough to handle the discrete inputs. A
simple comparison of the plots shows that discrete sampling
causes an increased settling time.

Considering the methods introduced in Section 3, the
feedback linearizing controllers have the disadvantage of
complexity. The controllers generated usually involve higher
derivatives, which are sensitive to sensor errors. The results
on PD controllers depend on the correct selection of gainsKp

andKd . Considering the settling time, and the ability to per-
form with noisy or delayed data, the backstepping controllers
are much better than the PD controllers. Moreover, the back-
stepping controllers are guaranteed to exponentially stabilize
the helicopter.

4. Pose Estimation

Control of a helicopter will not be possible if its position and
orientation are not known. The position and orientation of
the helicopter with respect to a known reference frame are
required for the controllers in order to generate the control
inputs and the motion trajectories. Also, for surveillance and
remote inspection tasks a relative position and orientation de-
tection is important. This may be the location of the landing
pad with respect to the helicopter or the area of interest that
is inspected. For these tasks, a vision system can be used to
provide position and orientation information.

The purpose of the pose estimation is to obtain the rel-
ative position and orientation of the helicopter with respect
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Fig. 9. Helicopter pose estimation.

Fig. 10. Quadrotor tracking with a camera.

to a ground frame using vision. Our goal is to obtain the
pose from vision rather than complex and heavy navigation
systems or global positioning system (GPS). Previous work
on vision-based pose estimation utilizes monocular views or
stereo pairs. The two-camera pose estimation method pro-
posed in this section uses a pan/tilt/zoom ground camera and
an on-board camera, which are set to see each other.

The pose estimation can be defined as: finding the rotation
matrix, R ∈ SO(3), defining the body-fixed frame of the
helicopter with respect to the fixed frame located at the ground
camera frame and the relative position�p ∈ R3, which is the
position of the helicopter with respect to the ground camera,
as well as velocities�w and �V in real time.

In this section, we introduce the two-camera pose estima-
tion algorithm, and compare it in simulations to other pose
estimation algorithms.
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Fig. 11. Two-camera pose estimation method using a pair of
ground and on-board cameras.

4.1. Two-camera Pose Estimation Method

The two-camera pose estimation method involves the use of
two cameras that are set to see each other. One of the cameras
is located on the ground and the other is an on-board camera
looking downwards. This method is useful for autonomous
take-off or landing, especially when the relative motion in-
formation is critical, such as landing on a ship at rough seas.
Colored blobs of 2.5 cm radius are attached to the bottom of
the quadrotor and to the ground camera, as shown in Figure 11.
A blob tracking algorithm is used to obtain the positions and
areas of the blobs on the image planes. Tracking two blobs
on the quadrotor image plane and one blob on the ground
image frame is found to be enough for accurate pose estima-
tion. To minimize the error as much as possible, five blobs are
placed on the quadrotor and a single blob is located on the
ground camera. The blob tracking algorithm tracks the blobs
and returns image values(ui, vi) for i = 1 . . .6.

The cameras have matrices of intrinsic parameters,A1 and
A2. Let �wi ∈ R3 be a unit vector, andλi an unknown scalar.
The unit vector �wi from each camera to the blobs can be
found as

�wi = inv(A1).[ui vi 1]′, �wi = �wi/norm( �wi)

for i = 1,3,4,5,6 (33)

�w2 = inv(A2).[u2 v2 1]′, �w2 = �w2/norm( �w2).

Let �La be the vector pointing from blob 1 to blob 3 in Fig-
ure 11. Vectors�w1 and �w3 are related by
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λ3 �w3 = λ1 �w1 + R �La, (34)

where λ1 and λ3 are unknown scalars. Taking the cross-
product with �w3 gives

λ1( �w3 × �w1) = R �La × �w3. (35)

This can be rewritten as

( �w3 × �w1)× (R �La × �w3) = 0. (36)

In order to solve the above equation, let the rotation matrix
R be composed of two rotations: the rotation ofθ degrees
around the vector formed by the cross-product of�w1 and �w2,
and the rotation ofα degrees around�w1. In other words

R = Rot( �w1 × �w2, θ) · Rot( �w1, α), (37)

whereRot(�a, b) means the rotation ofb degrees around the
unit vector�a. The value ofθ can be found from the dot product
of vectors�w1 and �w2:

θ = a cos( �w1 · �w2). (38)

Alternatively, one can use the cross-product ofw1 andw2, to
solveθ angle. The only unknown left in eq. (36) is the angleα.

Rewriting eq. (36) gives

(w3× �w1)×( �w3 × (Rot ( �w1 × �w2, θ) · Rot( �w1, α))La) = 0.
(39)

Let M be given as

M = ( �w3 × �w1)× { �w3 × [R( �w1 × �w2, θ)]}. (40)

Using Rodrigues’ formula,Rot(w1, α) can be written as

Rot(w1, α) = I + ŵ1 sinα + ŵ1
2
(1 − cosα). (41)

Pre-multiplying eq. (41) withM and post-multiplying it with
La gives the simplified version of eq. (39)

M · �La+sinα · M �w1 · �La+(1 − cosα) · M · ( �w1)
2 · �La = 0.

(42)

This is a set of three equations in the form ofA cosα +
B sinα = C, which can be solved by

α = arcsin
B · C ± √

(B2 · C2 − (A2 + B2) · (C2 − A2))

A2 + B2
.

(43)

One problem here is thatα ∈ [π/2,−π/2], because of
the arcsin function. Therefore, one must check the unit vector
formed by two blobs to find the heading, and pick the correct
α value.

Thus, the estimated rotation matrix will beR = Rot( �w1 ×
�w2, θ)·Rot( �w1, α). Euler angles (φ,θ ,ψ) defining the orienta-
tion of the quadrotor can be obtained from rotation matrix,R.

In order to find the relative position of the helicopter with
respect to the inertial frame located at the ground camera
frame, we need to find scalarsλi , for i = 1 . . .6. λ1 can be
found using eq. (35). The otherλi values (λ2, λ3, λ4, λ5, λ6)
can be found from the relation of the blob positions

λi �wi = λ1 �w1 + R �Li. (44)

Li is the position vector of theith blob in the body-fixed frame.
To reduce the errors,λi values are normalized using the blob
separation,L.

The center of the quadrotor will be

X = [λ3 �w3(1)+ λ4 �w4(1)+ λ5 �w5(1)+ λ6 �w6(1)
]
/4

Y = [λ3 �w3(2)+ λ4 �w4(2)+ λ5 �w5(2)+ λ6 �w6(2)
]
/4

Z = [λ3 �w3(3)+ λ4 �w4(3)+ λ5 �w5(3)+ λ6 �w6(3)
]
/4. (45)

4.2. Comparing the Pose Estimation Methods

The proposed two-camera pose estimation method is com-
pared with other methods using a MATLAB simulation. Other
methods used were a four-point algorithm (Ansar et al. 2001),
a state estimation algorithm (Sharp, Shakernia, and Sastry
2001), a direct method that uses the area estimations of the
blobs, and a stereo pose estimation method that uses two
ground cameras that are separated by a distanced.

In this simulation, the quadrotor moves from the point (22,
22, 104) to (60, 60, 180) cm, while (θ ,ψ ,φ) changes from (0.7,
0.9, 2) to (14, 18, 40) degrees.A random error up to five pixels
was added on image values, to simulate the errors associated
with the blob extractor. A random error of magnitude±2 was
also added to the blob area estimates on image plane.

The errors are calculated using angular and positional dis-
tances, given as

eang = ‖ log(R−1 · Rest) ‖
epos = ‖ �p − �pest ‖ . (46)

Rest and �pest are the estimated rotational matrix and the
position vector. The angular error is the amount of rotation
about a unit vector that transfersR to Rest.

In the simulation, the helicopter and blobs moved accord-
ing to the path given. The projection of those points on the
image plane are corrupted with random errors and the result-
ing image values are used at each step to estimate the pose
for each method; the results are compared. The comparison
of the pose estimation methods and the average angular and
positional errors are given in Table 1.

It can be seen fromTable 1 that the estimation of orientation
is more sensitive to errors than position estimation. The direct
method uses the blob areas, which leads to poor pose estimates
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Table 1. Comparison of the Angular and Positional Errors
of Different Pose Estimation Methods

Method Angular error Position error
(degree) (cm)

Direct 10.2166 1.5575
Four point 3.0429 3.0807
Two camera 1.2232 1.2668
Linear 4.3700 1.8731
Stereo 6.5467 1.1681
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Fig. 12. Effects of baseline distance change on pose estima-
tion at the stereo method.

due to noisy blob area readings. Based on the simulations, we
can conclude that the two-camera method is more effective
for pose estimation, especially when there are errors on the
image plane. For the stereo method, the value of the baseline is
important for pose estimation. Figure 12 shows the effects of
the baseline distance change on the estimation.As the baseline
distance approaches three times the distance between blobs
(6L), the stereo method appears to give good estimates. The
need for a large baseline for stereo pairs is the drawback of
the stereo method. Placing a stereo pair that has big baseline
on a mobile robot is not desirable.

The two-camera method is powerful for estimating the pose
of a flying vehicle. Basically, the position of the quadrotor can
be estimated very well from the ground-based camera, and
the orientation (rotation) of the quadrotor can be estimated
very well using the on-board camera on the quadrotor, and a
central blob seen by the ground camera. The reason behind the
effectiveness of the two-camera method is that it combines the

strengths of ground-based and on-board estimation methods
in obtaining the best estimate of the quadrotor’s pose.

5. Experiments

The proposed controllers and the two-camera pose estima-
tion algorithm have been implemented on a remote-controlled
battery-powered helicopter as shown in Figure 14. It is a
commercially available model helicopter called HMX-4. It
is about 0.7 kg, 76 cm long between rotor tips, and has about
3 min flight time. This helicopter has three gyros on board
to enhance stability, by providing damping on the rotational
motion of the quadrotor.An experimental setup shown in Fig-
ure 15 was prepared to prevent the helicopter from moving
too much on thex–y-plane, while enabling it to turn and as-
cend/descend freely.

We used off-the-shelf hardware components for the sys-
tem. The computers processing vision are Pentium 4, 2 GHz
machines with Imagination PXC200 color frame grabbers.
Images can be captured at 640× 480 resolution at 30 Hz.
The cameras used for the experiments were a Sony EVI-D30
pan/tilt/zoom color camera as the ground camera, and a tiny
CCD color camera as the on-board camera. The pose estima-
tion algorithms depend heavily on the detection of the fea-
tures, in this case color blobs on the image. When consider-
ing color images from CCD cameras, there are several color
spaces that are common, including RGB, HSV, andYUV .
The YUV space has been chosen for our application. The
gray-scale information is encoded in theY channel, while the
color information is transmitted through theU andV chan-
nels. Color tables are generated for each color in MATLAB.
Multiple images and various lighting conditions have to be
used to generate the color tables, to reduce the effect of light-
ing condition changes. The ability to locate and track various
blobs is critical. The blob tracking routines return the image
coordinates of all color blobs as well as the sizes of the blobs.
It can track up to eight different blobs at a speed depending
on the camera, computer, and frame grabber. Our system can
track the blobs at about 20 Hz.

Vision-based stabilization experiments were performed us-
ing the two-camera pose estimation method. In these experi-
ments, two separate computers were used. Each camera was
connected to a separate computer, which was responsible for
performing blob tracking. PC 1 was responsible for image
processing of the on-board camera and the information then
transferred to PC 2 via the network. PC 2 was responsible for
the ground pan/tilt camera image processing and control, as
well as the calculation of the control signals for the helicopter
control. These signals were then sent to the helicopter with
a remote control device that uses the parallel port. The rotor
speeds are set accordingly to achieve the desired positions and
orientations. The system block diagram is shown in Figure 13.

The backstepping controllers described in Section 3.4
were implemented for the experiments. Figure 16 shows the
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Fig. 13. System block diagram.

Fig. 14. Quadrotor helicopter.

Fig. 15. Experimental setup.
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Fig. 16. Results of the height,x, y, and yaw control experi-
ment with the two-camera pose estimation method.

results of the experiment using the two-camera pose estima-
tion method, where height,x, y, and yaw angle are being
controlled. The mean and standard deviations are found to be
106 and 17.4 cm forz, −25.15 and 10.07 cm forx, −7.57
and 9.51 cm fory, and 4.96◦ and 18.3◦ for φ, respectively.
The results from the plots show that the proposed controllers
do an acceptable job despite the pose estimation errors and
errors introduced by the tether.

6. Conclusions and Future Work

In this paper we have presented pose estimation algorithms
and non-linear control techniques to build and control au-
tonomous helicopters. A novel two-camera method for heli-
copter pose estimation has been introduced. The method has
been compared to other pose estimation algorithms, and has
been shown to be more effective especially when there are
errors on the image plane. Feedback linearization and back-
stepping controllers have been used to stabilize and perform
output tracking control on the two-dimensional and three-
dimensional quadrotor models. Simulations performed on
MATLAB Simulink show the ability of the controller to per-
form output tracking control even when there are errors on
state estimates. The proposed controllers and the pose estima-
tion method have been implemented on a remote-controlled,
battery-powered model helicopter. Initial experiments on a
tethered system have shown that the vision-based control is
effective in controlling the helicopter.

One of the drawbacks of the vision system is that it is not
reliable when the lighting on the scene changes. Similarly,
GPS is not reliable in certain locations, such as indoors, near
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trees or near tall buildings. Therefore, it is better to use mul-
tiple sensors as much as possible to overcome limitations of
individual sensors. One possibility is to investigate methods
to reduce the errors on the feature detection. For indoor envi-
ronments, an indoor GPS system can be built to increase the
reliability of the system.

A quadrotor helicopter can be teamed up with a ground
mobile robot to form a heterogeneous marsupial robotic team
(Murphy et al. 1999), where the quadrotor rides on the mobile
robot for deployment in the field. By placing a camera on top
of the mobile robot, mobility will be introduced to the two-
camera system. Moreover, a platform can be built to enable the
helicopter to take-off/land on the mobile robot. The ground
robot will be responsible for transportation, communication
relay, assistance in landing and take-off with the camera, and
will provide assistance on computation of the visual informa-
tion. Such functionalities will be useful for remote sensing,
chase, and other ground–air cooperation tasks.

Appendix: Detailed Derivation of the
Controllers

In this appendix we give details of the derivation of the back-
stepping controller for thex motions.

The equations of motions of the quadrotor onx andy are
given as

ẍ = u1(cosφ sinθ cosψ + sinφ sinψ) (47)

θ̈ = u2 (48)

ÿ = u1(sinφ sinθ cosψ − cosφ sinψ) (49)

ψ̈ = u3. (50)

From eqs. (47) and (49), it is clear that theθ angle also
affects they motion, and similarly theψ angle also affects
the x motion. In order to reduce this effect, we use a small
angle assumption on theψ angle in eq. (47), and a small angle
assumption on theθ angle in eq. (49) to give

ẍ = u1 sinθ cosψ cosφ (51)

ÿ = −u1 sinψ cosφ.

Let us design thex–θ controller. Let the system be

x1 = x

x2 = ẋ

x3 = θ (52)

x4 = θ̇ .

Then

ẋ1 = x2

ẋ2 = u1CφSx3

ẋ3 = x4 (53)

ẋ4 = u2.

For i = 1, letz1 = x1 andz2 = x2 + x1, thenx2 = z2 − z1.
Integrating these gives,ż1 = z2 − z1 andż2 = ẋ2 + ẋ1.
A Lyapunov function of the form,V1 = (1/2)z1

2, gives

V̇1 = −z1
2 + z1z2. (54)

Also

ż2 = u1CφSx3 + x2 = f̄2 + x3 ⇒ f̄2 = u1CφSx3 + x2 − x3.

(55)

For i = 2, define

z3 = x3 − α2 (56)

ż2 = z3 + α2 + f̄2. (57)

One can use a Lyapunov function of the form,V2 = V1 +
(1/2)z2

2.
Let us pick

α2 = −z1 − z2 − f̄2 = −z1 − z2 − u1CφSx3 − x2 + x3.

(58)

Then,z3 becomes

z3 = z1 + z2 + u1CφSx3 + x2 = 2x2 + 2x1 + u1CφSx3. (59)

V̇2 becomes

V̇2 = −z1
2 − z2

2 + z2z3. (60)

For i = 3,

z4 = x4 − α3 (61)

V3 = 1

2
(z1

2 + z2
2 + z3

2) (62)

ż3 = z4 + α3 + f̄3 = 2ẋ2 + 2ẋ1 + u1ẋ3CφCx3 − u1φ̇SφSx3.

(63)

Then,f̄3 becomes

f̄3 = 2u1CφSx3 + 2x2 + u1ẋ3CφCx3 + x4 − u1φ̇SφSx3. (64)

V̇3 becomes

V̇3 = −z1
2 − z2

2 − z3
2 + z3z4. (65)

For i = 4,

z5 = x5 + α4 (66)

V4 = 1

2
(z1

2 + z2
2 + z3

2 + z4
2) (67)

z4 = x4 − α3 (68)

where
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α3 = −3x1 − 5x2 − 3u1CφSx3 − u1ẋ3Cφ + x4 − u1φ̇SφSx3.

(69)

Taking the derivative ofz4 gives

ż4 = 3ẋ1 + 5ẋ2 + 3u1Cφẋ3Cx3 − 3u1φ̇SφSx3

−u1ẋ
2
3Sx3Cφ − u1ẋ3Cx3φ̇Sφ + u1φ̇Sφẋ3Cx3

+u1φ̇
2CφSx3 + u1ẍ3Cx3Cφ. (70)

V̇4 becomes

V̇4 = −z1
2 − z2

2 − z3
2 − z4

2. (71)

Also

ż4 = f̄4 + u2 (72)

and

u2 = −z3 − z4 − f̄4. (73)

After placingz3, z4, and f̄4 into the above equation and
performing simplifications,u2, the backstepping controller
for x–θ , will be obtained

u2 = 1

u1 cosθ cosφ
(−5x − 10ẋ − 9u1 sinθ cosφ

−4u1θ̇ cosθ cosφ + u1θ̇
2 sinθ cosφ

+2u1φ̇ sinθ sinφ + u1θ̇ φ̇ cosθ sinφ

−u1φ̇θ̇ cosθ sinφ − u1φ̇
2 sinθ cosφ). (74)
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Altuğ, E., Ostrowski, J. P., and Mahony, R. 2002. Control of
a quadrotor helicopter using visual feedback.Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), Washington, DC, May, pp. 72–77.
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