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The Quaternions and the Spaces S3,
SU(2), SO(3), and RP

3

8.1 The Algebra H of Quaternions

In this chapter, we discuss the representation of rotations of R
3 in terms

of quaternions. Such a representation is not only concise and elegant, it
also yields a very efficient way of handling composition of rotations. It also
tends to be numerically more stable than the representation in terms of
orthogonal matrices.

The group of rotations SO(2) is isomorphic to the group U(1) of complex
numbers eiθ = cos θ + i sin θ of unit length. This follows immediately from
the fact that the map

eiθ �→
(

cos θ − sin θ
sin θ cos θ

)
is a group isomorphism. Geometrically, observe that U(1) is the unit circle
S1. We can identify the plane R

2 with the complex plane C, letting z =
x + iy ∈ C represent (x, y) ∈ R

2. Then every plane rotation ρθ by an angle
θ is represented by multiplication by the complex number eiθ ∈ U(1), in
the sense that for all z, z′ ∈ C,

z′ = ρθ(z) iff z′ = eiθz.

In some sense, the quaternions generalize the complex numbers in such a
way that rotations of R

3 are represented by multiplication by quaternions
of unit length. This is basically true with some twists. For instance, quater-
nion multiplication is not commutative, and a rotation in SO(3) requires
conjugation with a quaternion for its representation. Instead of the unit
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circle S1, we need to consider the sphere S3 in R
4, and U(1) is replaced by

SU(2).
Recall that the 3-sphere S3 is the set of points (x, y, z, t) ∈ R

4 such that

x2 + y2 + z2 + t2 = 1,

and that the real projective space RP
3 is the quotient of S3 modulo the

equivalence relation that identifies antipodal points (where (x, y, z, t) and
(−x,−y,−z,−t) are antipodal points). The group SO(3) of rotations of R

3

is intimately related to the 3-sphere S3 and to the real projective space RP
3.

The key to this relationship is the fact that rotations can be represented by
quaternions, discovered by Hamilton in 1843. Historically, the quaternions
were the first instance of a skew field. As we shall see, quaternions represent
rotations in R

3 very concisely.
It will be convenient to define the quaternions as certain 2 × 2 complex

matrices. We write a complex number z as z = a + ib, where a, b ∈ R,
and the conjugate z of z is z = a − ib. Let 1, i, j, and k be the following
matrices:

1 =
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
,

j =
(

0 1
−1 0

)
, k =

(
0 i
i 0

)
.

Consider the set H of all matrices of the form

a1 + bi + cj + dk,

where (a, b, c, d) ∈ R
4. Thus, every matrix in H is of the form

A =
(

x y
−y x

)
,

where x = a + ib and y = c + id. The matrices in H are called quaternions.
The null quaternion is denoted by 0 (or 0, if confusion may arise). Quater-
nions of the form bi + cj + dk are called pure quaternions. The set of pure
quaternions is denoted by Hp.

Note that the rows (and columns) of such matrices are vectors in C
2 that

are orthogonal with respect to the Hermitian inner product of C
2 given by

(x1, y1) · (x2, y2) = x1x2 + y1y2.

Furthermore, their norm is√
xx + yy =

√
a2 + b2 + c2 + d2,

and the determinant of A is a2 + b2 + c2 + d2.
It is easily seen that the following famous identities (discovered by

Hamilton) hold:

i2 = j2 = k2 = ijk = −1,
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ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Using these identities, it can be verified that H is a ring (with multiplicative
identity 1) and a real vector space of dimension 4 with basis (1, i, j,k). In
fact, the quaternions form an associative algebra. For details, see Berger
[12], Veblen and Young [173], Dieudonné [46], Bertin [15].

� The quaternions H are often defined as the real algebra generated
by the four elements 1, i, j, k, and satisfying the identities just

stated above. The problem with such a definition is that it is not obvious
that the algebraic structure H actually exists. A rigorous justification re-
quires the notions of freely generated algebra and of quotient of an algebra
by an ideal. Our definition in terms of matrices makes the existence of
H trivial (but requires showing that the identities hold, which is an easy
matter).

Given any two quaternions X = a1 + bi + cj + dk and Y = a′1 + b′i +
c′j + d′k, it can be verified that

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i
+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.

It is worth noting that these formulae were discovered independently by
Olinde Rodrigues in 1840, a few years before Hamilton (Veblen and Young
[173]). However, Rodrigues was working with a different formalism, homo-
geneous transformations, and he did not discover the quaternions. The map
from R to H defined such that a �→ a1 is an injection that allows us to view
R as a subring R1 (in fact, a field) of H. Similarly, the map from R

3 to H

defined such that (b, c, d) �→ bi + cj + dk is an injection that allows us to
view R

3 as a subspace of H, in fact, the hyperplane Hp.
Given a quaternion X = a1 + bi + cj + dk, we define its conjugate X as

X = a1 − bi − cj − dk.

It is easily verified that

XX = (a2 + b2 + c2 + d2)1.

The quantity a2 + b2 + c2 +d2, also denoted by N(X), is called the reduced
norm of X. Clearly, X is nonnull iff N(X) �= 0, in which case X/N(X) is the
multiplicative inverse of X. Thus, H is a skew field. Since X +X = 2a1, we
also call 2a the reduced trace of X, and we denote it by Tr(X). A quaternion
X is a pure quaternion iff X = −X iff Tr(X) = 0. The following identities
can be shown (see Berger [12], Dieudonné [46], Bertin [15]):

XY = Y X,
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Tr(XY ) = Tr(Y X),
N(XY ) = N(X)N(Y ),

Tr(ZXZ−1) = Tr(X),

whenever Z �= 0.
If X = bi+cj+dk and Y = b′i+c′j+d′k are pure quaternions, identifying

X and Y with the corresponding vectors in R
3, the inner product X · Y

and the cross product X ×Y make sense, and letting [0,X ×Y ] denote the
quaternion whose first component is 0 and whose last three components
are those of X × Y , we have the remarkable identity

XY = −(X · Y )1 + [0,X × Y ].

More generally, given a quaternion X = a1 + bi + cj + dk, we can write it
as

X = [a, (b, c, d)],

where a is called the scalar part of X and (b, c, d) the pure part of X. Then,
if X = [a, U ] and Y = [a′, U ′], it is easily seen that the quaternion product
XY can be expressed as

XY = [aa′ − U · U ′, aU ′ + a′U + U × U ′].

The above formula for quaternion multiplication allows us to show the
following fact. Let Z ∈ H, and assume that ZX = XZ for all X ∈ H. We
claim that the pure part of Z is null, i.e., Z = a1 for some a ∈ R. Indeed,
writing Z = [a, U ], if U �= 0, there is at least one nonnull pure quaternion
X = [0, V ] such that U × V �= 0 (for example, take any nonnull vector V
in the orthogonal complement of U). Then

ZX = [−U · V, aV + U × V ], XZ = [−V · U, aV + V × U ],

and since V × U = −(U × V ) and U × V �= 0, we have XZ �= ZX, a
contradiction. Conversely, it is trivial that if Z = [a, 0], then XZ = ZX for
all X ∈ H. Thus, the set of quaternions that commute with all quaternions
is R1.

Remark: It is easy to check that for arbitrary quaternions X = [a, U ] and
Y = [a′, U ′],

XY − Y X = [0, 2(U × U ′)],

and that for pure quaternions X,Y ∈ Hp,

2(X · Y )1 = −(XY + Y X).

Since quaternion multiplication is bilinear, for a given X, the map Y �→
XY is linear, and similarly for a given Y , the map X �→ XY is linear. It is
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immediate that if the matrix of the first map is LX and the matrix of the
second map is RY , then

XY = LXY =




a −b −c −d
b a −d c
c d a −b
d −c b a






a′

b′

c′

d′




and

XY = RY X =




a′ −b′ −c′ −d′

b′ a′ d′ −c′

c′ −d′ a′ b′

d′ c′ −b′ a′






a
b
c
d


 .

Observe that the columns (and the rows) of the above matrices are or-
thogonal. Thus, when X and Y are unit quaternions, both LX and RY

are orthogonal matrices. Furthermore, it is obvious that LX = L�
X , the

transpose of LX , and similarly, RY = R�
Y . Since XX = N(X), the matrix

LXL�
X is the diagonal matrix N(X)I (where I is the identity 4×4 matrix),

and similarly the matrix RY R�
Y is the diagonal matrix N(Y )I. Since LX

and L�
X have the same determinant, we deduce that det(LX)2 = N(X)4,

and thus det(LX) = ±N(X)2. However, it is obvious that one of the terms
in det(LX) is a4, and thus

det(LX) = (a2 + b2 + c2 + d2)2.

This shows that when X is a unit quaternion, LX is a rotation matrix, and
similarly when Y is a unit quaternion, RY is a rotation matrix (see Veblen
and Young [173]).

Define the map ϕ: H × H → R as follows:

ϕ(X,Y ) =
1
2

Tr(X Y ) = aa′ + bb′ + cc′ + dd′.

It is easily verified that ϕ is bilinear, symmetric, and definite positive. Thus,
the quaternions form a Euclidean space under the inner product defined
by ϕ (see Berger [12], Dieudonné [46], Bertin [15]).

It is immediate that under this inner product, the norm of a quaternion
X is just

√
N(X). As a Euclidean space, H is isomorphic to E

4. It is also
immediate that the subspace Hp of pure quaternions is orthogonal to the
space of “real quaternions” R1. The subspace Hp of pure quaternions inher-
its a Euclidean structure, and this subspace is isomorphic to the Euclidean
space E

3. Since H and E
4 are isomorphic Euclidean spaces, their groups

of rotations SO(H) and SO(4) are isomorphic, and we will identify them.
Similarly, we will identify SO(Hp) and SO(3).
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8.2 Quaternions and Rotations in SO(3)

We have just observed that for any nonnull quaternion X, both maps Y �→
XY and Y �→ Y X (where Y ∈ H) are linear maps, and that when N(X) =
1, these linear maps are in SO(4). This suggests looking at maps ρY,Z : H →
H of the form X �→ Y XZ, where Y,Z ∈ H are any two fixed nonnull
quaternions such that N(Y )N(Z) = 1. In view of the identity N(UV ) =
N(U)N(V ) for all U, V ∈ H, we see that ρY,Z is an isometry. In fact, since
ρY,Z = ρY,1 ◦ ρ1,Z , and since ρY,1 is the map X �→ Y X and ρ1,Z is the
map X �→ XZ, which are both rotations, ρY,Z itself is a rotation, i.e.,
ρY,Z ∈ SO(4). We will prove that every rotation in SO(4) arises in this
fashion.

When Z = Y −1, the map ρY,Y −1 is denoted more simply by ρY . In this
case, it is easy to check that ρY is the identity on 1R, and maps Hp into
itself. Indeed (renaming Y as Z), observe that

ρZ(X + Y ) = ρZ(X) + ρZ(Y ).

It is also easy to check that

ρZ(X) = ρZ(X).

Then we have

ρZ(X + X) = ρZ(X) + ρZ(X) = ρZ(X) + ρZ(X),

and since if X = [a, U ], then X + X = 2a1, where a is the real part of X,
if X is pure, i.e., X + X = 0, then ρZ(X) + ρZ(X) = 0, i.e., ρZ(X) is also
pure. Thus, ρZ ∈ SO(3), i.e., ρZ is a rotation of E

3. We will prove that
every rotation in SO(3) arises in this fashion.

Remark: If a bijective map ρ: H → H satisfies the three conditions

ρ(X + Y ) = ρ(X) + ρ(Y ),
ρ(λX) = λρ(X),
ρ(XY ) = ρ(X)ρ(Y ),

for all quaternions X,Y ∈ H and all λ ∈ R, i.e., ρ is a linear automorphism
of H, it can be shown that ρ(X) = ρ(X) and N(ρ(X)) = N(X). In fact, ρ
must be of the form ρZ for some nonnull Z ∈ H.

The quaternions of norm 1, also called unit quaternions, are in bijec-
tion with points of the real 3-sphere S3. It is easy to verify that the unit
quaternions form a subgroup of the multiplicative group H

∗ of nonnull
quaternions. In terms of complex matrices, the unit quaternions corre-
spond to the group of unitary complex 2 × 2 matrices of determinant 1
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(i.e., xx + yy = 1),

A =
(

x y
−y x

)
,

with respect to the Hermitian inner product in C
2. This group is denoted

by SU(2). The obvious bijection between SU(2) and S3 is in fact a home-
omorphism, and it can be used to transfer the group structure on SU(2) to
S3, which becomes a topological group isomorphic to the topological group
SU(2) of unit quaternions. Incidentally, it is easy to see that the group
U(2) of all unitary complex 2 × 2 matrices consists of all matrices of the
form

A =
(

λx y
−λy x

)
,

with xx + yy = 1, and where λ is a complex number of modulus 1 (λλ =
1). It should also be noted that the fact that the sphere S3 has a group
structure is quite exceptional. As a matter of fact, the only spheres for which
a continuous group structure is definable are S1 and S3. The algebraic
structure of the groups SU(2) and SO(3), and their relationship to S3, is
explained very clearly in Chapter 8 of Artin [5], which we highly recommend
as a general reference on algebra.

One of the most important properties of the quaternions is that they can
be used to represent rotations of R

3, as stated in the following lemma. Our
proof is inspired by Berger [12], Dieudonné [46], and Bertin [15].

Lemma 8.2.1 For every quaternion Z �= 0, the map

ρZ :X �→ ZXZ−1

(where X ∈ H) is a rotation in SO(H) = SO(4) whose restriction to the
space Hp of pure quaternions is a rotation in SO(Hp) = SO(3). Conversely,
every rotation in SO(3) is of the form

ρZ :X �→ ZXZ−1,

for some quaternion Z �= 0 and for all X ∈ Hp. Furthermore, if two nonnull
quaternions Z and Z ′ represent the same rotation, then Z ′ = λZ for some
λ �= 0 in R.

Proof . We have already observed that ρZ ∈ SO(3). We have to prove that
every rotation is of the form ρZ . First, it is easily seen that

ρY X = ρY ◦ ρX .

By Theorem 7.2.1, every rotation that is not the identity is the composition
of an even number of reflections (in the three-dimensional case, two reflec-
tions), and thus it is enough to show that for every reflection σ of Hp about a
plane H, there is some pure quaternion Z �= 0 such that σ(X) = −ZXZ−1
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for all X ∈ Hp. If Z is a pure quaternion orthogonal to the plane H, we
know that

σ(X) = X − 2
(X · Z)
(Z · Z)

Z

for all X ∈ Hp. However, for pure quaternions Y,Z ∈ Hp, we have

2(Y · Z)1 = −(Y Z + ZY ).

Then (Z · Z)1 = −Z2, and we have

σ(X) = X − 2
(X · Z)
(Z · Z)

Z = X + 2(X · Z)Z−1

= X − (XZ + ZX)Z−1 = −ZXZ−1,

which shows that σ(X) = −ZXZ−1 for all X ∈ Hp, as desired.
If ρ(Z1) = ρ(Z2), then

Z1XZ−1
1 = Z2XZ−1

2

for all X ∈ H, which is equivalent to

Z−1
2 Z1X = XZ−1

2 Z1

for all X ∈ H. However, we showed earlier that Z−1
2 Z1 = a1 for some

a ∈ R, and since Z1 and Z2 are nonnull, we get Z2 = (1/a)Z1, where a �= 0.

As a corollary of

ρY X = ρY ◦ ρX ,

it is easy to show that the map ρ:SU(2) → SO(3) defined such that ρ(Z) =
ρZ is a surjective and continuous homomorphism whose kernel is {1,−1}.
Since SU(2) and S3 are homeomorphic as topological spaces, this shows
that SO(3) is homeomorphic to the quotient of the sphere S3 modulo the
antipodal map. But the real projective space RP

3 is defined precisely this
way in terms of the antipodal map π:S3 → RP

3, and thus SO(3) and
RP

3 are homeomorphic. This homeomorphism can then be used to transfer
the group structure on SO(3) to RP

3, which becomes a topological group.
Moreover, it can be shown that SO(3) and RP

3 are diffeomorphic manifolds
(see Marsden and Ratiu [120]). Thus, SO(3) and RP

3 are at the same time
groups, topological spaces, and manifolds, and in fact they are Lie groups
(see Marsden and Ratiu [120] or Bryant [24]).

The axis and the angle of a rotation can also be extracted from a
quaternion representing that rotation. The proof of the following lemma
is adapted from Berger [12] and Dieudonné [46].

Lemma 8.2.2 For every quaternion Z = a1 + t where t is a nonnull pure
quaternion, the axis of the rotation ρZ associated with Z is determined by
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the vector in R
3 corresponding to t, and the angle of rotation θ is equal to

π when a = 0, or when a �= 0, given a suitable orientation of the plane
orthogonal to the axis of rotation, the angle is given by

tan
θ

2
=

√
N(t)
|a| ,

with 0 < θ ≤ π.

Proof . A simple calculation shows that the line of direction t is invariant
under the rotation ρZ , and thus it is the axis of rotation. Note that for
any two nonnull vectors X,Y ∈ R

3 such that N(X) = N(Y ), there is some
rotation ρ such that ρ(X) = Y . If X = Y , we use the identity, and if X �= Y ,
we use the rotation of axis determined by X × Y rotating X to Y in the
plane containing X and Y . Thus, given any two nonnull pure quaternions
X,Y such that N(X) = N(Y ), there is some nonnull quaternion W such
that Y = WXW−1. Furthermore, given any two nonnull quaternions Z,W ,
we claim that the angle of the rotation ρZ is the same as the angle of the
rotation ρWZW−1 . This can be shown as follows. First, letting Z = a1 + t
where t is a pure nonnull quaternion, we show that the axis of the rotation
ρWZW−1 is WtW−1 = ρW (t). Indeed, it is easily checked that WtW−1 is
pure, and

WZW−1 = W (a1 + t)W−1 = Wa1W−1 + WtW−1 = a1 + WtW−1.

Second, given any pure nonnull quaternion X orthogonal to t, the angle of
the rotation Z is the angle between X and ρZ(X). Since rotations preserve
orientation (since they preserve the cross product), the angle θ between
two vectors X and Y is preserved under rotation. Since rotations preserve
the inner product, if X · t = 0, we have ρW (X) · ρW (t) = 0, and the angle
of the rotation ρWZW−1 = ρW ◦ ρZ ◦ (ρW )−1 is the angle between the two
vectors ρW (X) and ρWZW−1(ρW (X)). Since

ρWZW−1(ρW (X)) = (ρW ◦ ρZ ◦ (ρW )−1 ◦ ρW )(X)
= (ρW ◦ ρZ)(X) = ρW (ρZ(X)),

the angle of the rotation ρWZW−1 is the angle between the two vectors
ρW (X) and ρW (ρZ(X)). Since rotations preserves angles, this is also the
angle between the two vectors X and ρZ(X), which is the angle of the
rotation ρZ , as claimed. Thus, given any quaternion Z = a1+ t, where t is
a nonnull pure quaternion, since there is some nonnull quaternion W such
that WtW−1 =

√
N(t) i and WZW−1 = a1 +

√
N(t) i, it is enough to

figure out the angle of rotation for a quaternion Z of the form a1 + bi (a
rotation of axis i). It suffices to find the angle between j and ρZ(j), and
since

ρZ(j) = (a1 + bi)j(a1 + bi)−1,
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we get

ρZ(j) =
1

a2 + b2
(a1 + bi)j(a1 − bi) =

a2 − b2

a2 + b2
j +

2ab

a2 + b2
k.

Then if a �= 0, we must have

tan θ =
2ab

a2 − b2
=

2(b/a)
1 − (b/a)2

,

and since

tan θ =
2 tan (θ/2)

1 − tan2 (θ/2)
,

under a suitable orientation of the plane orthogonal to the axis of rotation,
we get

tan
θ

2
=

b

|a| =

√
N(t)
|a| .

If a = 0, we get

ρZ(j) = −j,

and θ = π.

Note that if Z is a unit quaternion, then since

cos θ =
1 − tan2 (θ/2)
1 + tan2 (θ/2)

and a2 + N(t) = N(Z) = 1, we get cos θ = a2 − N(t) = 2a2 − 1, and since
cos θ = 2 cos2 (θ/2) − 1, under a suitable orientation we have

cos
θ

2
= |a|.

Now, since a2 + N(t) = N(Z) = 1, we can write the unit quaternion Z as

Z =
[
cos

θ

2
, sin

θ

2
V

]
,

where V is the unit vector t√
N(t)

(with −π ≤ θ ≤ π). Also note that

V V = −1, and thus, formally, every unit quaternion looks like a complex
number cos ϕ + i sin ϕ, except that i is replaced by a unit vector, and
multiplication is quaternion multiplication.

In order to explain the homomorphism ρ:SU(2) → SO(3) more con-
cretely, we now derive the formula for the rotation matrix of a rotation ρ
whose axis D is determined by the nonnull vector w and whose angle of
rotation is θ. For simplicity, we may assume that w is a unit vector. Let-
ting W = (b, c, d) be the column vector representing w and H be the plane
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orthogonal to w, recall from the discussion just before Lemma 7.1.3 that
the matrices representing the projections pD and pH are

WW� and I − WW�.

Given any vector u ∈ R
3, the vector ρ(u) can be expressed in terms of the

vectors pD(u), pH(u), and w × pH(u) as

ρ(u) = pD(u) + cos θ pH(u) + sin θ w × pH(u).

However, it is obvious that

w × pH(u) = w × u,

so that

ρ(u) = pD(u) + cos θ pH(u) + sin θ w × u,

ρ(u) = (u · w)w + cos θ (u − (u · w)w) + sin θ w × u,

and we know from Section 7.9 that the cross product w×u can be expressed
in terms of the multiplication on the left by the matrix

A =


 0 −d c

d 0 −b
−c b 0


 .

Then, letting

B = WW� =


 b2 bc bd

bc c2 cd
bd cd d2


 ,

the matrix R representing the rotation ρ is

R = WW� + cos θ(I − WW�) + sin θA,

= cos θ I + sin θA + (1 − cos θ)WW�,

= cos θ I + sin θA + (1 − cos θ)B.

It is immediately verified that

A2 = B − I,

and thus R is also given by

R = I + sin θA + (1 − cos θ)A2.

Then the nonnull unit quaternion

Z =
[
cos

θ

2
, sin

θ

2
V

]
,

where V = (b, c, d) is a unit vector, corresponds to the rotation ρZ of matrix

R = I + sin θA + (1 − cos θ)A2.
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Remark: A related formula known as Rodrigues’s formula (1840) gives an
expression for a rotation matrix in terms of the exponential of a matrix (the
exponential map). Indeed, given (b, c, d) ∈ R

3, letting θ =
√

b2 + c2 + d2,
we have

eA = cos θ I +
sin θ

θ
A +

(1 − cos θ)
θ2

B,

with A and B as above, but (b, c, d) not necessarily a unit vector. We will
study exponential maps later on.

Using the matrices LX and RY introduced earlier, since XY = LXY =
RY X, from Y = ZXZ−1 = ZXZ/N(Z), we get

Y =
1

N(Z)
LZRZX.

Thus, if we want to see the effect of the rotation specified by the quaternion
Z in terms of matrices, we simply have to compute the matrix

R(Z) =
1

N(Z)
LZRZ = ν




a −b −c −d
b a −d c
c d a −b
d −c b a






a b c d
−b a −d c
−c d a −b
−d −c b a


 ,

where

N(Z) = a2 + b2 + c2 + d2 and ν =
1

N(Z)
,

which yields

ν




N(Z) 0 0 0
0 a2 + b2 − c2 − d2 2bc − 2ad 2ac + 2bd
0 2bc + 2ad a2 − b2 + c2 − d2 −2ab + 2cd
0 −2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2


 .

But since every pure quaternion X is a vector whose first component is 0,
we see that the rotation matrix R(Z) associated with the quaternion Z is

1
N(Z)


 a2 + b2 − c2 − d2 2bc − 2ad 2ac + 2bd

2bc + 2ad a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2


 .

This expression for a rotation matrix is due to Euler (see Veblen and Young
[173]). It is quite remarkable that this matrix contains only quadratic poly-
nomials in a, b, c, d. This makes it possible to compute easily a quaternion
from a rotation matrix.

From a computational point of view, it is worth noting that computing
the composition of two rotations ρY and ρZ specified by two quaternions
Y,Z using quaternion multiplication (i.e., ρY ◦ ρZ = ρY Z) is cheaper than
using rotation matrices and matrix multiplication. On the other hand, com-
puting the image of a point X under a rotation ρZ is more expensive in
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terms of quaternions (it requires computing ZXZ−1) than it is in terms
of rotation matrices (where only AX needs to be computed, where A is a
rotation matrix). Thus, if many points need to be rotated and the rotation
is specified by a quaternion, it is advantageous to precompute the Euler
matrix.

8.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map X �→ ZXZ−1 (where X is a pure
quaternion) defines a rotation of Hp, and conversely, every rotation of Hp

is of the above form. What happens if we consider a map of the form

X �→ Y XZ,

where X ∈ H and N(Y )N(Z) = 1? Remarkably, it turns out that we get all
the rotations of H. The proof of the following lemma is inspired by Berger
[12], Dieudonné [46], and Tisseron [169].

Lemma 8.3.1 For every pair (Y,Z) of quaternions such that N(Y )N(Z)
= 1, the map

ρY,Z :X �→ Y XZ

(where X ∈ H) is a rotation in SO(H) = SO(4). Conversely, every rotation
in SO(4) is of the form

ρY,Z :X �→ Y XZ,

for some quaternions Y , Z such that N(Y )N(Z) = 1. Furthermore, if
two nonnull pairs of quaternions (Y,Z) and (Y ′, Z ′) represent the same
rotation, then Y ′ = λY and Z ′ = λ−1Z, for some λ �= 0 in R.

Proof . We have already shown that ρY,Z ∈ SO(4). It remains to prove
that every rotation in SO(4) is of this form.

It is easily seen that

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ ρY,Z .

Let ρ ∈ SO(4) be a rotation, and let Z0 = ρ(1) and g = ρZ−1
0 ,1. Since ρ is

an isometry, Z0 = ρ(1) is a unit quaternion, and thus g ∈ SO(4). Observe
that

g(ρ(1)) = 1,

which implies that F = R1 is invariant under g ◦ ρ. Since F⊥ = Hp, by
Lemma 7.2.2, g ◦ ρ(Hp) ⊆ Hp, which shows that the restriction of g ◦ ρ to
Hp is a rotation. By Lemma 8.2.1, there is some nonnull quaternion Z such
that g ◦ ρ = ρZ on Hp, but since both g ◦ ρ and ρZ are the identity on R1,
we must have g ◦ ρ = ρZ on H. Finally, a trivial calculation shows that

ρ = g−1 ◦ ρZ = ρZ0,1ρZ = ρZ0,1ρZ,Z−1 = ρZ0Z,Z−1 .



8.3. Quaternions and Rotations in SO(4) 261

If ρY,Z = ρY ′,Z′ , then

Y XZ = Y ′XZ ′

for all X ∈ H, that is,

Y −1Y ′XZ ′Z−1 = X

for all X ∈ H. Letting X = (Y −1Y ′)−1, we get Z ′Z−1 = (Y −1Y ′)−1. From

Y −1Y ′X(Y −1Y ′)−1 = X

for all Z ∈ H, by a previous remark, we must have Y −1Y ′ = λ1 for some
λ �= 0 in R, so that Y ′ = λY , and since Z ′Z−1 = (Y −1Y ′)−1, we get
Z ′Z−1 = λ−11, i.e. Z ′ = λ−1Z.

Since

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ ρY,Z ,

it is easy to show that the map η:S3 × S3 → SO(4) defined by η(Y,Z) =
ρY,Z is a surjective homomorphism whose kernel is {(1,1), (−1,−1)}.

Remark: Note that it is necessary to define η:S3×S3 → SO(4) such that

η(Y,Z)(X) = Y XZ,

where the conjugate Z of Z is used rather than Z, to compensate for the
switch between Z and Z ′ in

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ ρY,Z .

Otherwise, η would not be a homomorphism from the product group S3×S3

to SO(4).

We conclude this section on the quaternions with a mention of the expo-
nential map, since it has applications to quaternion interpolation, which,
in turn, has applications to motion interpolation.

Observe that the quaternions i, j,k can also be written as

i =
(

i 0
0 −i

)
= i

(
1 0
0 −1

)
,

j =
(

0 1
−1 0

)
= i

(
0 −i
i 0

)
,

k =
(

0 i
i 0

)
= i

(
0 1
1 0

)
,

so that if we define the matrices σ1, σ2, σ3 such that

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,
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we can write

Z = a1 + bi + cj + dk = a1 + i(dσ1 + cσ2 + bσ3).

The matrices σ1, σ2, σ3 are called the Pauli spin matrices. Note that their
traces are null and that they are Hermitian (recall that a complex matrix is
Hermitian if it is equal to the transpose of its conjugate, i.e., A∗ = A). The
somewhat unfortunate order reversal of b, c, d has to do with the traditional
convention for listing the Pauli matrices. If we let e0 = a, e1 = d, e2 = c,
and e3 = b, then Z can be written as

Z = e01 + i(e1σ1 + e2σ2 + e3σ3),

and e0, e1, e2, e3 are called the Euler parameters of the rotation specified
by Z. If N(Z) = 1, then we can also write

Z = cos
θ

2
1 + i sin

θ

2
(βσ3 + γσ2 + δσ1),

where

(β, γ, δ) =
1

sin θ
2

(b, c, d).

Letting A = βσ3 + γσ2 + δσ1, it can be shown that

eiθA = cos θ 1 + i sin θ A,

where the exponential is the usual exponential of matrices, i.e., for a square
n × n matrix M ,

exp(M) = In +
∑
k≥1

Mk

k!
.

Note that since A is Hermitian of null trace, iA is skew Hermitian of null
trace.

The above formula turns out to define the exponential map from the
Lie algebra of SU(2) to SU(2). The Lie algebra of SU(2) is a real vector
space having iσ1, iσ2, and iσ3 as a basis. Now, the vector space R

3 is a Lie
algebra if we define the Lie bracket on R

3 as the usual cross product u× v
of vectors. Then the Lie algebra of SU(2) is isomorphic to (R3,×), and the
exponential map can be viewed as a map exp: (R3,×) → SU(2) given by
the formula

exp(θv) =
[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R
3 and θ ∈ R.

The exponential map can be used for quaternion interpolation. Given
two unit quaternions X,Y , suppose we want to find a quaternion Z “inter-
polating” between X and Y . Of course, we have to clarify what this means.
Since SU(2) is topologically the same as the sphere S3, we define an in-
terpolant of X and Y as a quaternion Z on the great circle (on the sphere
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S3) determined by the intersection of S3 with the (2-)plane defined by the
two points X and Y (viewed as points on S3) and the origin (0, 0, 0, 0).

Then the points (quaternions) on this great circle can be defined by first
rotating X and Y so that X goes to 1 and Y goes to X−1Y , by multiplying
(on the left) by X−1. Letting

X−1Y = [cos Ω, sin Ω w] ,

where −π < Ω ≤ π, the points on the great circle from 1 to X−1Y are
given by the quaternions

(X−1Y )λ = [cos λΩ, sin λΩ w] ,

where λ ∈ R. This is because X−1Y = exp(2Ωw), and since an inter-
polant between (0, 0, 0) and 2Ωw is 2λΩw in the Lie algebra of SU(2), the
corresponding quaternion is indeed

exp(2λΩ) = [cos λΩ, sin λΩ w] .

We cannot justify all this here, but it is indeed correct.
If Ω �= π, then the shortest arc between X and Y is unique, and it

corresponds to those λ such that 0 ≤ λ ≤ 1 (it is a geodesic arc). However,
if Ω = π, then X and Y are antipodal, and there are infinitely many half
circles from X to Y . In this case, w can be chosen arbitrarily.

Finally, having the arc of great circle between 1 and X−1Y (assuming
Ω �= π), we get the arc of interpolants Z(λ) between X and Y by performing
the inverse rotation from 1 to X and from X−1Y to Y , i.e., by multiplying
(on the left) by X, and we get

Z(λ) = X(X−1Y )λ.

Note how the geometric reasoning immediately shows that

Z(λ) = X(X−1Y )λ = (Y X−1)λX.

It is remarkable that a closed-form formula for Z(λ) can be given, as shown
by Shoemake [157, 158]. If X = [cos θ, sin θ u] and Y = [cos ϕ, sin ϕ v]
(where u and v are unit vectors in R

3), letting

cos Ω = cos θ cos ϕ + sin θ sin ϕ (u · v)

be the inner product of X and Y viewed as vectors in R
4, it is a bit laborious

to show that

Z(λ) =
sin(1 − λ)Ω

sin Ω
X +

sin λΩ
sin Ω

Y.

The above formula is quite remarkable, since if X = cos θ + i sin θ and
Y = cos ϕ + i sin ϕ are two points on the unit circle S1 (given as complex
numbers of unit length), letting Ω = ϕ−θ, the interpolating point cos((1−
λ)θ + λϕ) + i sin((1 − λ)θ + λϕ) on S1 is given by the same formula

cos((1 − λ)θ + λϕ) + i sin((1 − λ)θ + λϕ) =
sin(1 − λ)Ω

sin Ω
X +

sin λΩ
sin Ω

Y.
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8.4 Applications of Euclidean Geometry to Motion
Interpolation

Euclidean geometry has a number applications including computer vision,
computer graphics, kinematics, and robotics. The motion of a rigid body in
space can be described using rigid motions. Given a fixed Euclidean frame
(O, (e1, e2, e3)), we can assume that some moving frame (C, (u1, u2, u3)) is
attached (say glued) to a rigid body B (for example, at the center of gravity
of B) so that the position and orientation of B in space are completely (and
uniquely) determined by some rigid motion (R,U), where U specifies the
position of C w.r.t. O, and R is a rotation matrix specifying the orientation
of B w.r.t. the fixed frame (O, (e1, e2, e3)). For simplicity, we can separate
the motion of the center of gravity C of B from the rotation of B around its
center of gravity. Then a motion of B in space corresponds to two curves:
The trajectory of the center of gravity and a curve in SO(3) represent-
ing the various orientations of B. Given a sequence of “snapshots” of B,
say B0, B1, . . . , Bm, we may want to find an interpolating motion passing
through the given snapshots. Furthermore, in most cases, it desirable that
the curve be invariant with respect to a change of coordinates and to rescal-
ing. Often, one looks for an energy minimizing motion. The problem is not
as simple as it looks, because the space of rotations SO(3) is topologically
rather complex, and in particular, it is curved.

The problem of motion interpolation has been studied quite extensively
both in the robotics and computer graphics communities. Since rotations
in SO(3) can be represented by quaternions (see Chapter 8), the problem
of quaternion interpolation has been investigated, an approach apparently
initiated by Shoemake [157, 158], who extended the de Casteljau algo-
rithm to the 3-sphere. Related work was done by Barr, Currin, Gabriel,
and Hughes [9]. Kim, M.-J., Kim, M.-S. and Shin [98, 99] corrected bugs in
Shoemake and introduced various kinds of splines on S3, using the exponen-
tial map. Motion interpolation and rational motions have been investigated
by Jüttler [94, 95], Jüttler and Wagner [96, 97], Horsch and Jüttler [89], and
Röschel [143]. Park and Ravani [133, 134] also investigated Bézier curves
on Riemannian manifolds and Lie groups, SO(3) in particular. More gener-
ally, the problem of interpolating curves on surfaces or higher-dimensional
manifolds in an efficient way remains an open problem. A very interesting
book on the quaternions and their applications to a number of engineering
problems, including aerospace systems, is the book by Kuipers [105], which
we highly recommend.
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8.5 Problems

Problem 8.1 Prove the following identities about quaternion multiplica-
tion (discovered by Hamilton):

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Problem 8.2 Given any two quaternions X = a1 + bi + cj + dk and
Y = a′1 + b′i + c′j + d′k, prove that

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i
+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.

Also prove that if X = [a, U ] and Y = [a′, U ′], the quaternion product
XY can be expressed as

XY = [aa′ − U · U ′, aU ′ + a′U + U × U ′].

Problem 8.3 Show that there is a very simple method for producing an
orthonormal frame in R

4 whose first vector is any given nonnull vector
(a, b, c, d).

Problem 8.4 Prove that

ρZ(XY ) = ρZ(X)ρZ(Y ),
ρZ(X + Y ) = ρZ(X) + ρZ(Y ),

for any nonnull quaternion Z and any two quaternions X,Y (i.e., ρZ is an
automorphism of H), and that

XY − Y X = [0, 2(U × U ′)]

for arbitrary quaternions X = [a, U ] and Y = [a′, U ′].

Problem 8.5 Give an algorithm to find a quaternion Z corresponding to
a rotation matrix R using the Euler form of a rotation matrix R(Z):

1
N(Z)


 a2 + b2 − c2 − d2 2bc − 2ad 2ac + 2bd

2bc + 2ad a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2


 .

What about the choice of the sign of Z?

Problem 8.6 Let i, j, and k, be the unit vectors of coordinates (1, 0, 0),
(0, 1, 0), and (0, 0, 1) in R

3.
(i) Describe geometrically the rotations defined by the following

quaternions:

p = (0, i), q = (0, j).
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Prove that the interpolant Z(λ) = p(p−1q)λ is given by

Z(λ) = (0, cos(λπ/2)i + sin(λπ/2)j) .

Describe geometrically what this rotation is.
(ii) Repeat question (i) with the rotations defined by the quaternions

p =

(
1
2
,

√
3

2
i

)
, q = (0, j).

Prove that the interpolant Z(λ) is given by

Z(λ) =

(
1
2

cos(λπ/2),
√

3
2

cos(λπ/2)i + sin(λπ/2)j

)
.

Describe geometrically what this rotation is.
(iii) Repeat question (i) with the rotations defined by the quaternions

p =
(

1√
2
,

1√
2
i

)
, q =

(
0,

1√
2
(i + j)

)
.

Prove that the interpolant Z(λ) is given by

Z(λ) =
(

1√
2

cos(λπ/3) − 1√
6

sin(λπ/3),

(1/
√

2 cos(λπ/3) + 1/
√

6 sin(λπ/3))i +
2√
6

sin(λπ/3)j
)

.

(iv) Prove that

w × (u × v) = (w · v)u − (u · w)v.

Conclude that

u × (u × v) = (u · v)u − (u · u)v.

(v) Let

p = (cos θ, sin θu), q = (cos ϕ, sin ϕv),

where u and v are unit vectors in R
3. If

cos Ω = cos θ cos ϕ + sin θ sin ϕ (u · v)

is the inner product of X and Y viewed as vectors in R
4, assuming that

Ω �= kπ, prove that

Z(λ) =
sin(1 − λ)Ω

sin Ω
p +

sin λΩ
sin Ω

q.


