
Chapter 7

Geodesics on Riemannian Manifolds

7.1 Geodesics, Local Existence and Uniqueness

If (M, g) is a Riemannian manifold, then the concept of
length makes sense for any piecewise smooth (in fact, C1)
curve on M .

Then, it possible to define the structure of a metric space
on M , where d(p, q) is the greatest lower bound of the
length of all curves joining p and q.

Curves on M which locally yield the shortest distance
between two points are of great interest. These curves
called geodesics play an important role and the goal of
this chapter is to study some of their properties.
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Given any p ∈ M , for every v ∈ TpM , the (Riemannian)
norm of v, denoted ‖v‖, is defined by

‖v‖ =
√
gp(v, v).

The Riemannian inner product, gp(u, v), of two tangent
vectors, u, v ∈ TpM , will also be denoted by 〈u, v〉p, or
simply 〈u, v〉.

Definition 7.1.1 Given any Riemannian manifold, M ,
a smooth parametric curve (for short, curve) on M is
a map, γ: I → M , where I is some open interval of R.
For a closed interval, [a, b] ⊆ R, a map γ: [a, b] → M
is a smooth curve from p = γ(a) to q = γ(b) iff γ can
be extended to a smooth curve γ̃: (a − ε, b + ε) → M ,
for some ε > 0. Given any two points, p, q ∈ M , a
continuous map, γ: [a, b] → M , is a piecewise smooth
curve from p to q iff

(1) There is a sequence a = t0 < t1 < · · · < tk−1

< tk = b of numbers, ti ∈ R, so that each map,
γi = γ ! [ti, ti+1], called a curve segment is a smooth
curve, for i = 0, . . . , k − 1.

(2) γ(a) = p and γ(b) = q.
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The set of all piecewise smooth curves from p to q is
denoted by Ω(M ; p, q) or briefly by Ω(p, q) (or even by
Ω, when p and q are understood).

The set Ω(M ; p, q) is an important object sometimes
called the path space of M (from p to q).

Unfortunately it is an infinite-dimensional manifold, which
makes it hard to investigate its properties.

Observe that at any junction point, γi−1(ti) = γi(ti),
there may be a jump in the velocity vector of γ.

We let γ′((ti)+) = γ′i(ti) and γ′((ti)−) = γ′i−1(ti).
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Given any curve, γ ∈ Ω(M ; p, q), the length, L(γ), of γ
is defined by

L(γ) =
k−1∑

i=0

∫ ti+1

ti

‖γ′(t)‖ dt

=
k−1∑

i=0

∫ ti+1

ti

√
g(γ′(t), γ′(t)) dt.

It is easy to see that L(γ) is unchanged by a monotone
reparametrization (that is, a map h: [a, b] → [c, d], whose
derivative, h′, has a constant sign).

Let us now assume that our Riemannian manifold, (M, g),
is equipped with the Levi-Civita connection and thus, for
every curve, γ, on M , let D

dt be the associated covariant
derivative along γ, also denoted ∇γ′
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Definition 7.1.2 Let (M, g) be a Riemannian mani-
fold. A curve, γ: I → M , (where I ⊆ R is any interval)
is a geodesic iff γ′(t) is parallel along γ, that is, iff

Dγ′

dt
= ∇γ′γ

′ = 0.

If M was embedded in Rd, a geodesic would be a curve,
γ, such that the acceleration vector, γ′′ = Dγ′

dt , is normal
to Tγ(t)M .

By Proposition 6.4.6, ‖γ′(t)‖ =
√
g(γ′(t), γ′(t)) is con-

stant, say ‖γ′(t)‖ = c.
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If we define the arc-length function, s(t), relative to a,
where a is any chosen point in I , by

s(t) =

∫ t

a

√
g(γ′(t), γ′(t)) dt = c(t− a), t ∈ I,

we conclude that for a geodesic, γ(t), the parameter, t, is
an affine function of the arc-length.

The geodesics in Rn are the straight lines parametrized
by constant velocity.

The geodesics of the 2-sphere are the great circles,
parametrized by arc-length.

The geodesics of the Poincaré half-plane are the lines
x = a and the half-circles centered on the x-axis.

The geodesics of an ellipsoid are quite fascinating. They
can be completely characterized and they are parametrized
by elliptic functions (see Hilbert and Cohn-Vossen [?],
Chapter 4, Section and Berger and Gostiaux [?], Section
10.4.9.5).
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If M is a submanifold of Rn, geodesics are curves whose
acceleration vector, γ′′ = (Dγ′)/dt is normal to M (that
is, for every p ∈ M , γ′′ is normal to TpM).

In a local chart, (U,ϕ), since a geodesic is characterized
by the fact that its velocity vector field, γ′(t), along γ
is parallel, by Proposition 6.3.4, it is the solution of the
following system of second-order ODE’s in the unknowns,
uk:

d2uk
dt2

+
∑

ij

Γk
ij

dui
dt

duj
dt

= 0, k = 1, . . . , n,

with ui = pri ◦ ϕ ◦ γ (n = dim(M)).
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The standard existence and uniqueness results for ODE’s
can be used to prove the following proposition:

Proposition 7.1.3 Let (M, g) be a Riemannian man-
ifold. For every point, p ∈ M , and every tangent vec-
tor, v ∈ TpM , there is some interval, (−η, η), and a
unique geodesic,

γv: (−η, η) → M,

satisfying the conditions

γv(0) = p, γ′v(0) = v.

The following proposition is used to prove that every
geodesic is contained in a unique maximal geodesic (i.e,
with largest possible domain):
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Proposition 7.1.4 For any two geodesics,
γ1: I1 → M and γ2: I2 → M , if γ1(a) = γ2(a) and
γ′1(a) = γ′2(a), for some a ∈ I1 ∩ I2, then γ1 = γ2 on
I1 ∩ I2.

Propositions 7.1.3 and 7.1.4 imply that for every p ∈ M
and every v ∈ TpM , there is a unique geodesic, denoted
γv, such that γ(0) = p, γ′(0) = v, and the domain of γ
is the largest possible, that is, cannot be extended.

We call γv a maximal geodesic (with initial conditions
γv(0) = p and γ′v(0) = v).

Observe that the system of differential equations satisfied
by geodesics has the following homogeneity property: If
t ,→ γ(t) is a solution of the above system, then for every
constant, c, the curve t ,→ γ(ct) is also a solution of the
system.
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We can use this fact together with standard existence
and uniqueness results for ODE’s to prove the proposition
below.

Proposition 7.1.5 Let (M, g) be a Riemannian man-
ifold. For every point, p0 ∈ M , there is an open sub-
set, U ⊆ M , with p0 ∈ U , and some ε > 0, so that:
For every p ∈ U and every tangent vector, v ∈ TpM ,
with ‖v‖ < ε, there is a unique geodesic,

γv: (−2, 2) → M,

satisfying the conditions

γv(0) = p, γ′v(0) = v.

If γv: (−η, η) → M is a geodesic with initial conditions
γv(0) = p and γ′v(0) = v -= 0, for any constant, c -= 0, the
curve, t ,→ γv(ct), is a geodesic defined on (−η/c, η/c)
(or (η/c,−η/c) if c < 0) such that γ′(0) = cv. Thus,

γv(ct) = γcv(t), ct ∈ (−η, η).

This fact will be used in the next section.
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7.2 The Exponential Map

The idea behind the exponential map is to parametrize
a Riemannian manifold, M , locally near any p ∈ M
in terms of a map from the tangent space TpM to the
manifold, this map being defined in terms of geodesics.

Definition 7.2.1 Let (M, g) be a Riemannian mani-
fold. For every p ∈ M , let D(p) (or simply, D) be the
open subset of TpM given by

D(p) = {v ∈ TpM | γv(1) is defined},

where γv is the unique maximal geodesic with initial con-
ditions γv(0) = p and γ′v(0) = v. The exponential map
is the map, expp:D(p) → M , given by

expp(v) = γv(1).

It is easy to see that D(p) is star-shaped , which means
that if w ∈ D(p), then the line segment {tw | 0 ≤ t ≤ 1}
is contained in D(p).
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In view of the remark made at the end of the previous
section, the curve

t ,→ expp(tv), tv ∈ D(p)

is the geodesic, γv, through p such that γ′v(0) = v. Such
geodesics are called radial geodesics . The point, expp(tv),
is obtained by running along the geodesic, γv, an arc
length equal to t ‖v‖, starting from p.

In general, D(p) is a proper subset of TpM .

Definition 7.2.2 A Riemannian manifold, (M, g), is
geodesically complete iff D(p) = TpM , for all p ∈ M ,
that is, iff the exponential, expp(v), is defined for all
p ∈ M and for all v ∈ TpM .

Equivalently, (M, g) is geodesically complete iff every
geodesic can be extended indefinitely.

Geodesically complete manifolds have nice properties, some
of which will be investigated later.

Observe that d(expp)0 = idTpM .
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It follows from the inverse function theorem that expp is
a diffeomorphism from some open ball in TpM centered
at 0 to M .

The following slightly stronger proposition can be shown:

Proposition 7.2.3 Let (M, g) be a Riemannian man-
ifold. For every point, p ∈ M , there is an open subset,
W ⊆ M , with p ∈ W and a number ε > 0, so that

(1) Any two points q1, q2 of W are joined by a unique
geodesic of length < ε.

(2) This geodesic depends smoothly upon q1 and q2,
that is, if t ,→ expq1(tv) is the geodesic joining
q1 and q2 (0 ≤ t ≤ 1), then v ∈ Tq1M depends
smoothly on (q1, q2).

(3) For every q ∈ W , the map expq is a diffeomor-
phism from the open ball, B(0, ε) ⊆ TqM , to its
image, Uq = expq(B(0, ε)) ⊆ M , with W ⊆ Uq and
Uq open.
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For any q ∈ M , an open neighborhood of q of the form,
Uq = expq(B(0, ε)), where expq is a diffeomorphism from
the open ball B(0, ε) onto Uq, is called a normal neigh-
borhood .

Definition 7.2.4 Let (M, g) be a Riemannian mani-
fold. For every point, p ∈ M , the injectivity radius
of M at p, denoted i(p), is the least upper bound of the
numbers, r > 0, such that expp is a diffeomorphism on
the open ball B(0, r) ⊆ TpM . The injectivity radius,
i(M), of M is the greatest lower bound of the numbers,
i(p), where p ∈ M .

For every p ∈ M , we get a chart, (Up,ϕ), where
Up = expp(B(0, i(p))) and ϕ = exp−1, called a normal
chart .

If we pick any orthonormal basis, (e1, . . . , en), of TpM ,
then the xi’s, with xi = pri◦exp−1 and pri the projection
onto Rei, are called normal coordinates at p (here,
n = dim(M)).

These are defined up to an isometry of TpM .
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The following proposition shows that Riemannian metrics
do not admit any local invariants of order one:

Proposition 7.2.5 Let (M, g) be a Riemannian man-
ifold. For every point, p ∈ M , in normal coordinates
at p,

g

(
∂

∂xi
,
∂

∂xj

)

p

= δij and Γk
ij(p) = 0.

For the next proposition, known as Gauss Lemma, we
need to define polar coordinates on TpM .

If n = dim(M), observe that the map,
(0,∞)× Sn−1 −→ TpM − {0}, given by

(r, v) ,→ rv, r > 0, v ∈ Sn−1

is a diffeomorphism, where Sn−1 is the sphere of radius
r = 1 in TpM .
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Then, the map, f : (0, i(p))×Sn−1 → Up− {p}, given by

(r, v) ,→ expp(rv), 0 < r < i(p), v ∈ Sn−1

is also a diffeomorphism.

Proposition 7.2.6 (Gauss Lemma) Let (M, g) be a
Riemannian manifold. For every point, p ∈ M , the
images, expp(S(0, r)), of the spheres, S(0, r) ⊆ TpM ,
centered at 0 by the exponential map, expp, are orthog-
onal to the radial geodesics, r ,→ expp(rv), through p,
for all r < i(p). Furthermore, in polar coordinates,
the pull-back metric, exp∗ g, induced on TpM is of the
form

exp∗g = dr2 + gr,

where gr is a metric on the unit sphere, Sn−1, with the
property that gr/r2 converges to the standard metric
on Sn−1 (induced by Rn) when r goes to zero (here,
n = dim(M)).
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Consider any piecewise smooth curve

ω: [a, b] → Up − {p}.

We can write each point ω(t) uniquely as

ω(t) = expp(r(t)v(t)),

with 0 < r(t) < i(p), v(t) ∈ TpM and ‖v(t)‖ = 1.

Proposition 7.2.7 Let (M, g) be a Riemannian man-
ifold. We have

∫ b

a
‖ω′(t)‖ dt ≥ |r(b)− r(a)|,

where equality holds only if the function r is monotone
and the function v is constant. Thus, the shortest path
joining two concentric spherical shells, expp(S(0, r1))
and expp(S(0, r2)), is a radial geodesic.
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We now get the following important result from Proposi-
tion 7.2.6 and Proposition 7.2.7:

Theorem 7.2.8 Let (M, g) be a Riemannian mani-
fold. Let W and ε be as in Proposition 7.2.3 and let
γ: [0, 1] → M be the geodesic of length < ε joining two
points q1, q2 of W . For any other piecewise smooth
path, ω, joining q1 and q2, we have

∫ 1

0
‖γ′(t)‖ dt ≤

∫ 1

0
‖ω′(t)‖ dt

where equality can holds only if the images ω([0, 1])
and γ([0, 1]) coincide. Thus, γ is the shortest path
from q1 to q2.

Here is an important consequence of Theorem 7.2.8.
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Corollary 7.2.9 Let (M, g) be a Riemannian mani-
fold. If ω: [0, b] → M is any curve parametrized by
arc-length and ω has length less than or equal to the
length of any other curve from ω(0) to ω(b), then ω is
a geodesic.

Definition 7.2.10 Let (M, g) be a Riemannian mani-
fold. A geodesic, γ: [a, b] → M , is minimal iff its length
is less than or equal to the length of any other piecewise
smooth curve joining its endpoints.

Theorem 7.2.8 asserts that any sufficiently small segment
of a geodesic is minimal.

On the other hand, a long geodesic may not be minimal.
For example, a great circle arc on the unit sphere is a
geodesic. If such an arc has length greater than π, then
it is not minimal.
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Minimal geodesics are generally not unique. For example,
any two antipodal points on a sphere are joined by an
infinite number of minimal geodesics.

A broken geodesic is a piecewise smooth curve as in Def-
inition 7.1.1, where each curve segment is a geodesic.

Proposition 7.2.11 A Riemannian manifold, (M, g),
is connected iff any two points of M can be joined by
a broken geodesic.

In general, if M is connected, then it is not true that any
two points are joined by a geodesic. However, this will be
the case if M is geodesically complete, as we will see in
the next section.

Next, we will see that a Riemannian metric induces a
distance on the manifold whose induced topology agrees
with the original metric.
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7.3 Complete Riemannian Manifolds,

the Hopf-Rinow Theorem and the Cut Locus

Every connected Riemannian manifold, (M, g), is a met-
ric space in a natural way.

Furthermore,M is a complete metric space iffM is geodesi-
cally complete.

In this section, we explore briefly some properties of com-
plete Riemannian manifolds.

Proposition 7.3.1 Let (M, g) be a connected Rieman-
nian manifold. For any two points, p, q ∈ M , let
d(p, q) be the greatest lower bound of the lengths of all
piecewise smooth curves joining p to q. Then, d is
a metric on M and the topology of the metric space,
(M,d), coincides with the original topology of M .
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The distance, d, is often called the Riemannian distance
on M . For any p ∈ M and any ε > 0, the metric ball of
center p and radius ε is the subset, Bε(p) ⊆ M , given
by

Bε(p) = {q ∈ M | d(p, q) < ε}.

The next proposition follows easily from Proposition 7.2.3:

Proposition 7.3.2 Let (M, g) be a connected Rieman-
nian manifold. For any compact subset, K ⊆ M ,
there is a number δ > 0 so that any two points,
p, q ∈ K, with distance d(p, q) < δ are joined by a
unique geodesic of length less than δ. Furthermore,
this geodesic is minimal and depends smoothly on its
endpoints.

Recall from Definition 7.2.2 that (M, g) is geodesically
complete iff the exponential map, v ,→ expp(v), is defined
for all p ∈ M and for all v ∈ TpM .
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We now prove the following important theorem due to
Hopf and Rinow (1931):

Theorem 7.3.3 (Hopf-Rinow) Let (M, g) be a con-
nected Riemannian manifold. If there is a point,
p ∈ M , such that expp is defined on the entire tangent
space, TpM , then any point, q ∈ M , can be joined to
p by a minimal geodesic. As a consequence, if M is
geodesically complete, then any two points of M can
be joined by a minimal geodesic.

Proof . The most beautiful proof is Milnor’s proof in [?],
Chapter 10, Theorem 10.9.

Theorem 7.3.3 implies the following result (often known
as the Hopf-Rinow Theorem):
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Theorem 7.3.4 Let (M, g) be a connected, Rieman-
nian manifold. The following statements are equiva-
lent:

(1) The manifold (M, g) is geodesically complete, that
is, for every p ∈ M , every geodesic through p can
be extended to a geodesic defined on all of R.

(2) For every point, p ∈ M , the map expp is defined
on the entire tangent space, TpM .

(3) There is a point, p ∈ M , such that expp is defined
on the entire tangent space, TpM .

(4) Any closed and bounded subset of the metric space,
(M,d), is compact.

(5) The metric space, (M,d), is complete (that is, ev-
ery Cauchy sequence converges).

In view of Theorem 7.3.4, a connected Riemannian mani-
fold, (M, g), is geodesically complete iff the metric space,
(M,d), is complete.
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We will refer simply to M as a complete Riemannian
manifold (it is understood that M is connected).

Also, by (4), every compact, Riemannian manifold is com-
plete.

If we remove any point, p, from a Riemannian manifold,
M , then M − {p} is not complete since every geodesic
that formerly went through p yields a geodesic that can’t
be extended.

Assume (M, g) is a complete Riemannian manifold. Given
any point, p ∈ M , it is interesting to consider the sub-
set, Up ⊆ TpM , consisting of all v ∈ TpM such that the
geodesic

t ,→ expp(tv)

is a minimal geodesic up to t = 1 + ε, for some ε > 0.
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The subset Up is open and star-shaped and it turns out
that expp is a diffeomorphism from Up onto its image,
expp(Up), in M .

The left-over part, M − expp(Up) (if nonempty), is actu-
ally equal to expp(∂Up) and it is an important subset of
M called the cut locus of p.

Proposition 7.3.5 Let (M, g) be a complete Rieman-
nian manifold. For any geodesic,
γ: [0, a] → M , from p = γ(0) to q = γ(a), the following
properties hold:

(i) If there is no geodesic shorter than γ between p
and q, then γ is minimal on [0, a].

(ii) If there is another geodesic of the same length as
γ between p and q, then γ is no longer minimal on
any larger interval, [0, a + ε].

(iii) If γ is minimal on any interval, I, then γ is also
minimal on any subinterval of I.
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Again, assume (M, g) is a complete Riemannian manifold
and let p ∈ M be any point. For every v ∈ TpM , let

Iv = {s ∈ R ∪ {∞} | the geodesic t ,→ expp(tv)

is minimal on [0, s]}.

It is easy to see that Iv is a closed interval, so Iv = [0, ρ(v)]
(with ρ(v) possibly infinite).

It can be shown that if w = λv, then ρ(v) = λρ(w), so
we can restrict our attention to unit vectors, v.

It can also be shown that the map, ρ:Sn−1 → R, is
continuous, where Sn−1 is the unit sphere of center 0
in TpM , and that ρ(v) is bounded below by a strictly
positive number.
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Definition 7.3.6 Let (M, g) be a complete Riemannian
manifold and let p ∈ M be any point. Define Up by

Up =

{
v ∈ TpM

∣∣∣∣ ρ
(

v

‖v‖

)
> ‖v‖

}

= {v ∈ TpM | ρ(v) > 1}

and the cut locus of p by

Cut(p) = expp(∂Up) = {expp(ρ(v)v) | v ∈ Sn−1}.

The set Up is open and star-shaped.

The boundary, ∂Up, of Up in TpM is sometimes called the

tangential cut locus of p and is denoted C̃ut(p).

Remark: The cut locus was first introduced for con-
vex surfaces by Poincaré (1905) under the name ligne de
partage.
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According to Do Carmo [?] (Chapter 13, Section 2), for
Riemannian manifolds, the cut locus was introduced by
J.H.C. Whitehead (1935).

But it was Klingenberg (1959) who revived the interest
in the cut locus and showed its usefuleness.

Proposition 7.3.7 Let (M, g) be a complete Rieman-
nian manifold. For any point, p ∈ M , the sets expp(Up)
and Cut(p) are disjoint and

M = expp(Up) ∪ Cut(p).

Observe that the injectivity radius, i(p), of M at p is
equal to the distance from p to the cut locus of p:

i(p) = d(p,Cut(p)) = inf
q∈Cut(p)

d(p, q).

Consequently, the injectivity radius, i(M), of M is given
by

i(M) = inf
p∈M

d(p,Cut(p)).
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If M is compact, it can be shown that i(M) > 0. It can
also be shown using Jacobi fields that expp is a diffeomor-
phism from Up onto its image, expp(Up).

Thus, expp(Up) is diffeomorphic to an open ball in Rn

(where n = dim(M)) and the cut locus is closed.

Hence, the manifold, M , is obtained by gluing together
an open n-ball onto the cut locus of a point. In some
sense the topology of M is “contained” in its cut locus.

Given any sphere, Sn−1, the cut locus of any point, p, is
its antipodal point, {−p}.

In general, the cut locus is very hard to compute. In
fact, according to Berger [?], even for an ellipsoid, the
determination of the cut locus of an arbitrary point is
still a matter of conjecture!
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7.4 The Calculus of Variations Applied to Geodesics;

The First Variation Formula

Given a Riemannian manifold, (M, g), the path space,
Ω(p, q), was introduced in Definition 7.1.1.

It is an “infinite dimensional” manifold. By analogy with
finite dimensional manifolds we define a kind of tangent
space to Ω(p, q) at a point ω.

In this section, it is convenient to assume that paths in
Ω(p, q) are parametrized over the interval [0, 1].

Definition 7.4.1 For every “point”, ω ∈ Ω(p, q), we
define the “tangent space”, TωΩ(p, q), of Ω(p, q) at ω,
to be the space of all piecewise smooth vector fields, W ,
along ω, for which W (0) = W (1) = 0 (we may assume
that our paths, ω, are parametrized over [0, 1]).
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Now, if F :Ω(p, q) → R is a real-valued function on
Ω(p, q), it is natural to ask what the induced “tangent
map”,

dFω:TωΩ(p, q) → R,

should mean (here, we are identifying TF (ω)R with R).

Observe that Ω(p, q) is not even a topological space so
the answer is far from obvious!

In the case where f :M → R is a function on a mani-
fold, there are various equivalent ways to define df , one
of which involves curves.

For every v ∈ TpM , if α: (−ε, ε) → M is a curve such
that α(0) = p and α′(0) = v, then we know that

dfp(v) =
d(f(α(t)))

dt

∣∣∣∣
t=0

.
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We may think of α as a small variation of p. Recall that
p is a critical point of f iff dfp(v) = 0, for all v ∈ TpM .

Rather than attempting to define dFω (which requires
some conditions on F ), we will mimic what we did with
functions on manifolds and define what is a critical path
of a function, F :Ω(p, q) → R, using the notion of varia-
tion .

Now, geodesics from p to q are special paths in Ω(p, q)
and they turn out to be the critical paths of the energy
function ,

Eb
a(ω) =

∫ b

a
‖ω′(t)‖2 dt,

where ω ∈ Ω(p, q), and 0 ≤ a < b ≤ 1.
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Definition 7.4.2 Given any path, ω ∈ Ω(p, q), a vari-
ation of ω (keeping endpoints fixed) is a function,
α̃: (−ε, ε) → Ω(p, q), for some ε > 0, such that

(1) α̃(0) = ω

(2) There is a subdivision, 0 = t0 < t1 < · · · < tk−1 <
tk = 1 of [0, 1] so that the map

α: (−ε, ε)× [0, 1] → M

defined by α(u, t) = α̃(u)(t) is smooth on each strip
(−ε, ε)× [ti, ti+1], for i = 0, . . . , k − 1.

If U is an open subset ofRn containing the origin and if we
replace (−ε, ε) by U in the above, then α̃:U → Ω(p, q)
is called an n-parameter variation of ω.

The function α is also called a variation of ω.
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Since each α̃(u) belongs to Ω(p, q), note that

α(u, 0) = p, α(u, 1) = q, for all u ∈ (−ε, ε).

The function, α̃, may be considered as a “smooth path”
in Ω(p, q), since for every u ∈ (−ε, ε), the map α̃(u) is
a curve in Ω(p, q) called a curve in the variation (or
longitudinal curve of the variation).

The “velocity vector”, dα̃
du(0) ∈ TωΩ(p, q), is defined to be

the vector field, W , along ω, given by

Wt =
dα̃

du
(0)t =

∂α

∂u
(0, t),

Clearly, W ∈ TωΩ(p, q). In particular,
W (0) = W (1) = 0.

The vector field, W , is also called the variation vector
field associated with the variation α.
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Besides the curves in the variation, α̃(u) (with u ∈ (−ε, ε)),
for every t ∈ [0, 1], we have a curve, αt: (−ε, ε) → M ,
called a transversal curve of the variation , defined by

αt(u) = α̃(u)(t),

and Wt is equal to the velocity vector, α′
t(0), at the point

ω(t) = αt(0).

For ε sufficiently small, the vector field,Wt, is an infinites-
imal model of the variation α̃.

We can show that for any W ∈ TωΩ(p, q) there is a vari-
ation, α̃: (−ε, ε) → Ω(p, q), which satisfies the conditions

α̃(0) = ω,
dα̃

du
(0) = W.

As we said earlier, given a function, F :Ω(p, q) → R, we
do not attempt to define the differential, dFω, but instead,
the notion of critical path.
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Definition 7.4.3 Given a function, F :Ω(p, q) → R, we
say that a path, ω ∈ Ω(p, q), is a critical path for F iff

dF (α̃(u))

du

∣∣∣∣
u=0

= 0,

for every variation, α̃, of ω (which implies that the deriva-

tive dF (α̃(u))
du

∣∣∣
u=0

is defined for every variation, α̃, of ω).

For example, if F takes on its minimum on a path ω0

and if the derivatives dF (α̃(u))
du are all defined, then ω0 is a

critical path of F .

We will apply the above to two functions defined on
Ω(p, q):
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(1) The energy function (also called action integral):

Eb
a(ω) =

∫ b

a
‖ω′(t)‖2 dt.

(We write E = E1
0 .)

(2) The arc-length function ,

Lb
a(ω) =

∫ b

a
‖ω′(t)‖ dt.

The quantities Eb
a(ω) and Lb

a(ω) can be compared as fol-
lows: if we apply the Cauchy-Schwarz’s inequality,
(∫ b

a
f(t)g(t)dt

)2

≤
(∫ b

a
f 2(t)dt

)(∫ b

a
g2(t)dt

)

with f(t) ≡ 1 and g(t) = ‖ω′(t)‖, we get

(Lb
a(ω))

2 ≤ (b− a)Eb
a,

where equality holds iff g is constant; that is, iff the pa-
rameter t is proportional to arc-length.
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Now, suppose that there exists a minimal geodesic, γ,
from p to q. Then,

E(γ) = L(γ)2 ≤ L(ω)2 ≤ E(ω),

where the equality L(γ)2 = L(ω)2 holds only if ω is also
a minimal geodesic, possibly reparametrized.

On the other hand, the equality L(ω) = E(ω)2 can hold
only if the parameter is proportional to arc-length along
ω.

This proves that E(γ) < E(ω) unless ω is also a minimal
geodesic. We just proved:

Proposition 7.4.4 Let (M, g) be a complete Rieman-
nian manifold. For any two points, p, q ∈ M , if
d(p, q) = δ, then the energy function, E:Ω(p, q) → R,
takes on its minimum, δ2, precisely on the set of min-
imal geodesics from p to q.
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Next, we are going to show that the critical paths of the
energy function are exactly the geodesics. For this, we
need the first variation formula.

Let α̃: (−ε, ε) → Ω(p, q) be a variation of ω and let

Wt =
∂α

∂u
(0, t)

be its associated variation vector field.

Furthermore, let

Vt =
dω

dt
= ω′(t),

the velocity vector of ω and

∆tV = Vt+ − Vt−,

the discontinuity in the velocity vector at t, which is
nonzero only for t = ti, with 0 < ti < 1 (see the definition
of γ′((ti)+) and γ′((ti)−) just after Definition 7.1.1).
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Theorem 7.4.5 (First Variation Formula) For any
path, ω ∈ Ω(p, q), we have

1

2

dE(α̃(u))

du

∣∣∣∣
u=0

= −
∑

i

〈Wt,∆tV 〉−
∫ 1

0

〈
Wt,

D

dt
Vt

〉
dt,

where α̃: (−ε, ε) → Ω(p, q) is any variation of ω.

Intuitively, the first term on the right-hand side shows
that varying the path ω in the direction of decreasing
“kink” tends to decrease E.

The second term shows that varying the curve in the
direction of its acceleration vector, D

dt ω
′(t), also tends to

reduce E.

A geodesic, γ, (parametrized over [0, 1]) is smooth on the
entire interval [0, 1] and its acceleration vector, D

dt γ
′(t), is

identically zero along γ. This gives us half of
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Theorem 7.4.6 Let (M, g) be a Riemanian manifold.
For any two points, p, q ∈ M , a path, ω ∈ Ω(p, q)
(parametrized over [0, 1]), is critical for the energy
function, E, iff ω is a geodesic.

Remark: If ω ∈ Ω(p, q) is parametrized by arc-length,
it is easy to prove that

dL(α̃(u))

du

∣∣∣∣
u=0

=
1

2

dE(α̃(u))

du

∣∣∣∣
u=0

.

As a consequence, a path, ω ∈ Ω(p, q) is critical for the
arc-length function, L, iff it can be reparametrized so that
it is a geodesic

In order to go deeper into the study of geodesics we need
Jacobi fields and the “second variation formula”, both
involving a curvature term.

Therefore, we now proceed with a more thorough study
of curvature on Riemannian manifolds.


