
Graphs
Applications:
Epidemiology
(HW6)

CIT 5940 Spring 2025 @ University of Pennsylvania 1

Background

Graphs can be used to model contact between individuals

Vertices represent individuals

Edges represent a contact between two individuals

The probability of infection can be represented as the weight of the edges

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 2

Generations

Waves of secondary

infection that flow from each

previous infection

Structure of the graph leads to

different knock-on impacts of a

single infection

Can help assess

the pressure on the

healthcare system

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 3

Calculate Generation of a Node

Just run BFS with a special visitor function that marks the generation of the node as

1 + the generation of the parent.

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 4

Immunization

Goal: lower the reproduction number

 is the transmissibility, or likelihood of an individual to infect one other on contact.

 is the average degree of contact between susceptible individuals; in other words,

the average degree of the graph.

 is the duration of contact—we'll just assume .

If you remember from 2020-2021, we reduce the number of cases of a disease by

bringing down .

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 5

Immunization: Removing Nodes from the Graph

We'll (incorrectly) assume that immunization is perfect, which means that immunization

 removing a node

1. Remove all nodes with a high degree

i. Give vaccines to popular people

2. Reduce the number of cliques in the graph (clustering coefficient)

i. Give vaccines to people whose friends hang out a lot

3. Remove nodes with high degrees that are less likely to be a member of a clique

i. Give vaccines to people who are important connections between friend groups.

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 6

Clique

A clique is a subset of vertices

of an undirected graph such that

every two distinct vertices in the

clique are adjacent

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 7

Clustering Coefficient

The clustering coefficient (between 0 and 1) that measures the degree to which nodes

in a graph tend to cluster together

quantifies how close the neighbors of a node are to being a clique

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 8

Clustering Coefficient

The clustering coefficient of the red

node to the right?

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 9

Clustering Coefficient

The clustering coefficient of the red

node to the right?

Ignore the dashed edges

There are four undirected edges

(so eight directed...)

There are

possible edges.

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 10

HW7 Goal

Which strategy will be the most effective?

References

https://web.stanford.edu/class/earthsys214/notes/R0.html

https://en.wikipedia.org/wiki/Clustering_coefficient

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 11

https://web.stanford.edu/class/earthsys214/notes/R0.html
https://en.wikipedia.org/wiki/Clustering_coefficient

Which Is Most Effective?

1. Remove all nodes with a high degree

2. Reduce the number of cliques in the graph (clustering coefficient)

3. Remove nodes with high degrees that are less likely to be a member of a clique

... you're going to find out!

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 12

Back to Dijkstra's

public static Map<Vertex, PathVertexInfo> dijkstraShortestPath(Graph graph, Vertex startVertex) {
 Map<Vertex, PathVertexInfo> info = new HashMap<>();
 Set<Vertex> visited = new HashSet<>();
 for (Vertex v : graph.getVertices()) {
 info.put(v, new PathVertexInfo(v));
 }

 PathVertexInfo start = info.get(startVertex);
 start.setDistance(0);

 for (int i = 0; i < graph.getVertices().size(); i++) {
 Vertex nextClosest = minVertex(graph, info, visited);
 visited.add(nextClosest); // mark as visited
 PathVertexInfo nextClosestInfo = info.get(nextClosest);
 if (nextClosestInfo.getDistance() == Double.POSITIVE_INFINITY) {
 return info;
 }
 for (Edge e : graph.getEdgesFrom(nextClosest)) {
 Vertex neighbor = e.toVertex;
 double weight = e.weight;
 double oldDistance = info.get(neighbor).getDistance();
 double newDistance = nextClosestInfo.getDistance() + weight;
 if (oldDistance > newDistance) {
 info.get(neighbor).setDistance(newDistance);
 info.get(neighbor).setPredecessor(nextClosest);
 }
 }
 }
 return info;
 }

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 13

Back to Dijkstra's

// setup: init data structures
Map<Vertex, PathVertexInfo> info = new HashMap<>();
Set<Vertex> visited = new HashSet<>();
for (Vertex v : graph.getVertices()) {
 info.put(v, new PathVertexInfo(v));
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 14

Back to Dijkstra's

// prime the search
PathVertexInfo start = info.get(startVertex);
start.setDistance(0);

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 15

Back to Dijkstra's

for (int i = 0; i < graph.getVertices().size(); i++) {
 // pull out the next vertex...
 Vertex nextClosest = minVertex(graph, info, visited);
 visited.add(nextClosest);
 PathVertexInfo nextClosestInfo = info.get(nextClosest);
 // ...and stop if we find an unreachable vertex
 if (nextClosestInfo.getDistance() == Double.POSITIVE_INFINITY) {
 return info;
 }
 ...
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 16

Back to Dijkstra's

// prime the search
for (int i = 0; i < graph.getVertices().size(); i++) {
 ...
 // update all edges with a new path if found
 for (Edge e : graph.getEdgesFrom(nextClosest)) {
 Vertex neighbor = e.toVertex;
 double weight = e.weight;
 double oldDistance = info.get(neighbor).getDistance();
 double newDistance = nextClosestInfo.getDistance() + weight;
 if (oldDistance > newDistance) {
 info.get(neighbor).setDistance(newDistance);
 info.get(neighbor).setPredecessor(nextClosest);
 }
 }
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 17

Processing the Table

How to get from a table of predecessor pointers to an actual path?

Node Distance Predecessor

A 0 null

B 8 A

C 4 D

D 3 A

E 6 C

F 10 E

G 11 F

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 18

Processing the Table

public static String getShortestPath(Vertex endVertex,
 Map<Vertex, PathVertexInfo> infoMap) {
 StringBuilder path = new StringBuilder();
 Vertex current = endVertex;
 while (current != null) {
 path.append(current);
 current = infoMap.get(current).getPredecessor();
 }
 return path.toString();
}

Activity: what's wrong with the approach above?

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 19

Processing the Table

public static String getShortestPath(Vertex endVertex,
 Map<Vertex, PathVertexInfo> infoMap) {
 StringBuilder path = new StringBuilder();
 Vertex current = endVertex;
 while (current != null) {
 path.insert(0, current);
 current = infoMap.get(current).getPredecessor();
 }
 return path.toString();
}

Now the path is no longer reversed...

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 20

Finding the Min Vertex: Runtime?

private static Vertex minVertex(Graph graph, Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 Vertex closest = null;
 double minDistance = Double.POSITIVE_INFINITY;
 for (Vertex candidate : info.keySet()) {
 if (visited.contains(candidate)) {
 continue;
 }
 PathVertexInfo data = info.get(candidate);
 if (closest == null || data.getDistance() < minDistance) {
 closest = candidate;
 minDistance = data.getDistance();
 }
 }
 return closest;
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 21

Finding the Min Vertex: Runtime?

private static Vertex minVertex(Graph graph, Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 Vertex closest = null;
 double minDistance = Double.POSITIVE_INFINITY;
 for (Vertex candidate : info.keySet()) { // max O(V) iterations
 if (visited.contains(candidate)) { // O(1) for HashSet
 continue;
 }
 PathVertexInfo data = info.get(candidate); // O(1) for HashMap
 if (closest == null || data.getDistance() < minDistance) {
 closest = candidate;
 minDistance = data.getDistance();
 } // all this is O(1)
 }
 return closest;
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 22

Finding the Min Vertex: Runtime?

private static Vertex minVertex(Graph graph, Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 ...
}

Simple solution gives runtime per call—called times, so indeed

works as a real-world upper bound.

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 23

Functional Programming & Streams

At a high-level, to implement minVertex , we:

filter the set of all vertices to only include unvisited ones.

find the minimum vertex based on the shortest distance of its PathVertexInfo

Can we express the ideas of these two highly common ideas a little more succinctly?

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 24

Streams

"A sequence of elements supporting sequential and parallel aggregate operations."

To perform a computation, stream operations are composed into a stream pipeline:

a source (which might be an array, a collection, a generator function, an I/O

channel, etc)

zero or more intermediate operations (which transform a stream into another

stream, such as filter(Predicate)),

and a terminal operation (which produces a result or side-effect, such as count()

or forEach(Consumer)).

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 25

Streams

private static Vertex minVertex(Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 return info.keySet().stream()
 ...
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 26

Filter

A function that takes in a function that returns a boolean deciding whether an element

should be included.

How to pass in a function as an input to another? Lambdas (anonymous functions)

An example predicate lambda:

// input -> boolean expression using input var
 element -> element < 0 || element % 2 == 1

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 27

Streams

private static Vertex minVertex(Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 return info.keySet().stream()
 .filter(vertex -> !visited.contains(vertex))
 ...
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 28

Finding the Minimum

min() allows you to find the minimum element of a stream using a comparator.

Could write a comparator using a lambda:

(e1, e2) -> info.get(e1).compareTo(info.get(e2))

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 29

Finding the Minimum

min() allows you to find the minimum element of a stream using a comparator.

Could write a comparator using a lambda:

(e1, e2) -> info.get(e1).compareTo(info.get(e2))

Can also pass a named function as a reference:

Comparator.comparing(info::get)

"Make a comparator by comparing the result of calling info.get() with the element

as an input."

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 30

Streams

private static Vertex minVertex(Map<Vertex,PathVertexInfo> info,
 Set<Vertex> visited) {
 return info.keySet().stream()
 .filter(vertex -> !visited.contains(vertex))
 .min(Comparator.comparing(info::get))
 .orElse(null); // min might not find an answer, so return null
}

GRAPHS

CIT 5940 Spring 2025 @ University of Pennsylvania 31

	Graphs Applications: Epidemiology (HW6)
	Background
	Generations
	Calculate Generation of a Node
	Immunization
	Immunization: Removing Nodes from the Graph
	Clique
	Clustering Coefficient
	Clustering Coefficient
	Clustering Coefficient
	HW7 Goal
	Which Is Most Effective?
	Back to Dijkstra's
	Back to Dijkstra's
	Back to Dijkstra's
	Back to Dijkstra's
	Back to Dijkstra's
	Processing the Table
	Processing the Table
	Processing the Table
	Finding the Min Vertex: Runtime?
	Finding the Min Vertex: Runtime?
	Finding the Min Vertex: Runtime?
	Functional Programming & Streams
	Streams
	Streams
	Filter
	Streams
	Finding the Minimum
	Finding the Minimum
	Streams

