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Abstract

The authors of this article believe there is or should be
a research area appropriately referred to as computa-
tional topology. Its agenda includes the identification
and formalization of topological questions in computer
applications and the study of algorithms for topolog-
ical problems. It is hoped this article can contribute
to the creation of a computational branch of topology
with a unifying influence on computing and computer
applications.
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INTRODUCTION

The title of this article combines computation with
topology, suggesting a general research activity that
studies the computational aspects of problems with
topological flavor. What we have in mind is distinctly
different from studying the topology of computing or the
computer animation of topology. Computational stud-
ies of topological questions can be found in the math-
ematics and the computer science literature, but no
concerted effort is apparent. The authors hope that
together with the like-minded survey paper by Vegter
[116] this article can contribute to the general aware-
ness of the pervasive presence of topological notions in
computer applications.

What is it about a problem that makes it topologi-
cal? The standard answer mentions a type of geometry
devoid of concrete spatial notions such as straightness,
convexity, distance, and the like. The emphasis lies on
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connectivity, continuity, on space, and on maps. This
does not mean that the more geometric notions have
to be absent but rather that their role is deemphasized
benefiting the focused attention on topological proper-
ties. The authors believe in a synergy between geom-
etry and topology, and in the value of intuition and
visualization as a general path to understanding. They
also believe in the general scientific method of study-
ing aspects in deliberate isolation. In other words, it
1s worthwhile to occasionally focus on topological prob-
lems. The connection to geometry can be forgotten
temporarily but needs to be remembered eventually.

Many computer application areas deal with geometric
data and problems, and there we find a rich collection
of questions with topological flavor. Typically, these
questions are not well defined and it is part of the task
to find the most meaningful formalization in the given
context. Once a concrete problem has been formulated
we can study its computational complexity. It is im-
portant to notice this is an over-simplification of the
actual situation: the problem formalization cannot be
independent of studying the computational complexity,
or else we are likely to generate many computationally
infeasible problems. First we need to be convinced there
really are essentially topological questions in computer
application areas. Part I of this article provides suffi-
cient evidence for their existence by discussing problems
in image processing, cartography, computer graphics,
solid modeling, mesh generation, and molecular mod-
eling. Second, we need the necessary background in
topology. Part II surveys topological methods catego-
rized under decompositions, fixed-points, surfaces, em-
bedding, three-manifolds, and homology computation.

It has been observed that a good fraction of the lit-
erature in topology is not or only barely intelligible to
readers with interest but without proper topological ed-
ucation. The first barrier is the occasionally complex
notation and the usual assumption of accumulated con-
cepts and definitions. Indeed, theory building is the
main purpose of topology, and as a consequence def-



initions are more important than in some other areas
of mathematics. The authors attempt to produce a
document accessible to non-specialists by collecting for-
mal and standard definitions in an appendix. The main
parts of the paper replace technical detail by intuitive
examples and arguments. However, it seems impossible
to avoid technical definitions altogether and we hope
the appendix will be helpful in recalling their meaning.

I. APPLICATION PROBLEMS

We consider problems in six applications areas of com-
puter science: image processing, cartography, computer
graphics, solid modeling, mesh generation, and molec-
ular modeling.

1 Image Processing

A pizel 18 a unit square and an mage is a rectangle
decomposed into pixels. Images are the most common
means for representing pictorial information in a com-
puter, which explains the enormous literature in the
area of image processing. The papers collected in [88]
cover a fairly wide range of the topics. The related area
of mathematical morphology is treated in Serra [101].

We restrict our attention to binary images where each
pixel is either black or white. The foreground consists
of all black pixels, and the background consists of all
white pixels.

Connectivity. Each pixel shares an edge each with 4
other pixels, and it shares a vertex each with 4 addi-
tional pixels. The numbers are smaller for pixels at the
image boundary. Questions of proximity and connec-
tivity can be based on the two corresponding notions of
adjacency: pixels p # ¢ are 4-adjacent if they share an
edge and they are 8-adjacent if they share an edge or
a vertex. 4-adjacency implies 8-adjacency. A path is a
sequence of pixels so that any two contiguous ones are
adjacent. It is simple if two pixels are adjacent only if
they are contiguous, and it is a closed curve if the first
is adjacent to the last pixel. Depending on the notion
of adjacency we get 4-connected and 8-connected paths
and curves. For i = 4,8 two pixels are i-connected if
they belong to a common ¢-connected path.

A basic result in plane topology is the Jordan curve
theorem which states that every simple closed curve in
R? decomposes the plane into two disjoint open con-
nected components. Neither notion of connectivity
among pixels supports an analoguous result for images.
The following version of the Jordan curve theorem uses

different notions of connectivity for the curve and the
components [68]:

a simple closed 8-connected curve partitions an im-
age into the path and two 4-connected components,

see figure 1. Symmetrically, if the closed curve is 4-
connected then the two components are 8-connected. A
necessary assumption for both results is that the curve
touches the image boundary at most once.

Figure 1: A simple closed 8-connected curve with two
4-connected components in the complement.

The image version of the Jordan curve theorem can be
generalized to 3- and higher-dimensional arrays of unit
cubes and hypercubes, see Herman [60]. This should be
compared to the situation in Euclidean space. Already
R3 permits a counterexample to the straightforward ex-
tension of the Jordan curve theorem: there i1s a wild
2-sphere in R? so that the bounded component of R3
minus the 2-sphere is not homeomorphic to the open
3-ball, see e.g. [10, chapter 2.9]. Such counterexamples
do not exist for tame embeddings and the Jordan curve
theorem generalizes as expected.

Skeletonizing. A common operation in image pro-
cessing replaces the foreground by its skeleton. There
1s no commonly accepted definition of what exactly this
1s. One expects a thin subset that reflects the connec-
tivity of the foreground. Often the skeleton is stored
together with additional information that permits the
exact or approximate reconstruction of the foreground.

Algorithms for constructing skeletons are abundant
in the image processing literature. One class of algo-
rithms is based on the medial axis transform. For each
foreground pixel p consider a shortest path that con-
nects p to a background pixel g. The length of this
path is 6(p). Boundary pixel are characterized by § = 1.
The medial axis consists of all pixels p with at least two
shortest paths to the background that intersect in no
pixel other than p.

Another class of algorithms constructs a skeleton by
repeatedly removing pixels of the boundary [86], com-
pare this with the discussion on collapsing in section 7.



The foreground is eroded layer by layer, and pixels are
removed as long as the connectivity of the foreground
does not change. The skeleton 1s the collection of fore-
ground pixels that remain. Although this collection re-
tains the connectivity of the foreground it often does
not preserve its overall shape.

Inner and Outer Boundaries. Consider a collec-
tion of disjoint 8-connected simple closed curves that
bound the foreground of a binary image. Each curve C
in this collection defines two 4-connected components:
an outer and an inner region. C'is an outer boundary if
the foreground component bounded by C' is part of its
inner region. Otherwise, C is an wmner boundary. How
can we distinguish outer from inner boundaries?

Lee, Poston and Rosenfeld [72] propose an algorithm
that can be explained using the topological concept of
winding number, which counts for an oriented closed
curve how often the normal vector winds around the cir-
cle of directions. The number is signed counting coun-
terclockwise order positive and clockwise order nega-
tive. Orient each curve C' so that the foreground lies to
its left. Then the winding number of the outer bound-
ary is +1 and that of any inner boundary is —1.

The algorithm traverses C' and adds the supplemen-
tary angles at the pixel centers. This angle is positive
if C' makes a left turn and negative if C' makes a right
turn. Because C'is simple the sum of angles can only
be 360 or —360 degrees, which is 360 times the winding

number.

2 Cartography

The purposeful deformation of a geographic map is a
common operation in cartography. We consider two
types of deformations, one bringing two maps into cor-
respondence and the other reflecting quantities other
than geographic distance and area.

Rubber Sheets. As a common practice in cartogra-
phy, different information about a geographic region is
represented in different maps. We can imagine a map
M showing mineral distribution as obtained from a ge-
ological survey, and another map N displaying agricul-
tural land distribution as obtained from satellite 1m-
ages. The two geographic maps need to be brought
into correspondence so that mineral and agricultural
land distributions can be related.

To model this problem let P C M and ¢ C N be two
sets of n points each together with a bijection b : P —
(). The construction of a homeomorphism h : M — N

that agrees with b at all points of P is popularly known
as rubber sheeting, see for example [48, 121].

Suppose K and £ are simplicial complexes whose sim-
plices cover M and N: M = |K|and N =|L]|. Suppose
also that the points in P and @) are vertices of K and L:
P C Vert K and @ C Vert £, and that there is a vertex
map

v: Vert X — Vert £

that agrees with b at all points of P. The extension of
v to a simplicial map f : M — N is a simplicial homeo-
morphism effectively solving the rubber sheet problem.

Several variations of the construction of such com-
plexes K and £ have been tackled in the recent
past. Aronov, Seidel and Souvaine [1] consider simply-
connected polygons M and N with n vertices each.
They show there are always isomorphic complexes
|[K| = M and |£| = N with at most O(n?) vertices
each. They also prove that sometimes Q(n?) vertices
are necessary and they show how to construct the com-
plexes in O(n?) time. Gupta and Wenger [54] solve
the same problem with at most O(n +mlogn) vertices,
where m is the minimum number of extra points re-
quired in any particular problem instance.

Cartograms. A cartogram is a geographic map that
is deliberately deformed so that area in the map re-
flects a quantity other than geographic area, such as
for example population density [30]. Figure 2 shows a
deformation of the United States so that the area of
each state is proportional to the number of electoral
votes in the 1992 presidential election. The cartogram

Figure 2: The shaded states have a majority of votes for
the elected president.

is related to the usual geographic representation of the
United States through a homeomorphism displayed in
figure 3. This particular example has been generated by
an iterative algorithm described in [40]. Tt deforms the



Figure 3: The image of a regular square grid under
the homeomorphism that generates the cartogram of the
United States shown in figure 2.

Euclidean plane through a series of elementary piece-
wise linear homeomorphisms. Each elementary homeo-
morphism leaves the area measure invariant everywhere
except in a local region. The approach is based on a
regular triangular grid tiling and can be extended to
three dimensions using the Delaunay tiling of the body-
centered cube lattice.

3 Computer Graphics

In computer graphics we find an unexpected connection
between computer hardware and topology. A {texture
map is the hardware implementation of a continuous
function, which is a basic concept in topology. It re-
quires a triangulated surface and a range or texture
space, which is a k-dimensional unit cube of colored
pixels that can be accessed through £ texture coordi-
nates. Typical values of & are 1, 2 and 3. The map
is explicitly stored at vertices and computed through
barycentric combination at all other points of the sur-
face.

Warping. Warping refers to the distortion or defor-
mation of a two-dimensional image. A popular ap-
proach is based on Coons patches which are bivariate
parametric functions [58]. They warp a source image
bounded by four arbitrary curves to a rectangular tar-
get image. Given the left, right, bottom, top boundary
curves L(v) = C(0,v), R(v) = C(1,v), B(u) = C(u,0),
T(u) = C(u, 1), the Coons patch adds an interpolation
between L and R to an interpolation between B and T'
and subtracts an interpolation between the four corner
points:

C(u,v) = (I—w) - L(v)+u-R(v)

- (I—=uw)(1—=v)-C0,0)—uv-C(1,1)
— u(l—v)-C(1,0) = (1 —u)v-C(0,1).

The inverse, C~!, maps the source image bounded by
L, R, B, T to the unit square.

A more general but little explored approach to warp-
ing can be based on simplicial maps carrying the con-
tents of one triangulated image to another. This is sim-
ilar to the approach to cartograms mentioned in section
2. Similarly we can use a simplicial map to warp a rect-
angular image onto a torus or any other surface. An
important question in this context is the formulation of
algorithms that automatically generate interesting sim-
plicial maps between two given 2-dimensional domains.

Morphing. The transformation of one geometrical or
graphical object into another is referred to as metamor-
phosis or morphing. The general objective is to com-
pute a transformation that is smooth, in a vague and
intuitive sense, and visually pleasing.

The morphing of a digital image X into another such
image Y has found broad commercial applications. A
common step in the generation of the morphing se-
quence is the construction of isomorphic simplicial com-
plexes | K| = X and |£] = Y. The transformation can
be performed by slowly moving each vertex in K to the
corresponding vertex in £ and letting this process carry
the entire image along. The construction of K and £ is
made difficult by external requirements that have to do
with features that need to be matched across the two
images.

A more challenging version of the morphing prob-
lem concerns geometric shapes and in particular shapes
in R3. An early paper on this subject is Kent, Carl-
son and Parent [66]. Tt presents a method that takes
a topological 2-sphere X to another such sphere Y by
first constructing isomorphic triangulations and then
moving parts of X towards the corresponding parts of
Y. This approach is limited to surfaces that share the
same topology. The morphing of a sphere to a torus is
difficult because it is not clear when and how the sphere
surface should be pinched and punctured to change its
topology.

An entirely different approach based on the represen-
tation of shapes as envelopes of spheres is described in
[17]. Both X and Y are given in terms of finitely many
spheres, and the deformation is created by moving the
spheres of X to the spheres of Y. Duplication and merg-
ing of spheres is permitted. At any moment in time
we have a finite set of spheres, and the shape at that
time is the envelope of an infinite family of shrunken
spheres [35]. The infinite family makes the envelope
smooth and guarantees that any motion translates into



a smooth deformation. This method changes topology
automatically and extends to morphs between three or
more given shapes.

4 Solid Modeling

This section discusses three topological questions which
arise in the area of solid modeling: how to represent a
model in the computer, how to construct or reconstruct
a surface from discrete point data, and how to extract
features of a model.

Model Representation. Models are continuous do-
mains and they need finite representations in the com-
puter. Most commonly we find complexes of one kind or
another used for that purpose. The model or its bound-
ary 1s decomposed into simple pieces or cells, and each
cell is stored along with adjacencies to neighboring cells.

The boundary representation, for short b-rep, de-
scribes a 3-dimensional model through its boundary
complex, which consists of vertices, edges, and 2-
dimensional faces. The winged-edge structure of Baum-
gart [5] and the quad-edge structure of Guibas and Stolfi
[52] are examples of b-rep data structures that assume
the boundary is a manifold. This means every point of
the boundary has a local neighborhood homeomorphic
to R%. If the boundary is triangulated then every edge
belongs to two triangles and every vertex belongs to a
simple cycle of triangles and edges. Non-manifold b-
reps have been proposed by Wesley [120] and a survey
of b-rep schemes can be found in Weiler [119].

A data structure for 3-dimensional complexes is de-
scribed in Dobkin and Laszlo [29]. The basic element is
the oriented edge-face pair. All edge-faces sharing the
same edge belong to a cycle or ring around the edge.
Symmetrically, all edge-faces sharing the same face are
arranged in a cycle describing the face boundary. The
two types of rings connect all edge-faces into a single
topological data structure. More general complexes of
arbitrary fixed dimension are discussed in Brisson [12].

A common concern 1s the topological validity of a
given complex data structure. Topologically invalid
structures may be caused by numerical errors inevitable
in algorithms that perform geometric calculations in
floating-point arithmetic. To check a 2-manifold we
would include tests that verify it 1s orientable and that
it satisfies the FEuler relation, see section 7. A popular
approach to building b-reps manipulates the data struc-
ture exclusively through Euler operators, see Mantyla
[77]. The purpose of the restriction is to avoid any side-
effects that may compromise the topological validity of
the data structure.

Surface Reconstruction. Given a finite set of
points in B3, the surface reconstruction problem aims
at producing a surface that passes through the points.
Versions of the problem differ in their assumptions on
the point distribution and their requirements on the
surface. In all cases the surface is supposed to adapt
to the general shape of the point set and surfaces with
fewer wrinkles and less area are generally preferred.
The most common version of the problem assumes
the points represent slices through the object and thus
lie on a series of parallel planes in space. Catscans in
medical imaging are a prime example of data that falls
into this category. Within each plane the points are to
be connected by edges forming a closed polygon, and
polygons in contiguous planes are to be connected by
triangles forming a cylindrical surface, see figure 4. The

Figure 4: A triangulated cylinder connecting polygons in
four parallel planes.

collection of cylinders makes up the reconstructed sur-
face.

The operation that connects polygons in two paral-
lel planes is often referred to as lofting. Let P and @)
be two polygons and let n be the total number of ver-
tices. In one of the first papers on the topic, Fuchs,
Kedem and Uselton [46] describe a dynamic program-
ming algorithm that finds the minimum area cylinder
connecting P and @ in time O(n?logn). The cylinder
is not guaranteed to be free of self-intersections, and it
is generally not clear how to modify the construction so
that a guarantee can be given. In fact, there are cases
where all lofting cylinders that avoid self-intersections
have at least one vertex in addition to the n vertices of
P and @ [49].

The surface reconstruction problem seems to get con-
siderably more difficult if no assumptions on the point
distribution are made. An approach to this general
problem based on 3-dimensional Delaunay complexes
is described in Boissonnat [9]. The initial surface is
the convex hull, which is the boundary of the Delaunay
complex. The surface is moved inwards by successively



removing tetrahedra from the complex. The removal
heuristic of Boissonnat is replaced in [34] by a rational
and unambiguous collapsing rule sensitive to local and
global distribution patters. Figure 5 shows a sample

Figure 5: An engine block bounded by a 2-manifold of
genus 1.

surface reconstructed with this method.

Feature Extraction. There is no common agree-
ment on what exactly a feature of a geometric model is
or should be. If the model is a solid shape in R? then the
three types of holes characterizing its connectivity be-
long to almost everybody’s list: the gaps that separate
components, the tunnels that pass through the shape,
and the voids that are components of the complement
space 1naccessible from the outside. These features are
counted by the Betti numbers Gy, 51, s.

It is easier to define components than gaps between
them and they are counted by §y. The voids are simi-
larly unambiguous and are counted by 2. The concept
of a tunnel and how to count tunnels is somewhat more
delicate. For example consider the 1-skeleton of a tetra-
hedron, which consists of 4 vertices and 6 edges. There
are 4 triangle entries connecting the outside with the
inside, but §; is only 3. The reason 1s that only 3 of
the tunnels are independent, and all other paths around
and through the 1-skeleton are combinations of the in-
dependent tunnels: the 3 independent tunnels form a
basis of the group of all tunnels. The basis is not unique
and in general there is no canonical or best choice. See
section 12 for more information about Betti numbers
and how to compute them.

Another type of commonly sought features are pro-
nounced protrusions and intrusions. Intrusions are sim-
ilar to the three types of holes except that they are not

holes in any topological sense and require a geometric
characterization. A protrusion of the shape is an intru-
sion of the complement space, and an intrusion of the
shape 1s a protrusion of the complement space. A more
detailed discussion of these features in the context of
macromolecules can be found in section 6.

5 Mesh Generation

Finite element and other numerical methods for scien-
tific analysis rely on the availability of complexes, called
meshes or grids, that decompose shapes and space of in-
terest [65]. The two dominant types of complexes in R?
are the structured mesh [21, 113] and the tetrahedral
mesh [6].

Structured meshes. The prototypical structured
mesh in R? is the decomposition of a recangular region
into smaller rectangles by drawing vertical and horizon-
tal lines. Each rectangle is referred to as an element.
Each element has 4 neighbor elements and each vertex
is surrounded by 4 elements. Exceptions to this rule
are found only on the boundary of the region where
the numbers are less than 4. There is flexibility in the
shape of elements but not in the structure of adjacen-
cies, which is rigid and motivates the name of this kind
of mesh. For example the drawing in figure 3 qualifies as
a structured mesh. One of the reasons for insisting on
the regular adjacency structure is the convenient repre-
sentation with two-dimensional matrices. Each matrix
entry stores an element and adjacencies are represented
by index increments and decrements.

A structured mesh in R3 consists of hexahedral ele-
ments adjacent to 6 other elements. Each edge is sur-
rounded by 4 elements and each vertex is surrounded
by 8 elements. Exceptions are found only at the bound-
ary where the numbers are smaller. Such a mesh can
again be stored in a matrix with adjacencies represented
through index increments and decrements. Even for
only moderately interesting 3-dimensional shapes the
problem of constructing a structured mesh can be chal-
lenging. In many cases it amounts to constructing a
homeomorphism between the shape and the unit cube.
Meshes with hexahedral elements that relax the degree
requirements for edges and vertices are considered in

[41, 99].

Tetrahedral
structured mesh is the triangular mesh in R? and the
tetrahedral mesh in R3, see figure 5. By far the most
popular such mesh is the Delaunay complex named af-
ter Boris Delaunay [24]. For a finite point set S C R?

Meshes. The most common un-



the Delaunay complex is unique and decomposes the
convex hull of the set. In the non-degenerate case all
elements are tetrahedra, and a tetrahedron spanned by
4 points in S belongs to the complex iff its circumsphere
encloses no point of S.

An important but seemingly difficult problem is the
generation of quality meshes. The precise meaning of
this term depends on the application and sometimes is
not clear altogether. In many cases it means the angles
of the triangles and tetrahedra are not too small and not
too large, the edges are not too long and not too short,
etc. Ideally the shape and size of the elements should
adapt to the solution of whatever numerical problem
is considered. The resulting chicken-and-egg paradox
suggests that both the mesh and the solution are to be
refined simultaneously or at least in alternating steps.

It has been observed that Delaunay complexes in R3
tend to contain many “slivers”, which are fairly flat
tetrahedra of quadrilateral shape [16]. In contrast to a
triangle shaped one, a quadrilateral shaped flat tetra-
hedron can have a fairly small circumsphere and can
therefore exist in the middle of the Delaunay complex.
It would be interesting to find a point insertion strategy
that can eliminate slivers:

is there always a point p so that the Delaunay com-
plex of SU {p} contains fewer slivers than the De-
launay complex of 57

Slivers close to the boundary can just be taken off from
the outside, but for slivers in the middle 1t would be
important to have other means of elimination, which
an answer to the above question would provide.

Mesh Partitioning. The primary motivation for
partitioning a mesh are parallel analysis algorithms that
assign processors to work concurrently in different parts
of the mesh. The partition defines blocks which should
be roughly the same size and there should be few adja-
cencies across blocks.

For a planar graph such a partition can be con-
structed by removing a small number of vertices. Let
the size of a graph be the number of vertices. Lipton
and Tarjan [74] prove that

every planar graph of size n contains a subset of at
most v/8n vertices whose removal decomposes the
graph into components of size at most 2n/3 each.

Call the removed vertex set a separator. Lipton and
Tarjan also give an algorithm that constructs a separa-
tor in time O(n). For any given size bound the graph
can be decomposed into blocks of at most that size by
repeated removal of separators.

A geometric proof of the existence of separators for
planar graphs is described in [81]. Tt is based on Koebe’s
theorem, see section 10, and the existence of center-
points in R3, see section 8. The geometric proof ex-
tends to tetrahedral meshes in R? provided the aspect
ratios are bounded from above by some constant. In
this case the mesh contains O(n2/3) vertices whose re-
moval leaves components of size at most ¢ - n, for any
positive constant ¢ < 1.

6 Molecular Modeling

We are interested in the study of molecules as 3-
dimensional shapes and conformations. A big motiva-
tion for research in this area is the protein folding prob-
lem that aims at a computer simulation of the natural
folding process. That process takes an amorphous chain
of amino acid components into a folded state where
shape and geometry are determining factors of the pro-
tein’s function. We quote from a recent article by Rose

[94]:

“What role a protein takes in the grand bio-
logical opera depends on exactly one thing: its
shape. For a protein molecule, function follows
form.”

At the current state of the research no successful com-
puter simulation of the folding process is in sight.

Molecular Surfaces. A basic question concerns the
geometric definition of a folded protein. Even if we
make the unrealistic assumption that the protein is a
static assembly of its atoms, it is not clear which part of
space exactly the protein occupies. What is its interior
and where is 1ts boundary?

A rigorous but computationally demanding answer to
these questions is described in a recent book by Bader
[3]. Based on Morse theoretic ideas of flow and criti-
cal points, the 3-dimensional space is partitioned into
catchment regions or unstable manifolds of various di-
mensions. The protein itself is a union of such regions
and its shape changes sometimes catastrophically as
small changes in the flow field imply big changes in the
catchment regions.

A more pragmatic answer to the shape definition
question starts from the geometric idea of modeling an
atom as a spherical ball. The atom kernel is at the cen-
ter and the electrons populate the region between the
center and the sphere boundary, see [71, 92]. Chemi-
cally bound atoms correspond to overlapping balls. The
protein itself is the union of all the balls.

This geometric idea can be extended to modeling the
shape of a protein as it appears to a solvent such as



water. If we model the solvent as an omnipresent sphere
of radius g, we can just increase the atom balls by that
radius and shrink the solvent to a point. The resulting
model is sometimes referred to as the solvent accessible
model of the protein.

Dual Complexes. The union of balls model has a
simplicial complex as its dual. The complex is defined
in geometric terms and topological language is useful in
understanding its relation to the model.

Let B be the finite set of balls defining the model | JB
of some protein. We decompose | JB into convex cells
using weighted Voronoi cells. The weighted distance of
a point £ € R? from a ball b € B is the square distance
to the center minus the square radius. The weighted
Voronot cell Vi of b is the set of points & for which &
minimizes the weighted distance, see figure 6.

The weighted Voronoi cells decompose |JB into con-
vex cells of the form b N V3. Any two cells have disjoint
interiors but they may overlap along their boundary.
The boundary overlap figures in the definition of the
dual complex. To describe this let 77 be the set of cen-
ters of the balls in 7. We are interested in the subsets
T C B whose cells have non-empty common intersec-
tion. The dual complex of B consists of all simplices
spanned by the centers of balls in such subsets:

K = {o=convT| ﬂ(bﬂ%);é@}.

beT

Assuming general position, at most 4 Voronoi cells can
meet in a point. In this case all elements of K are
simplices in R® and altogether they form a simplicial
complex, see figure 6.

Figure 6: The union of disks is decomposed by the
weighted Voronoi cells. The dual complex represents the
overlap structure of the convex cells in the decomposition.

The original definition of the dual complex dates back
to [37] where unit-disks in the plane are considered.
Algorithms for the 3-dimensional case are described in
[38]. The general definition for mixed radii and arbi-
trary fixed dimension can be found in [32]. The latter

reference also contains a proof of the homotopy equiv-
alence between the ball union and the dual complex
and short inclusion-exclusion formulas for measuring
the volume and surfaces area of a ball union model.

Pockets and Protrusions. The dual complex of a
ball union model is a combinatorial structure consist-
ing of vertices and of pairs, triplets, and quadruplets
of vertices. It allows fast combinatorial algorithms for
computing the connectivity in terms of Betti numbers,
see section 12 of this paper. Because the ball union and
the dual complex are homotopy equivalent, we know
that the two have the same Betti numbers. The second
Betti number counts the voids, which are the bounded
components of the complement of | JB. These are in-
teresting to biologists because they may contain water
molecules caught at some moment during the folding
process and influencing the further evolution of that
process.

Of even greater significance than voids are cavities
or depressions that extend to the surface of a protein.
These are not holes in a topological sense although com-
mon language refers to them often as such [15]. To avoid
any confusion we refer to such cavities as pockets, see fig-
ure 7. The significance of pockets lies in their prominent

Figure 7: Visualization of voids and pockets of the dual
complex of HIV-1 proteise.

role in molecular interactions. Proteins communicate
with other molecules via surface contact along partial
albeit 1mperfect shape complementarity. We wish to
give a geometrically rigorous definition of a pocket as a
part of space that can be computed and analyzed. Such
a definition using concepts in Morse theory is given in
[36]. We present a slightly simplified version of that
definition.



For each point # € R® let f(x) be the minimum
weighted distance to any ball & € B. We can make f
smooth using convenient cut-off functions close to the
boundary of Voronoi cells. Assuming smoothness we
take the gradient of f,

vy (8]" af 8f)

dz1’ dxy’ Drs

which is a smooth vector field Vf : R®> — R3. From
a point x we follow the flow of V f, which either takes
us to infinity or we get caught at a local maximum. A
pocket 1s defined as a maximal connected piece of space
outside | JB whose points do not flow to infinity.

It appears that a pocket 1s an inherently continu-
ous concept whose computation requires following flow
lines for as many points as the desired accuracy of the
construction requires. Fortunately, this 1s not the case
and a close relationship between pockets and Delaunay
simplices can be used to obtain a fast combinatorial
algorithm, see [36].

II. TOPOLOGICAL METHODS

We consider six topics in topology: decompositions,
fixed points, surfaces, embedding, three-manifolds, and
homology computation. This leaves large domains un-
touched, such as the entire fields of Morse theory [83]
and differential topology [53]. The deliberate omission
of differentiable topics is motivated by respect for the
size and depth of that area and the attempt to preserve
the elementary character of this paper.

7 Decompositions

Questions about decomposing a shape into simple
pieces can have geometric as well as topological fla-
vor. Restrictions on the type of pieces that are allowed
and how they can overlap give rise to different types of
complexes. This section considers a few decomposition
questions for the simplest kind of complex where each
cell i1s convex and any two cells intersect in another cell.

Euler Characteristic. The Euler relation for the
boundary complex of a polyhedron is possibly the oldest
topological result in all of mathematics. If the polyhe-
dron is convex and bounded in R? the relation states
that the number of vertices and 2-dimensional faces ex-
ceeds the number of edges by 2:

v—e+f = 2.

This result was know already to René Descartes. Ini-
tial attempts to extend this result to polyhedra with

holes and to polyhedra bounded by faces with holes
were only partially successful, see Lakatos [70]. Even-
tually, Poincaré settled the issue [89, 90]. He observes
that the result of the alternating face sum is a property
of the space the faces cover, and that it equals the al-
ternating sum of Betti numbers counting the holes in
that space, see section 12. For example, the boundary
of a 3-dimensional convex bounded polyhedron is home-
omorphic to the 2-sphere, $2, and 2 is the characteristic
number for §2.

The Euler characteristic of a space X is the alternat-
ing simplex count of any triangulation K of X:
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For the torus we have xy = 0, and more generally for
orientable closed surfaces with genus g we have y =
2—2g. For non-orientable surfaces with genus g we have
X = 2—g, see section 9. It is thus easy to determine the
type of a closed surface given as a triangulation. First
check whether or not the triangles can be consistently
oriented and then computing the Euler characteristic
by counting vertices, edges, and triangles. The same
approach fails for compact 3-manifolds because they all
have vanishing Euler characteristic.

The Euler characteristic has found a multitude of ap-
plications in geometry and topology, including volume
formulas for unions of spherical balls [32, 87], see also
section 6. A survey of extensions and generalizations

can be found in the booklet by Shashkin [103].

Covers and Nerves. A cover of a topological space
X is a collection C of subsets whose union is X: X = [ JC.
For example the set of d-faces of a convex polyhedron of
dimension d + 1 is a cover of the polyhedron boundary.
The nerve of a cover C 1s the system of subcollections
with non-empty common intersection:

Nive = {XCC|()X#0}.

The nerve is an abstract simplicial complex because it
is closed under taking subsets: X € NrvC and Y C
X implies Y € NrvC. We get a geometric realization
of the abstract complex by mapping each C € C to
a point p(C) in R*. Every collection X € Nrv( is
represented by the convex hull of the points p(C), C €
X. If C is finite then Nrv C is finite and if k is sufficiently
large then the points can be chosen so that the resulting
simplices form a genuine simplicial complex. Call this
complex K and consider its underlying space, |K| =
U,ex @, which is again a topological space. The nerve
theorem originally due to Leray [73] states that under
reasonable assumptions about the sets in the cover and



about their common intersections the underlying space
of K has the same homotopy type as X:

if C is finite and ()X is either empty or contractible
for every X C C then |K] and X = [JC are homo-
topy equivalent.

The literature contains versions of this theorem that
differ in the requirements on the sets in the cover, the
allowed size of the cover, and the resulting topological
relation between | K| and X, see e.g. [8, 122].

The homotopy equivalence implies that the Fuler
characteristics of K and X are the same. This fact has
been used in [33] to derive boolean formulas for non-
convex polyhedra. The nerve theorem is also useful
in computational settings because covers are relatively
easy to get and through the nerve operation large and
meaningful complexes can be automatically generated.
An example of this idea 1s the dual complex of a union of
balls discussed in section 6. Another example is the au-
tomatic triangulation of a topological space developed

in [18, 39, 79).

Collapsing. If a simplicial complex can be collapsed
then its underlying space is contractible. Unfortunately,
the reverse is not correct: there are contractible spaces
that have non-collapsible triangulations. An example
of such a space is the dunce cap [85]. Although the cap
is contractible every edge in its triangulation belongs to
at least two triangles.

What exactly is a collapse? Given a simplicial com-
plex K, an elementary collapse removes a pair of sim-
plices 7 C o provided they are the only simplices in the
star of 7: St 7 = {7, o}. For example the right complex
in figure 8 1s obtained from the left complex by remov-
ing a vertex 7 and an edge 0. More generally, a collapse

collapse
—_—

Figure 8: Collapsing a vertex together with the only edge
that contains it.

removes the entire star of a simplex 7 provided there is
a unique highest-dimensional simplex in this star. For
example the rightmost vertex of the right complex in
figure 8 can be removed together with the two edges
and one triangle that contains it. The topmost vertex
cannot be removed through a single collapse. A collapse
removing a star of 2% simplices can be expressed as the
composition of 28~1 elementary collapses.
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It is fairly easy to see that for each collapse there is a
corresponding deformation retraction that modifies the
underlying space of the complex. This implies that a
collapse retains the homotopy type. If K can be reduced
by a sequence of collapses all the way down to a single
vertex then | K| is contractible.

An interesting result due to Wegner [118] relates the
collapsibility of a simplicial complex with its repre-
sentability by convex sets. Wegner calls an abstract
simplicial complex A d-representable if it is the nerve
of a collection of convex sets in R?, and he shows that
A is d-representable iff it is d-collapsible. The notion of
d-collapsibility used here 1s slightly different from col-
lapsibility as it allows the removal of principal simplices
of dimension less than d.

Shelling. A concept similar to collapsing that also
applies to non-simplicial complexes is shelling. A su-
perficial difference is that shelling is applied in forward
direction constructing a complex by adding one cell at
a time. Suppose K is a complex of convex cells so the
union of cells is a topological ball: |K | ~ B. A shelling
is an ordering of the d-dimensional cells, 01,05, ...
so that every prefix defines a d-ball:

ao-na

UO’Z' ~ Bd

i=1

for every 1 < j <n. If |[K |~ S%, as is the case for the
boundary complex of every (d + 1)-dimensional convex

polytope, then the requirement is that all proper pre-
fixes define a d-ball. K is shellable if it has a shelling.

Shelling is important in the theory of convex poly-
topes. Schlafli [98] proves the Euler relation for convex
polytopes of any dimension assuming their boundary
complexes are shellable. Many years later, Bruggesser
and Mani [14] establish that these complexes are indeed
shellable. Seidel [100] uses the same shelling order to
compute the convex hull of a set of n points in time
O(logn) per face of the constructed polytope. The al-
gorithm requires an initial preprocessing phase of time
O(n?) before the faces can be enumerated.

Given a complex K, Danaraj and Klee [22] study algo-
rithms that compute a shelling, if it exists. If | K| ~ B?
there always is a shelling and it can be constructed in
time proportional to the number of cells. Already for
| K|~ B3 it is possible that K is not shellable [96] and no
polynomial time algorithm deciding the case is known.
The problem is made difficult by the existence of par-
tial shellings that cannot be extended to a complete
shelling, see Ziegler [124].



8 Fixed Points

A point is fized by a function if the point is its own
image. In many circumstances, the continuity of the
function implies the existence of a fixed point. A nice
and elementary treatment of this subject can be found

in the booklet by Shashkin [104].

A Metric Fixed Point Theorem. A map f:R? —
R? contracts if there exists a constant v, 0 < v < 1,
such that the Euclidean distance between image points
is less than v times the Euclidean distance between ar-
guments:
1@ = F@ < 7-lle— gl

For example if you consult a geographic map, you can
think of each point on the map as the image of a point
in the real world. The geographic map is the image
of a map or continuous function, and usually this map
is contracting. A classical result on contracting maps
is that they have a unique fixed point. In the case
of a posted geographic map this fixed point is typically
indicated by the words “you are here” or a similar label.

Brouwer’s Theorem. Brouwer’s fixed-point theo-
rem is one of the most basic facts about topological
spaces and generalizes the metric fixed point theorem.
Originally formulated for the d-dimensional ball, the
theorem is stated here for a d-simplex ¢? homeomor-
phic to B

every map f : 0% — ¢? has a fixed point.

Observe that the only assumption on f is that it be
continuous. Brouwer [13] provides an existential proof
for this theorem. Cohen [19] gives a constructive proof
based on a combinatorial result of Sperner [108]. We
describe the combinatorial result and comment on its
connection to Brouwer’s theorem.

Let ¢¢ be a d-dimensional simplex with vertex set
T = {vo,v1,...,vq} and triangulation K. A labeling is
a function £ : Vert K — T'. Each vertex of K either be-
longs to the interior of o or to the interior of a proper
face of o. The labeling is proper if £(u) is one of the ver-
tices of the face containing u in its interior. A d-simplex
in K is complete if its vertices have d+1 different labels.
Sperner’s lemma guarantees the existence of a complete
d-simplex in every properly labeled triangulation. More
precisely:

every properly labeled triangulation of ¢ has an
odd number of complete d-simplices.
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How does this combinatorial result relate to the con-
tinuous Brouwer theorem? Given a map f : ¢% — o,
we can define a labeling of a triangulation based on the
vectors f(x) — x so that a complete d-simplex indicates
a possible fixed point in its interior. If the triangulation
is chosen sufficiently fine then the possibility becomes
certainty and the existence of complete d-simplices im-
plies the existence of fixed points.

Borsuk-Ulam Theorem. Intuitively it seems clear
that the d-dimensional sphere, $¢, cannot be embedded
in R? without overlap. A theorem conjectured by Ulam
and proved by Borsuk [11] is a stronger version of this
statement.

Two points z,y € $? with coordinates #; and y; in
R+ are antipodal if x; = —y; for 1 < i < d+1. We
write y = —x if x and y are antipodal. The Borsuk-
Ulam theorem states that if $¢ is mapped continuously
to R? then there are two antipodal points with identical
image:

every map f : $% — R? has a point € $¢ with
f(@) = f(=z).

Ramos [91] extends the result to maps from a Cartesian
products of spheres to the real space of same dimension.
Not all such maps have antipodal points with identical
images and Ramos describes a combinatorial criterion
that determines when the map has such a point.

Geometric Applications. The Bosuk-Ulam theo-
rem has many interesting geometric consequences, see
for example the survey by Barany [4]. Consider d finite
sets, S1,53,...,54, in RY. A hyperplane h bisects S; if
at most half of the points in S; lie in each open half-
space defined by h. A ham sandwich cut is a hyperplane
that bisects all d sets. Using the Borsuk-Ulam theorem
it 1s fairly straightforward to prove that a ham sandwich
cut always exists. A linear time algorithm for finding
ham sandwich cut in two dimensions can be found in
[75].

Consider a single set S C R? and several hyperplanes
cutting S. k < d hyperplanes hy, ha, ..., hy form an
equipartition if each of the 2% open d-dimensional cells
contains at most n/2% points, n = cardS. Using the
ham sandwich cut theorem it is easy to prove that ev-
ery S C R? admits an equipartion formed by 2 lines.
It is also true that every S C R® admits an equipar-
tition formed by 3 planes, but the argument requires
more than just the 3-dimensional ham sandwich cut
theorem, see Hadwiger [55] for a proof and [123] for
applications to range searching. Five hyperplanes cut
the moment curve in R® into at most 5-5 4+ 1 < 2°
pieces, which implies that for d > 5 not every S C R?



admits a d-partition [2]. The question for d = 4 is
currently undecided. Ramos [91] studies extensions of
these equipartition results to values k < d.

A related geometric concept is a point so all hyper-
planes passing through this point cut a given set in rea-
sonably balanced fractions. A point € R? is a center-
point of S C R? if every closed halfspace that contains
z contains at least di_l points of S. The centerpoint
theorem states that every finite set has a centerpoint.
The classic proof of this theorem is based on Helly’s
result on overlapping convex sets, see e.g. [31]. Using
a new approach using Brouwer’s fixed point theorem,
Zivaljevi¢ and Vreéica [125] prove a more general result
that contains the ham sandwich and the centerpoint
theorem as special cases. A linear time algorithm for
finding a centerpoint of a set of n points in R? is given

in [62].

9 Surfaces

The notion of homotopy formalizes the 1dea of a con-
tinuous deformation of a topological space. Since the
fundamental group of a space 1s invariant under such de-
formations, this group can sometimes be used to prove
the non-existence of a continuous deformation of one
space to another.

Classification. A classic result due to Brahana and
to Dehn and Heegard says that two surfaces or 2-
manifolds are topologically different iff their fundamen-
tal groups are non-isomorphic. It follows that surfaces
can be classified just by considering their fundamental
groups. Descriptions of this result can be found in many
textbooks in topology [80, 111].

The fundamental group (M) of a surface M can be
finitely presented as #(M) = (G : R), where G is a
set of generators and R is a set of relations. Specifi-
cally, for an orientable surface of genus g, there are 2g
generators in (4, which are typically represented as g
pairs where one member is called ‘latitudinal’ and the
other is ‘longitudinal’. For a non-orientable surface of
genus ¢ there are g generators. Each relation identifies
a product consisting of generators and inverses to the
trivial path. For example, (a,b : aba=1b71) is a finite
representation of the fundamental group of the torus,
see figure 9.

Alternatively, each surface can be combinatorially
represented as a polygon P with an even number of
edges. FEach edge is oriented and labeled. Such a repre-
sentation is called a polygonal schema. The surface can
be obtained from P by gluing edges with equal labels
consistent with their orientations. Among all polygo-
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nal schema of a given surface it is possible to identify
a canonical one. We use a superscribed ‘—’ to indicate
orientation reversal. The canonical polygonal schema
of an orientable surface of genus g > 1 has the form

1T Y - .a:gygx;yg_.

Similarly, the canonical polygonal schema of a non-
orientable surface of genus ¢ > 1 has the form

L1L1L2L2 .. . Lglg.

The only remaining case is the 2-sphere, which has
genus 0 and canonical schema zz~.

Algorithms. The algorithmic problem of computing
polygonal schemas has been considered in the computa-
tional geometry literature. Let K be a simplicial com-
plex triangulating a surface M, and let n = card K be
the number of simplices. Vegter and Yap [117] describe
an algorithm that takes time O(nlogn) to construct
the canonical schema of M. A not necessarily canonical
polygonal schema that has the same number of edges
can be constructed in optimal O(n) time [27].

At the beginning of this century, Dehn posed two
problems related to homotopy on surfaces. Recall that
M is a surface and K is a triangulation of M.

(i) Given a closed curve in terms of a cycle of edges
in K, determine whether or not the curve is con-
tractible.

(ii) Given two closed curves, determine whether or not
they are homotopic.

Optimal algorithms for both problems are given in [25].
The algorithms are based on observing that deciding the
homotopy equivalence of two closed curves is equivalent
to deciding whether their representatives in the funda-
mental group of the surface are conjugate. The conju-
gacy problem for this fundamental group is then solved
by methods from combinatorial group theory [50, 76].
The group theoretic results allow a reduction to Dehn-
like algorithms in all cases except for orientable surfaces
of genus 2 and for non-orientable surfaces of genus 3
and 4. The problem of finding an optimal algorithm
that decides the homotopy between two curves on such
surfaces is still open.

Algorithms for deciding the contractibility of a closed
curve can also be based on universal covering spaces, see
figure 9. Let Y be a universal covering space of X with
projection p: Y — X, and let yp € Y and 2y = p(yo).
Every path on X with initial point xy has a unique
lifting on Y with initial point yg. Furthermore, a closed
curve is contractible in X if and only if its lift on Y is
closed. This was first discovered by Dehn [23].



Figure 9: The polygonal schema of a torus is a rectangle with opposite edges identified. The torus can be constructed

from a rectangular piece of paper by gluing edges as shown.

The universal covering space of the torus is the plane

decomposed into rectangles each a copy of the polygonal schema.

Let n be the number of simplices in the given trian-
gulation of M and m the number of edges forming the
closed curve. The algorithm of Schipper [97] takes time
O(gn + g*>m) to construct a finite portion of the cov-
ering space to check whether the lifted curve is indeed
closed. The algorithm has been improved by Dey and
Schipper [27] to run in time O(n+mlog ¢) and memory
O(n + m).

Surface Homology. It may be remarked that by the
Hurewicz isomorphism theorem [107] the generators for
the homotopy group of a surface are also generators for
its homology group. In fact, for an orientable surface of
genus ¢ the 1-st homology group is a free abelian goup
on the set of g latitudinal and ¢ longitudinal generators.
In the case of a non-orientable surface of genus g the 1-st
homology group is a direct sum of a (g — 1)-dimensional
free abelian group and the torsion group Z».

10 Embedding

An embedding of one topological space in another is an
injection whose restriction to the image is a homeomor-
phism. Using a geometric realization as intermediate
step we can stretch the concept and talk about embed-
dings of an abstract simplicial complex A. To do this
we first get a simplicial complex K that geometrically

realizes A and then embed | K.

Geometric Realization. Every abstract simplicial
complex A has a geometric realization in R?, provided
d is large enough. We can for example use one dimen-
sion per vertex of A and place that vertex at unit dis-
tance from the origin on the corresponding coordinate
axis. This is clearly a waste of real space and we should
expect that the minimum d depends on k£ = dim.A but
not on the cardinality of Vert A.

How large does d have to be? As it turns out
d = 2k 4+ 1 always suffices. To see this map the ver-
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tices u € Vert. A to points p(u) in general position in
R?. Every subset of d + 1 = 2k + 2 or fewer points is
affinely independent. It follows that the intersection of
two geometric simplices is the realization of the inter-
section of the two corresponding abstract simplices:

convp(a) Neconv p(f) = convp(an ),

which 1s exactly what is required from a geometric re-
alization. To prove that the bound is tight, Flores
[43] and van Kampen [63] independently construct k-
dimensional abstract simplicial complexes without geo-
metric realization in R?*.

One of their examples generalizes K5, the complete
graph of b vertices. Think of this graph as the 1-skeleton
of a 4-simplex; it is the case & = 1 of the following
construction. Take a (2k + 2)-simplex 0212 which has
2k+3 vertices and a face for every subset of the vertices.
The k-skeleton of ¢?#*? is obtained after removing all
faces of dimension larger than k. As proved in [43, 63]
the k-skeleton of ¢?**2? cannot be embedded in R?*.

Planar Graphs. The question of embedding a graph
in the Euclidean plane is one of the very few embedding
problems that has been studied from a mathematical
as well as computational point of view. A graph is a
1-dimensional abstract simplicial complex and can al-
ways be embedded in R3. A graph is planar if it can be
embedded in R?. Planar graphs are completely charac-
terized by a classic result due to Kuratowski [69]:

a graph 1s planar iff it does not contain a subgraph
homeomorphic to K5 or to K3 3.

Ks is the complete graph with 5 vertices and K33 is
the complete bipartite graph with 3 + 3 vertices. It
is not entirely clear how to turn this result into an effi-
cient algorithm for testing whether or not a given graph
is planar. Indeed, the fastest algorithms for planarity
testing are based on rather different principles and con-
struct a concrete embedding, if it exists. By Euler’s



relation, a graph with n > 3 vertices can only be planar
if it has 3n — 6 or fewer edges. It thus seems possible
to test the planarity of such a graph in time O(n). The
first such algorithm due to Hopcroft and Tarjan [61] is
based on fast graph traversal methods.

Firy [42] proves that every planar graph has a
straight line embedding in R?. In other words, every
planar graph has a geometric realization in R?, see also
Tutte [115]. This result also follows from an older result
by Steinitz which states that every 3-connected planar
graph is the 1-skeleton of the boundary complex of a 3-
dimensional convex polytope [109]. The existence of a
straight line embedding also follows from a considerably
stronger result by Koebe [67]:

for every planar graph with n vertices there are
n non-overlapping disk in the plane and a bijec-
tion between the vertices and the disks so that two
vertices are connected by an edge iff the two cor-
responding disks touch.

In other words, the graph is the nerve of a set of n
possibly touching but not otherwise overlapping disks.
Numerical algorithms for constructing such sets of disks
are studied by Stephenson [110].

Beyond graphs. Embedding problems for abstract
complexes of dimension 2 or higher are considerably
more difficult than for graphs. For example the problem
to decide whether or not a 2-complex can be embedded
in R3 seems to be related to the recognition problem for
the 3-sphere for which algorithms have been found only
recently, see section 11.

A few results concerning the extension of Kura-
towski’s theorem beyond graphs are described in [102].
For dimension k& = 3 or higher there is an obstruction
so that a k-dimensional complex A can be embedded in
R?* iff the obstruction vanishes. The obstruction itself
belongs to the cohomology groups of a complex related
to A. For k > 5 similar obstructions are known for
embeddings in R?*~1,

For a graph the questions whether it has an embed-
ding or a geometric realization in the plane are the
same: every planar graph has a geometric realization in
R2. This is no longer true for complexes of dimension
higher than 1: there are 2-dimensional complexes with
embeddings in R® that have no geometric realization in
R3. Examples can be found in Bing [7] and Griinbaum
[51, chapter 11].

Instead of general 2-dimensional complexes consider
triangulations of 2-manifolds. Such triangulations are
characterized by having every edge shared by exactly
two triangles and the link of every vertex being a simple
cycle of edges. A 2-manifold can be embedded in R? iff
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it 1s orientable. Examples of 2-manifolds that are non-
orientable and thus have no embedding in R® are the
projective plane and the Klein bottle.

11 Three-manifolds

A complete classification of all 2-manifolds is mentioned
at the beginning of section 9. Such a thing is not possi-
ble for d-manifolds if d > 4. The case of 3-manifolds is
still open and Thurston [114] sketches a program that is
hoped to eventually settle the problem. A central prob-
lem in this context is the Poincaré conjecture which has
not been settled in spite of a considerable amount of ef-
fort in the mathematics community.

Poincaré Conjecture. Poincaré originally conjec-
tured that every 3-manifold with betti numbers Gy = 1,
01 = P2 =0, and B3 = 1 is a 3-sphere, or more accu-
rately is homeomorphic to §2. He found a counterex-
ample himself constructed from a dodecahedron whose
pentagonal faces are pairwise identified with a twist.
Pointcaré modified his original conjecture to

every simply-connected 3-manifold is a 3-sphere.

It 1s still open whether or not this is the case. The
specialization of the conjecture to 2-manifoldsis correct.
The generalization to d-manifolds has been settled by
Smale [105] for d > 5 and by Freedman and Quinn [44]
for d = 4. See Bing [7] for a very accessible survey of
topological problems and issues related to the Poincaré
conjecture.

An algorithm that decides whether or not a given
complex is a triangulation of the 3-sphere has recently
been discovered by Rubinstein [95], see also [112]. The
existence of such an algorithm is possibly surprising
considering the unsettling results of past attempts to
characterize the 3-sphere algebraically.

Knots.
space:

A knot 13 an embedding of a closed curve in

K :S' — R3.

It 1s polygonal if it consists of a finite number of line
segments. The standard knot is the unit circle in the
xixo-plane, and a knot 1s trivial if there is an isotopy
that connects it to the standard knot. The computa-
tional complexity of deciding the triviality of a knot is
as yet unresolved. For a polygonal knot with n line seg-
ments an algorithm with running time at most doubly-
exponential in n is given by Haken [56].

A remarkable result due to Seifert states that every
knot 1s the boundary of an orientable 2-manifold embed-
ded in R3. Such a 2-manifold with boundary is called



a Seifert surface for the knot. The Seifert surface can

Figure 10: A trefoil knot and its embedding on a torus.

be doubled to form a 2-manifold without boundary, see
figure 10. The genus of a knot is the least genus of any
such 2-manifold. It is known that a knot 1s trivial iff its
genus vanishes or equivalently if it has a Seifert surface
that is a disk. It seems difficult to use this observation
in the design of a polynomial time algorithm for testing
knot triviality because there exist polygonal knots K
with n edges so that every piecewise linear Seifert disk
whose boundary is K has at least exponentially many
vertices, see Snoeyink [106].

A useful invariant of knots 1s the knot group, that is
the fundamental group m(R® — K) of the complement
space of the knot. Although the knot group is invariant
under isotopy it does not classify knots: there exist non-
isotopic knots with isomorphic knot groups [93].

Knots can be classified by classifying a special class
of 3-manifolds [59]. Consider a regular neighborhood R
of K in R3. The space R3 — R when compacted with
a single point at infinity forms an orientable compact
3-manifold with boundary. These manifolds are often
referred to as Haken manifolds named after Wolfgang
Haken who initiated their study [56].

Computational Complexity. Markov [78] proves
that the question whether two finitely represented
groups are isomorphic is undecidable. Since every such
group is the fundamental group of a 4-manifold, it fol-
lows that the question whether two 4-manifolds are
homeomorphic is undecidable. The undecidability re-
sult extends to dimensions higher than 4. This is why
we said earlier that the classification of 4- and higher-
dimensional manifolds is out the question.

Manifolds can be specified in terms of triangulations.
Triangulations are finite combinatorial objects and the
existence of an isomorphism between two can be decided
by trying all possibilities. Probably, this is the best one
can do. Even for graphs or 1-complexes no polynomial
time algorithm is known for deciding isomorphism, see
Garey and Johnson [47].
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12 Homology Computation

Homology groups offer a formal algebraic framework
for studying and counting holes in a topological space.
The situation is fairly intuitive for spaces or shapes X C
R3. The ranks or Betti numbers 8, 81, F2 of the three
possibly non-trivial homology groups count the number
of gaps, tunnels, and voids. By Alexander duality these
correspond to the number of components, loops, and
shells in X. The corresponding algebraic notions are
non-bounding 0-, 1-, and 2-cycles. They form cosets in
the homology groups counted by 5y, 51, 2.

This section considers different approaches to com-
puting Betti numbers. Since Betti numbers are invari-
ant over all triangulations of a topological space we may
assume without loss of generality that X is given in
terms of a triangulating simplicial complex K.

Smith Normal Form. The classic algorithm for
Betti numbers manipulates the incidence matrices of
simplices of contiguous dimensions. For complexes in
R3 we have vertices, edges, triangles, and tetrahedra
and therefore 3 incidence matrices for dimensions 0 and
1, 1 and 2, 2 and 3. Using standard row and column op-
erations, the matrices are brought into a normal form,
from which the Betti numbers can be derived. The
normal forms also encode the torsion subgroups and
thus contain complete information about all homology
groups of K.

If implemented as described like
Munkres [85], the running time can be at least expo-
nential in n = card K. Part of the reason for the slow
running time is that the number of row and column op-
erations depends not only on the number of simplices
but also on the size of the integer coefficients describing
chains of simplices computed during the algorithm. An
improvement of the worst-case running time to O(n®)
can be found in [64]. The complexes that arise in the
study of macromolecules, see section 6, are usually too
large to even keep the incidence matrices in internal
memory. We need new ideas to work on these applica-
tions.

in textbooks

Incremental algorithm. A combinatorial approach
to computing Betti numbers is described in [28]. Let
01,09,...,0, be an ordering of the simplices in K so
that every prefix K; = {o1,09,...,0;} is a complex.
For example the sequence of simplices sorted in order
of non-decreasing dimension satisfies this requirement.
The sequence of o; is a filter and the sequence of com-
plexes K; 1s a filtration of K.

The Betti numbers of K; can be computed from o;
and the Betti numbers of ;_1. Let k be the dimension



of o;. If o; completes a k-cycle in K; then

Be(Ki) =

Indeed, none of the simplices in the star of o; have been
added yet so o; does not bound in ;. In the other case

Bk—l(lci) = 5k—1(lci—1)_1

because o; fills a non-bounding (k — 1)-cycle in K;_1,
which now bounds in K;. A formal proof of this case
analysis can be based on Mayer-Vietoris sequences as
described in any textbook in algebraic topology.

If K is a complex in R3 then there are fast algorithms
that distinguish between the two possible cases. Given
the filter, all questions can be decided in time O(na(n)),
where a(n) is the extremely slowly growing inverse of
the Ackermann function, see [20]. In the same time the
Betti numbers of all complexes in the filtration can be
computed. Already in d = 4 dimensions it is not clear
how to efficiently decide whether or not a simplex o;
belongs to a cycle. It would be interesting to find fast
data structures for the cycle test in all dimensions.

Br(Kio1) + 1.

Solids. Call a connected 3-manifold with boundary
embedded in R3 a solid. Suppose M is a solid and K is a
triangulation of M. By definition K is a pure 3-complex
which means that every ¢ € K is face of a tetrahedron.
The boundary of M is a 2-manifold and the boundary
complex of K triangulates it. Let S1,S5,...,S,, be the
components of the boundary of M. Each §; 1s a con-
nected orientable closed surface. Assume $; through
S,,—_1 are ‘inner’ surfaces and §,,, 1s the ‘outer’ surface.
Note that the dispositions of the surfaces in R? can form
exotic configurations that may be knotted or linked, see
figure 11.

By assumption M is connected and we have Gy = 1.
The number of loops and tunnels is the sum of surface
tunnels:

m
61 = Zgla
i=1

where g; is the genus of §;. Furthermore, there is a
void for each inner surface and therefore f3 = m—1. In
other words the Betti numbers of M can be computed
directly from the genuses of the S;. As explained in
section 7, the genus of §; can be calculated from the
triangulation:
1
g = 1- 5(%’ —ei+ fi),

where v;, €;, f; are the number of vertices, edges, trian-
gles in the triangulation of ;.
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Figure 11: A solid with knotted and linked boundaries.

The above algorithm applies to all simplicial com-
plexes in R3, not just to triangulations of solids. This is
because every such complex K has a homotopy equiva-
lent solid that can be obtained by thickening K. Delfi-
nado and Edelsbrunner [28] explain how the thickening
process can be avoided. Dey and Guha [26] show that
the latitudinal generators of the inner surfaces together
with the longitudinal generators of the outer surface
form a basis of the first homology group of M. This
basis can be computed in time O(gn?), where ¢ is the
maximum genus of any surface [117, 27].

Combinatorial Laplacians. Friedman [45] proposes
the use of Laplacians for computing Betti numbers of
simplicial complexes of arbitrary dimension. His ap-
proach appears to be more efficient than computing
Smith normal forms, at least for some types of com-
plexes.

Consider the homology groups of a simplicial complex
K with real rather than integer coefficients; the Betti
numbers remain the same. More precisely let
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C; =G

be the chain complex where C; is the vector space of
Jj-chains with coefficients in R. H;(R) = Ker 0;|Im 8, 44
is the j-th homology group with real coefficients, and
B; 1s the dimension of H;. With the usual inner product
(-, ) on vector spaces over R, we get maps

6]* . C]'_l — C]'

defined by (9j¢,¢’) = {c,0;¢'), where ¢ € C; and ¢’ €
Cj-1. In other words, 97 is the transpose of d;. Finally
for each j define the Laplacian A; : C; — Cy:

A

i = 00 +070;,



and the harmonic j-forms:

H;, = {ce( |A]»c:0}.

By the elementary linear algebra behind Hodge theory,
H; is isomorphic to H; (R) so §; of K is the dimension
of H;, see [45]. By definition, this is the dimension
of the null space of A;, which is the multiplicity of
the eigenvalue 0 of A;. Friedman uses matrix-theoretic
methods to probabilistically estimate the eigenvalues of
the Laplacian A;.
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A Definitions

The appendix presents definitions from topology
grouped under topology and space, affine and convex
hull, simplicial complexes, maps and equivalences, fun-
damental groups and covering spaces, manifolds, and

homology groups and Betti numbers.

Topology and Space. The mathematical definition
of a topology 1s exceedingly general. We present the def-
inition and immediately specialize it assuming an em-
bedding in Euclidean space.

A topology on a set X is a system A" of subsets with

the following properties:

(i) 0,Xe X,

(ii) if Z C X then JZ € X, and
(iii) if Z C X is finite then (2 € X.

A set X with a topology is called a topological space.
The sets in A’ are the open sets and the complements
of the open sets are the closed sets of X. A neighbor-
hood of a point # € X is an open set that contains z.
A cover is a collection of sets whose union is X. X is
compact if every cover of X with open sets has a finite
subcover. X is connected if the only subsets of X that
are both open and closed are ) and X. The subspace
topology of Y C Xis the system Y = {YNX | X € X'}
With this topology Y is called a subspace of X.

The d-dimensional Euclidean space is the set of
real d-tuples, RY = {z = (z1,79,...,24) | z; € R}.
The norm of z € R? is ||| = (Zle x?)%, and the
distance between points z,y € R? is |zy| = ||z — y||.
The open ball with center z € R? and radius ¢ > 0 is
b, = {x | |ez| < e}. The set of open balls generates
what we call the Euclidean topology of RY, namely
the system whose sets are unions of open balls. Every
subset Y C R? defines a subspace topology and thus a
subspace of R?. Particularly useful subspaces of R? are
the d-halfspace, the (closed) d-ball, and the (d — 1)-
sphere:

H' = {zeR'|a >0},
B = {zreR?||z|| <1}, and
s = {w R[] = 1),

Affine and Convex Hull. We assume the usual vec-
tor space with componentwise addition of two vectors
and multiplication of a vector with a scalar. The terms
vector and point are used synonymously.
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Given a set of points 7' = {po, p1,...,pn} in RY, the

affine hull 1s

aff 7' =

O bipi 1> _ i =1},
=0 =0

T 1s affinely independent if aff T" is different from the
affine hull of every proper subset of T'. A k-flat is the
affine hull of £ 4+ 1 affinely independent points. The
convex hull of T"is

convl =

{r €aff T'| ¢; > 0 for all ¢}.

A k-simplexis the convex hull of k+1 affinely indepen-
dent points. We call a 0-simplex a vertex, a l-simplex
an edge, a 2-simplex a triangle, and a 3-simplex a
tetrahedron. Let T = {po,p1,...,pr} be affinely in-
dependent. Then o = convT is a k-simplex and its
dimensionis dimo =k =card 7T — 1. A face of 5 is a
simplex 7 = conv U with U C T it is proper if U is a
proper subset of 7. The barycentric coordinates of
a point x € ¢ are the real numbers ¢; with

k k
Zf/ﬁpizl‘ and Z¢i:1~
=0 =0

The barycenter of ¢ is the point b(c) with barycentric
coordinates ¢; = kl? for all 4.
Simplicial Complexes. A simplicial complex is a
finite collection K of simplices with the following two
properties:

(i) if ¢ € K and 7 is a face of ¢ then 7 € K, and
(ii) if o,0" € K then o N o’ is empty or a face of both.

The vertex set is Vert K = {0 € K | dimo = 0}.
The underlying space is the part of space covered by
simplices in K: | K| = UK. The dimension is dim K =
max{dime | ¢ € K}. A subcomplex is a simplicial
complex £ C K. The closure of a subset L C K is the
smallest subcomplex that contains L: CI1L = {o € K |
o C 7 for some 7 € L}. The star and link of 7 € K
are

Str =
Lkt

{oc € K| risafaceof ¢} and
{oc e CISt7|onr =0}

A simplicial complex £ with |£]| = |K| is a subdivi-
sion of K if every simplex in £ is contained in a simplex
in K.

An abstract simplicial complex is a finite system
Aofsetsso X € Aand Y C X impliesY € A. The sets
in A are called abstract simplices. The dimensions



of X and A are dimX = card X — 1 and dimA =
max{dim X | X € A}. The vertex set of Ais Vert A =
(JA. A graph is a 1-dimensional abstract simplicial
complex. The nerve of a finite system A is

NivA = {XCA|[)X#0}
Nrv A is an abstract simplicial complex with vertex set
A. A geometric realization is a map f : Vert A — R?
for which X = {conv f(X) | X € A} is a simplicial com-
plex. A useful result is that every abstract simplicial
complex of dimension k has a geometric realization in
R? for some large enough d.

A chain is a collection of abstract simplices that can
be ordered so that Xy C Xy C ... C X;. The order
complex is the system C of chains in A; it is an abstract
simplicial complex because every subset of a chain is
again a chain. Let K be the simplicial complex defined
by a geometric realization f : Vert A — R?. Extend f to
g : Vert C — R? by sending every abstract simplex X €
A = VertC to its barycenter: ¢(X) = b(conv f(X)).
The barycentric subdivision of X is

SAK = {convy(C)|C € C}.
Sd K is indeed a simplicial complex and ¢ is a geometric
realization of the order complex.

Maps and Equivalences. A function f: X — Y is
continuous if the preimage of every open set in Y is
open in X. A map is a continuous function. A home-
omorphism is a bijective map whose inverse is also
continuous. X and Y are homeomorphic or topolog-
ically equivalent, denoted X &2 Y, if there is a home-
omorphism between them. A triangulation of X is a
simplicial complex K together with a homeomorphism
h : |K| — X. X is triangulable if it has a trian-
gulation. An embedding is an injection ¢ : X — Y
whose restriction to the image, e(X) C Y, is a homeo-
morphism. A retraction of a topological space X to a
subspace Y is a map r : X — Y with r(y) = y for all
y € Y. An immersion is a map f : X — Y such that
every € X has a neighborhood on which f is bijective.

A homotopy between two maps f,g : X — Y is a
map

F:Xx[0,1]—Y
for which F(z,0) = f(x) and F(z,1) = g(z) for all

z € X. f and ¢ are homotopic if there exists a ho-
motopy F between f and g. F' fixes » if F(x,t) is the
same for all ¢ € [0,1]. An isotopy between f and g
1s a homotopy F' so that every f; : X — Y defined by
fi(x) = F(x,t) is a homeomorphism between X and its
image. A deformation retraction of X to Y C X is
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a homotopy between the identity 1x : X — X and a
retraction r : X — Y that fixes all y € Y.

Two topological spaces, X and Y, are homotopy
equivalent, denoted X ~ Y, if there are maps a : X —
Y and b : Y — X with b o a homotopic to 1x and a o b
homotopic to 1y. For example, X ~ Y if there is a de-
formation retraction of X to Y. Indeed, define a = r
and b = 1y. Then a o b = 1y and the deformation re-
traction itself is a homotopy between boa and 1x. X is
contractible if it is homotopy equivalent to a point.

Topological spaces given in terms of simplicial com-
plexes can be related via piecewise linear maps. Let
K, £ be simplicial complexes. A vertex map is a func-
tion v : Vert X — Vert £ with the property that if
o = convT is a simplex in K then convo(T) is a sim-
plex in £. A simplicial map f : |[K| — |£] is the
linear extension of a vertex map v:

fle)y = ) éi-vlp),

pi€T

where ¢ = conv7 is a simplex in K that contains z
and ¢; is the barycentric coordinate of x# that corre-
sponds to p; € T. K and £ are isomorphic or sim-
plicially equivalent if they permit a bijective vertex
map v. In this case the linear extension is a simpli-
cial homeomorphism between |K| and [£]. K and £
are PL-equivalent if there are simplicially equivalent
subdivisions K’ of K and £’ of £. It has been conjec-
tured that two simplicial complexes are PL-equivalent
if they triangulate the same topological space. This
is known as the Hauptvermutung in combinatorial
topology and has since been disproved for complexes of
dimension 3 and higher [82]. The conjecture is correct
for 3-dimensional manifolds and 2-dimensional triangu-
lable spaces [84].

Fundamental Group and Covering Spaces. Let
X be a topological space. A path in X is a contin-
uous map p : [0,1] — X. The path joins the ini-
tial point, p(0), to the terminal point, p(1). X is
path-connected if every pair of points in X can be
joined by a path. Two paths are equivalent if they
are connected by a homotopy that leaves the common
initial and terminal points fixed. The inverse of p is
p~1(t) = p(1 —t). The product of two paths p and ¢
is defined if p(1) = ¢(0):

{M% ﬁg

(P : Q)(t) q(2t _ 1) if

— b=

<t <=, and
<t<1.
The equivalence relation and the product are compati-

ble, that is, if p1, ¢; and ps, g2 are two pairs of equivalent
paths then p; - q; and ps - g2 are equivalent. A path p is



aloop if p(0) = p(1) = xg, and the loop is based at zy.
For example, p-p~! is a loop equivalent to the constant
map [0, 1] — 2. The equivalence classes of loops based
at xg together with the product operation form a group
called the fundamental group of X at zy and denoted
7(X, zp). For a path-connected space X any two groups
7(X, zg) and #(X, yo) are isomorphic. Therefore, for a
path-connected space X we have a unique fundamental
group for the entire space, denoted 7(X). We note that
for finite simplicial complexes and for manifolds the no-
tions of path-connectedness and connectedness are the
same and do not have to be distinguished. The fun-
damental group is invariant over homotopy equivalent
spaces. X is simply connected if w(X) is trivial. If
X 1is contractible then it is simply connected. The re-
verse is not correct: for d > 2 the d-sphere is simply
connected but not contractible.

Let X be a topological space. A covering space of X
is a topological space Y together with amapp: Y — X.
pis called a projection and satisfies the following prop-
erty: for each point # € X there is a path-connected
neighborhood U so that for each path-connected com-
ponent V of p~1(U) the restriction of p to V is a homeo-
morphism. A covering space Y of X is universal if Y is
connected. Any two universal covering spaces of X are
topologically equivalent. For example, R' is a universal
covering space of $' and R? is a universal covering space
of the torus. An important property of covering spaces
i1s that they lift maps. For example, if « 1s a path in
a space X with covering space Y and projection p, and
if yo € Y is such that p(yo) = «(0), then there exists a
unique path &' in Y with initial point «/(0) = yp and
such that po o’ = a. We say the path o’ is a lifting of
the path «.

Manifolds. A topological space M is a d-manifold if
every point « € M has a neighborhood homeomorphic
to R?. A closed surface is a compact 2-manifold. The
long-standing Poincaré conjecture states that every
simply connected 3-manifold is homeomorphic to the 3-
sphere. In spite of a tremendous amount of effort there
is still no proof and no counterexample [7, 57]. M is a d-
manifold with boundary if every # € M has a neigh-
borhood homeomorphic to R? or to H?. The boundary
of M is the set of points with neighborhoods homeomor-
phic to the d-dimensional half-space, H?. The boundary
of M is either empty or a (d—1)-manifold. All manifolds
of dimension d < 3 are triangulable.

An ordered k-simplex is a k-simplex together with
a permutation of its vertices, and we write

[p()apla"'

Two orderings have the same orientation if they differ

g = apk‘]
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by an even permutation. All simplices of dimension 1
or higher have two orientations. The orientation of a
(k — 1)-face induced by o is

(=1)'[po, -

where a leading minus reverses orientation. Two k-
simplices sharing a (k — 1)-face 7 are consistently
oriented if they induce different orientations of 7. A
triangulable d-manifold is orientable if all d-simplices
in a triangulation can be ordered so all adjacent pairs
are consistently oriented. Otherwise, the d-manifold is
non-orientable. For example, the projective plane
and the Klein bottle are two non-orientable closed
surfaces, and the Mobius strip is a non-orientable 2-
manifold with boundary. Non-orientable closed surfaces
cannot be embedded in R3.

T = apk‘]a

S Pi-1, Pitly -

Homology Groups and Betti Numbers. We con-
sider only simplicial homology with integer coefficients.
Let K be a simplicial complex and assign to each sim-
plex an arbitrary but fixed ordering of its vertices.
K} C K is the set of ordered j-simplices. A j-chain
is a function ¢ : K/ — Z. We write the chain as a
formal sum:

Z c(o) - o.

ceEKT

Two j-chains are added componentwise. The j-chains
together with addition form the group of j-chains, C;.
The boundary operator maps an ordered j-simplex

o = [po,p1,- ~~,Pj] to a (j — 1)-chain
J

> (=1)[po, - .-

i=0

djo = ,Pi=1, Pitl, - -, Pyl

The boundary homomorphism, 9; : C; — C;_4, is
defined by d;¢ = > e(o) - 9;0. The chain complex
is the sequence of chain groups connected by boundary
homomorphisms:

95
—_—

851

i1
J+1 ’

dit2
. —

C; =G

The image and kernel of the boundary homomor-
phism are

Imo; =
Kero; =

{9jc|ce Gt
{eeCl0jc=0}

c € Cjisa j-cycleif ¢ € Ker §; and it is a j-boundary
if ¢ € Imdjy1. A j-boundary is sometimes called a
null-homologous j-cycle. The j-boundaries form a
subgroup of the group of j-cycles which form a subgroup



of the group of j-chains: B; C Z; C C;. The fact
that every j-boundary is also a j-cycle is important and
follows from 8;0;41¢ = 0 for every ¢ € Cj41. The j-th
homology group is the quotient of the cycle group
over the boundary group:

H, = Z;|B;.

Homology groups are finitely generated and abelian.
The fundamental theorem on such groups implies H;
can be written as the direct sum of two subgroups, Z°s
and T. f; is the rank of H;. T is the direct sum of
finitely many cyclic groups, Z;, and is referred to as
the torsion subgroup of H;.

The above seemingly roundabout construction is jus-
tified by the fact that H; is invariant over all simpli-
cial complexes triangulating the same topological space
X 2z | K| It is therefore meaningful to call H; the j-th
homology group of X. Similarly, the j-th Betti num-
ber, §;, and the Euler characteristic,

X = Z(—l)jﬁj,

are invariant over all triangulations of X. For example
the FEuler characteristics of the d-sphere and the d-ball
are

x = 1+(=14
x = 1.

Indeed, the only non-zero Betti numbers of $¢ are 8y =
87 = 1 and the only non-zero Betti number of B? is
Bo = 1. The Euler characteristic of every compact d-
manifold with odd d is 0.
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