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i

“What a useful thing a pocket-map is!”
from Sylvie and Bruno Concluded by Lewis Carroll





Abstract

A manifold is a mathematical concept which generalizes surfaces to higher di-
mensions. The values of signals and data are sometimes naturally described as
points in manifolds – they are manifold-valued.

In this thesis some recently proposed spectral methods for manifold learning are
applied to a visualization problem in medical imaging. 3-D volume data of the
human brain, acquired using Diffusion Tensor MRI, is post processed in a novel
way in order to represent and visualize the shape and connectivity of white matter
fiber bundles.

In addition to this real-world application of manifold learning, the contributions
to a generic framework for processing of manifold-valued signals and data consist
of the following. 1) The idea of the diffusion mean, which is a preliminary result
related to the extrinsic and intrinsic means in certain manifolds. 2) A representa-
tion for extrinsic manifold-valued signal processing in SO(3), Q, which is useful
for linear averaging, filtering and interpolation. 3) A novel class of methods for
manifold learning, the sample logmaps, which has strong connections to differ-
ential geometry. These maps can be used to visualize high-dimensional data and
they are potentially useful for performing intrinsic signal processing and statistics
of manifold-valued signals and data, in cases where the manifold is only known
from samples.
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1
Introduction

1.1 Motivations

The work presented in this thesis was inspired by recent advances in so called
manifold learning and mainly financed by the Manifold-Valued Signal Process-
ing project funded by Vetenskapsrådet (the Swedish Research Council). Being
a Swedish licentiate thesis, it should be seen as a piece of work in the middle
between a masters thesis and a PhD thesis.

The focus on manifold learning is mainly motivated by the need for methods for
high-dimensional data analysis and visualization, both in imaging sciences in gen-
eral and in medicine in particular. Texture, shape, orientation and many other as-
pects of data need to be quantified and compared, and the mathematical theory of
smooth manifolds is a natural approach for many such problems.

In this thesis the use of manifolds and manifold learning, for image analysis and
visualization, is explored from three different views.

Dimension reduction Finding a low-dimensional parameterization of manifold-
valued data embedded in a high-dimensional space.

Data visualization Visualization of manifold-valued data embedded in a high-
dimensional space.

Signal processing Basic signal processing, such as interpolation, smoothing and
filtering of manifold-valued time series and volume data.

For the PhD thesis, the goal will be to give a more complete view on manifold
learning for data processing and visualization. The exploration done so far, ex-
pressed in the three topics discussed in this intermediate thesis, will provide a
good roadmap for this future work.
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Data acquisition /
reconstruction

Image analysis /
description

Visualization /
simulation

Interactive Image
Interpretation
and Clinical
Practice

Figure 1.1: Within medical image science, the immediate applications for manifold-
valued signal processing are in image analysis and visualization. Promising
areas of future research also include the design of intelligent user interfaces
using manifold learning. (Image modified from CMIV presentation material,
with permission.)

1.2 Potential impact
The outcome of this and future work will be a new set of tools to understand and
process manifold-valued signals, embedded in possibly high dimensional data. In-
creased ability to represent and process features present in medical images, such
as shape, texture and organ orientation, will aid in the development of better di-
agnoses and increase our ability to make demographical studies using data from
the imaging sciences. This will be of benefit not only within our field of research,
which is medical image analysis, but also for the rest of the signal processing
community where there is a need to describe and objectively quantify features
that are naturally represented as points in manifolds.

1.3 Thesis Overview
The thesis consists of two parts. The first part (chapters 2–7) contains an introduc-
tion to the material and some overall conclusions. The second part (chapters 8–11)
consists of four full-length conference papers.

Chapter 2 contains a very short introduction to manifolds and gives some exam-
ples of manifold-valued data in real-world applications.

Chapter 3 gives an introduction to manifold-valued signal processing, with some
comments on extrinsic and intrinsic means to motivate the representation
used in chapter 10.



1.3 Thesis Overview 3

Chapter 4 is an introduction to dimension reduction and manifold learning, in-
cluding some comments on sample logmaps, a class of methods presented
later in chapter 11.

Chapter 5 contains a short introduction to Diffusion Tensor MRI, including some
remarks to motivate the methods presented in chapter 8 and 9.

Chapter 6 is a review of the four papers presented in chapter 8 – 11.

Chapter 7 contains a discussion and conclusions for the total work presented in
this thesis, including notes on future work.

Chapter 8–11 contains reformatted versions of four full conference papers. Some
minor corrections have been made.
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1.4 Abbreviations
A list of abbreviations used in the thesis.

ADC Apparent Diffusion Coefficient
CCA Canonical Correlation Analysis / Curvilinear Components Analysis
C-Isomap Conformal Isomap
CSF Cerebrospinal Fluid
DT-MRI Diffusion Tensor Magnetic Resonance Imaging
DWI Diffusion Weighted Imaging
EOF Empirical Orthogonal Functions
FA Fractional Anisotropy
FIR Finite Impulse Response
GTM Generative Topographic Map
HLLE Hessian Locally Linear Embedding
ICA Independent Components Analysis
i.i.d. independent and identically distributed
Isomap Isometric Feature Mapping
KPCA Kernel Principal Components Analysis
L-Isomap Landmark Isomap
LE Laplacian Eigenmaps
LLE Locally Linear Embedding
LSI Latent Semantic Indexing
LSDI Line Scan Diffusion weighted Imaging
LTSA Local Tangent Space Alignment
MDS Multidimensional Scaling
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
Ncut Normalized Cut
PCA Principal Components Analysis
PDD Principal Diffusion Direction
PP Projection Pursuit
RANSAC Random Sample Consensus
RGB Red, Green, Blue
SOM Self Organizing Maps
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1.5 Mathematical Notation
v Unspecified vectors
bi A contravariant basis vector
bi A covariant basis vector
vi (The coordinates of) a contravariant vector
wi (The coordinates of) a covariant vector
gij (The components of) the metric tensor
M A manifold
TM The tangent bundle of M
T ∗M The cotangent bundle of M
TpM The tangent space of M at the point p
T ∗

p M The cotangent space of M at the point p

V ∗ The dual vector space of a vector space V
dimV The dimensionality of V
êi A unit basis vector in TpM
g A gradient vector in T ∗

p M

X A set of data points on M embedded in R
N

x, y Points on M embedded in R
N

p A point on a manifold
Br(p) A ball of p with radius r in a set
N(p) A neighborhood of p in a set
H(t) A curve along a geodesic path.
expp(v) The exponential of v at base point p

logp(x) The logarithmic of x at base point p
d(x, y) The geodesic distance between x and y
Ψ(y) Maps a point in B(p) to Rn, which gives a chart
R The set of all real numbers
H The set of all quaternions
S

1 The 1-sphere, i.e. the circle in a 2-dimensional space
S

2 The 2-sphere, i.e. the sphere in a 3-dimensional space
S

n The n-sphere, i.e. a sphere in a (n + 1)-dimensional space
RP

2 The real projective plane
RP

3 The real projective space
RP

n The real projective n-space
SO(3), SO(3, R) The (real) special orthogonal group in 3 dimensions





2
Manifold-Valued Data

Manifolds are generalizations of surfaces. They are topological spaces which are
locally topologically equivalent to R

n for some n. At a larger scale however, a
manifold may look different. One example of a manifold is the surface of the
sphere in R

3, S
2, which is locally topologically equivalent to R

2 but which global
properties are quite different to R

2. Other examples of manifolds include for
instance a circle, S

1 and a torus S
1 × S

1. It is easy to think of a surface, the
manifold, embedded in an extrinsic space. However, manifolds and operations on
points in manifolds can also be defined without the notion of any extrinsic space.
They are defined by their intrinsic properties.

2.1 Background

Today there is a rapidly increasing need to process more complex features that are
naturally represented as points on a manifold, hidden in high-dimensional signals
such as images (Seung and Lee, 2000). Quite often there is a need to quantify
various phenomena which are obvious for a human observer, but difficult to de-
scribe in mathematical terms. In medical image processing in particular, there
is an immediate need for robust methods to characterize shape (Fletcher et al.,
2004), texture and object (e.g. anatomical entities) orientation in 3-D. Examples
of such applications are analysis of multi-dimensional spatial data such as Dif-
fusion Tensor MRI, where each volume element of data contains an estimate of
local anatomical structure, filtering of manifold-valued temporal signals such as
3-D object orientation for tracking of objects during surgical intervention and for
diagnostic purposes, lip reading (Bregler and Omohundro, 1994) and recent meth-
ods for processing of color spectra (Lenz et al., 2005) using Lie-group theory.



8 Chapter 2. Manifold-Valued Data

2.2 Examples

Manifold-valued signals may sound rare at a first glance. However, non-trivial
examples do arise naturally under some quite common circumstances (Seung and
Lee, 2000; Donoho and Grimes, 2005). Also, introducing invariances to a vector-
valued signal will often give a new representation which is a manifold. Invariance
to signal strength in R

3 gives a representation equivalent to a unit sphere in R
3,

i.e. S
2. Here are some examples:

Figure 2.1: The space or manifold of facial expressions in a particular dataset, is natu-
rally parameterized by a low-dimensional manifold.

1. A low-dimensional example of the importance of invariant representations
and how they form manifolds is hue. Color can be described for instance
by components of red, green and blue, but also using the concepts of hue,
saturation and brightness. Hue is a typical example of a non-linear manifold
in a representation, invariant to brightness and saturation.

2. Invariance to signal amplitude in a N -dimensional vector space, R
N , im-

plies a manifold topologically equivalent to the unit sphere in N dimen-
sions, i.e. S

N−1.

3. Continuous representation of line orientations in a N -dimensional space
(think of unit vectors invariant to sign flips). This forms a manifold topolog-
ically equivalent to a projective space, RP

N−1, which identifies antipodal
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points on a sphere, S
N−1, in N dimensions.

4. Signal representations insensitive to noise play an important role in signal
processing. The resulting manifold typically has a lower intrinsic dimension
than the original vector space, which can be seen in figure 2.2.

Figure 2.2: Example of a vector space where the original dimensionality of the data-
points (o) is two. Invariance to noise is created by projecting the points onto
a one-dimensional manifold (the line).

A real-world example of data which is manifold-valued is images of a face, in-
spired by (Tenenbaum et al., 2000; Seung and Lee, 2000). These images are
parameterized by pose and direction of light in the scene. It is natural to de-
scribe these parameters using a 3-dimensional manifold (with a border). Figure
2.1 shows how an image of a face varies continuously in two dimensions.
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Building a completely new framework for identifying and processing of manifold-
valued signals is not possible within the scope of this thesis. I will instead touch
on a few important aspects of this complex problem and deal with them separately.

Manifold-valued signals arise naturally from invariant representations in signal-
and image processing. The specific goal of this thesis is to develop the beginning
of a generic framework, motivated by first principles from statistics and differ-
ential geometry, to 1) Identify low-dimensional manifold-valued signals in high-
dimensional spaces such as images. 2) Perform basic signal processing on such
manifold-valued signals, e.g. averaging, filtering and interpolation. Within the
project funding large parts of this thesis, we have chosen to call this manifold-
valued signal processing.

3.1 Background

Traditional signal processing is based on a well-established theory developed for
scalar- and vector-valued signals in a statistical framework. A substantial part of
the theory deals with operations which may be seen as convolutions. Originally,
the theory was developed for one-dimensional signals, but in pace with the de-
velopment of techniques for acquiring images and other multi-dimensional data,
it has been extended to handle two-, three-, and higher-dimensional stochastic
scalar fields. In recent years, not only the outer dimensionality of the data has
been increasing, but also the inner dimensionality. Perhaps the earliest example
of such data is color images, where each pixel needs to be represented by a three
component vector, while a more recent example is Diffusion Tensor MRI.

3.2 Filtering Manifold-Valued Signals

Real-, complex- and vector-valued signal processing has reached a level of matu-
rity, where a mathematical framework based on linear algebra and statistics under
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Gaussian assumptions forms a solid base. One of the two specific goals of this
project is to develop similar basic tools for signal processing of manifold-valued
signals. While some concepts in vector spaces have no equivalence on manifolds,
others may be translated (Pennec et al., 2005).

One important idea of this thesis is to study manifolds using both intrinsic and
extrinsic methods. Working with a manifold using intrinsic methods, there is no
need to consider any external coordinate system in which the manifold is em-
bedded. The study of the unit sphere, S

2, can for instance be performed without
reference to an Euclidean 3-dimensional space in which it may live. Extrinsic
methods on the other hand work with manifolds embedded in an extrinsic space
and inherit the metric of the embedding space. While intrinsic methods are often
believed to be the best way to treat manifolds in a mathematically sound way,
extrinsic methods are sometimes easier to implement and give similar results to
intrinsic methods in practice. In (Srivastava and Klassen, 2002) the authors have
for instance recently described the advantages of using extrinsic estimators on
manifolds. Some preliminary results presented in this thesis point towards impor-
tant special cases, certain manifolds, where both intrinsic and extrinsic methods
may be considered optimal for signal processing, depending on the noise model.

Filtering of manifold-valued signals may be performed using local linearizations,
when the amount of noise is moderate. It would then be possible to apply for
instance a Wiener or Kalman filter locally to the signal in order to perform signal
processing. Some of our previous work however, mainly in the field of tensor im-
age processing, are examples of extrinsic methods which use global linearization
rather than local linearization (Knutsson, 1989; Granlund and Knutsson, 1995).
While this may sound crude, the results of filtering and interpolation are some-
times very similar to intrinsic methods.

One important example of a temporal signal which is manifold-valued, for which
filtering has been described in the literature, is 3-D object orientation parame-
terized by time. This example has important applications, such as filtering of
camera orientations from noisy sensor data in video production. In (Lee and Shin,
2002) the authors describe an intrinsic framework for filtering of such orientation
data based on linearizations using the exponential map of the Lie-group SO(3)
describing rotations in 3-D. In a paper devoted to calculating mean values of ori-
entation data, Moakher has compared intrinsic and extrinsic means of 3-D object
orientations (Moakher, 2002). Later in chapter 10 the paper (Brun et al., 2005a) is
presented, which describes a special kind of extrinsic averaging on SO(3) using
the so called Q representation.
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3.3 Averaging, Filtering and Interpolation
A useful framework for processing of manifold-valued signals should be simple,
sound and powerful at the same time. Linear filtering and interpolation used in
classical signal processing is based on linear estimators of the true signal. Simple
averaging, obtaining mean values of a set of points, may also be interpreted as
linear estimation. On manifolds however, as opposed to vector spaces, algebraic
structures for calculating linear estimators are seldom present.

However, the Gaussian distribution, which is the basis of all linear estimation in
R

n, can be generalized to manifolds. Using this generalized Gaussian, based on
Brownian motion, it is sometimes possible to derive an estimate which shares
many similarities with linear estimation in Rn.

3.4 The Extrinsic and Intrinsic Mean
The intrinsic and extrinsic mean are defined as follows. First the intrinsic:

xint = arg min
q∈M

N
∑

i=1

d2
int(xi,q) (3.1)

i.e. the point which minimizes the sum of squared distances to all other points,
measured with intrinsic distances. The extrinsic mean on the other hand is

xext = arg min
q∈M

N
∑

i=1

d2
ext(xi,q) (3.2)

This is basically the same as for the intrinsic mean, except that distances are mea-
sured using the distance function from the embedding space. It is shown in Srivas-
tava and Klassen (2002) that the extrinsic mean may be calculated by taking the
usual mean vector in the embedding space first, and then projecting that extrinsic
mean vector to the closest point on the manifold M . If the projection back to the
manifold is easy to compute, which it is for instance if the manifold is a sphere,
then the main advantage of the extrinsic mean is that we can avoid a nonlinear
optimization problem constrained on M . See figure 3.1 for a schematic version
of the two procedures.

3.5 The Idea of the “Diffusion Mean”
By interpreting the mean value or mean vector in R

n as a maximum likelihood
estimation from a set of stochastic variables which are independent and identically
distributed, a concept which is here called the diffusion mean, is described and
studied for a couple of very trivial cases. This analysis will be far from complete,
but it will give the embryo to a motivation of why extrinsic mean values sometimes
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1

2

1

Figure 3.1: A schematic view of how intrinsic mean (top) and extrinsic mean (bottom)
are calculated. Step 1 correspond to a minimization procedure. Step 2 (in the
extrinsic mean) correspond to a projection.

are optimal. This in turn could serve as a motivation for extrinsic signal processing
in general, or at least of a particular class of symmetric manifolds.

The basic idea is simple. We may arrive at the mean value of a set of samples in
R

n by the following procedure:

1. For each sample point xi in Rn, calculate the solution to the diffusion equa-
tion at time equal to t for the PDE which has a Dirac function centered at
the sample as initial value. In R

n, this will result in a Gaussian probabil-
ity distribution spreading out from the sample xi. Calculate this solution
separate for each of the samples.

2. Multiply the solutions, i.e. the isotropic Gaussians in R
n. Call the resulting

function P (x).

3. Seek the maximum of P (x). This maximum will be located at the mean
value of the points xi for any choice of t > 0.

The above procedure is possible to perform on any manifold, as long as it is pos-
sible to solve the diffusion equation for an initial value which is a Dirac function.
The diffusion corresponds to an increase of uncertainty in the measurement when
t → ∞. In R

n, which is a flat manifold without border, the choice of t will not
affect the result. For nonlinear manifolds however, the answer will depend on the
choice of t or equivalently, the amount of uncertainty in our Brownian motion
model for noise. This is also true for manifolds with a boundary, even if they are
flat, such as the interval [0, 1] ∈ R.

In figures 3.2 – 3.5 the diffusion mean is studied experimentally on the circle, S
1.

It turns out that for t → 0, the diffusion mean approaches the intrinsic mean on
the circle. And maybe more surprising, for t → ∞ the diffusion mean approaches
the extrinsic mean on the circle. This speaks in favor of both the intrinsic and the
extrinsic mean, as two sides of the same coin, for this particular case.

From the above discussion it is clear that the diffusion mean procedure is defined
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for all t > 0, but the uniqueness of the solution is not guaranteed in any way.
The idea very simple. In fact, it would come as a surprise if this particular idea
has not been discovered before. The point to be made however is that for certain
manifolds, both the intrinsic and extrinsic mean are optimal, depending on the
model of the noise. In the next section the diffusion mean is discussed in a slightly
more mathematical way.

3.6 A More Mathematical Version of the Diffusion Mean

While intrinsic approaches to estimation on manifolds may be considered to be
the “most natural” from a theoretical point of view, extrinsic methods may be
more efficient to use and quite often produce similar results. Preliminary results
show that for some highly symmetrical manifolds, certain extrinsic means may
even be optimal from a statistical point of view under the appropriate assumptions
on noise.

3.6.1 The Diffusion Mean in R
n

A statistical interpretation of a mean vector x for a set of vectors xi ∈ Rn is the
following. Suppose the vectors in the set are measurements of a vector x corrupted
by Gaussian noise. Thus xi = x + ni, ni ∈ N(0,Σ), is a random variable and
{xi} is a set of i.i.d. (independent identically distributed) samples. To estimate
the value of x given the set of samples, the following likelihood function may be
used.

P (x|x1,x2, . . . ,xN ) =

P (x|x1)P (x|x2)P (x|xN ) =

C1

N
∏

i=1

exp

(

−1

2
(xi − x)T Σ−1(xi − x)

)

=

C1 exp

(

−1

2

N
∑

i=1

(xi − x)T Σ−1(xi − x)

)

=

C2 exp

(

−1

2
N(x − x)T Σ−1(x − x)

)

From this we see that regardless of Σ, the covariance matrix, the maximum like-
lihood estimate of x is x̂ML = x.

The Gaussian distribution in Rn is related to particle diffusion processes and the
heat equation. Given a distribution I(p, t0), describing the distribution of heat or
particles at time t0, the heat equation states

It(p, t) = D∆pI(p, t) (3.3)
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Figure 3.2: The “diffusion mean” for three points on the circle S
1. Top: Three samples

have been collected on S
1, corresponding to positions −2.80, −2.11 and

0.34. For t = 0.1 their individual likelihood functions look like in the plot.
Bottom: The total likelihood, regarding the three samples as independent,
peaks around −1.52, which is close to the intrinsic mean:
xint = (−2.80− 2.11 + 0.34)/3 ≈ 1.52.

where D is the diffusion coefficient, It is the time derivate and ∆p is the Laplacian
operator acting in the spatial domain. The solution to the heat equation at a time
t0 + t is obtained by convolution in the spatial domain

I(p, t0 + t) = I(p, t0) ∗ K(p, t) (3.4)

where K(p, t) is the heat kernel in n dimensions, centered at the origin.

K(p, t) =
1

(4πt)n/2
exp

(

−|p|2
4Dt

)

(3.5)

To study the behavior of a single particle moving according to a Brownian mo-
tion diffusion process, one may choose I(p, t0) to be a Dirac function δ(p − x).
Applying the diffusion process to the initial probability distribution during time t
would describe the probability of finding a particle at position p at time t0 + t if
the position was known to be x at time t0.

The Gaussian distribution may be generalized to non-linear manifolds by using
the diffusion equation. In this way the maximum likelihood estimate of a set of
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Figure 3.3: The “diffusion mean” for three points on the circle S
1. Top: Three samples

have been collected on S
1, corresponding to positions −2.80, −2.11 and

0.34. For t = 0.5 their individual likelihood functions look like in the plot.
Bottom: The total likelihood, regarding the three samples as independent.

measurements on a manifold may also be calculated. Depending on the choice of
the time interval t and diffusion coefficient D, an analogy with an isotropic co-
variance matrix Σ can be made. However, unlike for Rn, the maximum likelihood
estimate we call the diffusion mean may depend on the uncertainty of the particle
distribution, i.e. t and D. Some simple but relevant special cases will now be
discussed.

3.6.2 The Diffusion Mean when t → 0

First an expression for the diffusion mean on general manifolds is derived for the
limit t → 0. This corresponds to measurements of points on a manifolds which
have been affected by a Brownian motion, but only very short time. In a signal
processing context, this corresponds to measurements with Gaussian distribution
and high certainty.

The so called short time kernel for the diffusion equation, an approximation to
the diffusion equation for short intervals of time, has been studied in (Spira et al.,
2003). In their work they only derive a formula for the 2-D case and this is the
result used in this thesis as well. For 2-D manifolds, the following formula is
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Figure 3.4: The “diffusion mean” for three points on the circle S
1. Top: Three samples

have been collected on S
1, corresponding to positions −2.80, −2.11 and

0.34. For t = 1.0 their individual likelihood functions look like in the plot.
Bottom: The total likelihood, regarding the three samples as independent

obtained,

K(p, q, t) ≈ H0

t
exp

(

−
d2

g(p, q)2

4t

)

. (3.6)

Here p and q are points on the manifold and the kernel K describes the probability
of diffusion from p to q during time t. This means that the probability function
has a lot of similarities with the ordinary Gaussian in Rn when t → 0+. The term
dg(p, q)2 in the exponential function is the squared geodesic distance between p
and q. In particular, H0 is a constant which does not depend on p or q. This is
shown in greater detail in (Spira et al., 2003).

An approximation to the particle diffusion probability function may now be writ-
ten down for the probability of measuring p if the true value is q after time t when
t → 0+.

P (p|q, t) =
H0

t
exp

(

−
d2

g(p, q)2

4t

)

(3.7)

The likelihood L(q|p, t) = P (p|q, t) and the likelihood of q given a set {xi} of
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Figure 3.5: The “diffusion mean” for three points on the circle S
1. Top: Three samples

have been collected on S
1, corresponding to positions −2.80, −2.11 and

0.34. For t = 5.0 their individual likelihood functions look like in the plot.
Bottom: The total likelihood, regarding the three samples as independent,
peaks around −2.11, which is close to the extrinsic mean:
xext = −π + tan−1 (sin(−2.80)+sin(−2.11)+sin(0.34))

(cos(−2.80)+cos(−2.11)+cos(0.34)) ≈ −2.11.

i.i.d. samples is

L(q|{xi}, t) =

L(q|x1, t)L(q|x2, t) . . . L(q|xN , t) =

P (x1|q, t)P (x2|q, t) . . . P (xN |q, t) =
N
∏

i=1

H0

t
exp

(

−
d2

g(xi, q)

4t

)

=

HN
0

tN
exp

(

− 1

4t

N
∑

i=1

d2
g(xi, q)

)



20 Chapter 3. Manifold-Valued Signal Processing

Finding the maximum likelihood now yields

x̂ML = arg max
q

L(q|{xi}, t)

= arg max
q

HN
0

tN
exp

(

− 1

4t

N
∑

i=1

(d2
g(xi, q)

)

= arg min
q

N
∑

i=1

d2
g(xi, q)

= xg

where xg is known as the intrinsic mean for a set of data points in a manifold.
While the intrinsic mean is often considered to be the natural generalization of
mean value for points on a manifold, the probabilistic interpretation of the short
time diffusion kernel further motivates the use of the xg to estimate x. How-
ever, this line of reasoning is only valid for samples from a manifold affected by
Gaussian noise, when t → 0.

3.6.3 The Diffusion Mean when t → ∞

Another interesting case is t → ∞. What can be said under the assumption that
the measurements of x have been affected by a Brownian motion for a long time
and thereby have a very flat Gaussian distribution on the manifold? At present
time, the author is not aware of the solution for this in the general case. But for
particular manifolds it is possible to derive a formula for the maximum likelihood
estimate given the above assumptions.

For a thin rod of length L with insulated ends, the heat equation or equivalently
the diffusion equation It(p, t) = D∆pI(p, t), x ∈ [0, L] gives solutions of the
form (Strauss, 1992)

I(x, t) =
1

2
A0 +

∞
∑

n=1

An exp(−(nπ/L)2Dt) cos(nπx/L) (3.8)

if the initial distribution at t = 0 is given by the Fourier cosine expansion

I(x) =
1

2
A0 +

∞
∑

n=1

An cos(nπx/L) (3.9)

An =
2

L

∫ L

0
I(x) cos(mπx/L)dx (3.10)

The insulated ends of the rod may also be interpreted in a diffusion setting, as
impermeable walls of a container, where particles affected by Brownian motion
cannot pass through.
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Again, studying the probability density function when observing a particle ini-
tiated in a point xi ∈ [0, L] corresponds to the diffusion of a Dirac function,
I(x) = δ(xi − x). The Fourier cosine coefficients are

An =
2

L

∫ L

0
δ(xi − x) cos(mπx/L)dx (3.11)

=
2

L
cos(mπxi/L) (3.12)

and the probability density function for observing the particle at a point x at time
t is

P (xi|q, t) =
1

L
+

∞
∑

n=1

2

L
cos(nπq/L) exp(−(nπ/L)2Dt) cos(nπxi/L) (3.13)

The likelihood for a set of N independent observations xi having the above dis-
tribution now becomes

L(q|xi, t) = (3.14)
L(q|xi, t)L(q|x2, t) . . . L(q|xN , t) = (3.15)

P (xi|x, t)P (x2|q, t) . . . P (xN |q, t). (3.16)
(3.17)

When t → ∞ each of the individual likelihood functions converges to the uniform
distribution L(q|xi, t → ∞) = 1/L. However, for every t < ∞ the function
L(q|xi, t) has a maximum and the same is true for L(q|{xi}, t). If we assume the
second term in the Fourier cosine expansion of δ(x−xi) is non-zero, A1 6= 0, for
at least one of the likelihood functions, it turns out that these terms will determine
which q maximizes the likelihood function when t → ∞. This maximum will
be located either at q = 0 or q = L and give very little information regarding
the position of the true x. Clearly the diffusion mean is not meaningful in this
context, when t → ∞ and uncertainty increases.

For diffusion on the circle, S
1, the diffusion mean procedure will give a more

interesting estimate. Using the full Fourier series on the interval x ∈ [−L,L[, a
function on a circle with circumference 2L may be represented by (Strauss, 1992)

I(x) =
1

2
A0 +

∞
∑

n=1

(An cos(nπx/L) + Bn sin(nπx/L)) (3.18)

An =
1

L

∫ L

−L
I(x) cos(nπx/L)dx (n = 0, 1, 2, . . .) (3.19)

Bn =
1

L

∫ L

−L
I(x) sin(nπx/L)dx (n = 0, 1, 2, . . .). (3.20)
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Solving It(p, t) = D∆pI(p, t) gives the following solution:

I(x, t) =
1

2
A0 +

∞
∑

n=1

e−(nπ/L)2Dt(An cos(nπx/L)+Bn sin(nπx/L)) (3.21)

The probability density function after time t for a particle moving according to
Brownian motion on the circle parameterized by xi ∈ [−L,L] corresponds to the
diffusion of a Dirac function, I(x) = δ(xi − x). The Fourier cosine coefficients
are

An =
1

L
cos(mπxi/L) (n = 0, 1, 2, . . .) (3.22)

Bn =
1

L
sin(mπxi/L) (n = 0, 1, 2, . . .) (3.23)

and the probability density function for observing the particle at a point x at time
t is

P (xi|q, t) =
1

2L
+

1

L

∞
∑

n=1

Fin (3.24)

where

Fin = e−(nπ/L)2Dt (cos(nπq/L) cos(nπxi/L) + sin(nπq/L) sin(nπxi/L)) .

(3.25)

The likelihood for a set of N independent observations xi on the circle now gives
a distribution

L(q|xi, t) = (3.26)
L(q|x1, t)L(q|x2, t) . . . L(q|xN , t) = (3.27)

P (x1|q, t)P (x2|q, t) . . . P (xN |q, t). (3.28)

When t → ∞, every distribution for a diffusion process converges to the uniform
distribution, in this case L(q|x, t → ∞) = 1/(2L). On the circle, the dominant
terms for finding the maximum of the distribution when t → ∞ are A1 and B1.
These two coefficients correspond to the functions sin(x) and cos(x), which both
are eigenfunctions to the Laplacian operator and have the same eigenvalue. It
turns out that the diffusion mean converges to the extrinsic mean in the case of a
circle. This is not proved here, but it is at least demonstrated experimentally in
figures 3.2 – 3.5.

3.7 A Final Remark
While the results in this section are preliminary, there is still a point in mentioning
that it seems like these results are valid not only for the circle but also for a larger
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class of compact symmetric spaces such as the torus, the sphere and possibly
more. In particular, if future research shows that it is valid for the Q embedding
of SO(3), we have an excellent motivation for the representation proposed in
chapter 10.

For this reason, the main contribution of this section is the notion of the diffu-
sion mean and its connection to manifold-valued signal processing. A full set of
rigorous proofs for the behavior of this technique, in different manifolds and for
different values of t, is the topic of future research. While the idea is quite sim-
ple, it would not be surprising if other people have come to similar conclusions
regarding it’s asymptotic properies, in this or similar contexts.





4
Dimensionality Reduction and

Manifold Learning

Visualization, processing and analysis of high-dimensional data such as images
often requires some kind of preprocessing to reduce the dimensionality of the
data and find a mapping from the original representation to a low-dimensional
vector space. The assumption is that the original data resides in a low-dimensional
subspace or manifold, embedded in the original space. This topic of research
is called dimensionality reduction, non-linear dimensionality reduction or more
recently manifold learning.

The class of methods for dimension reduction and manifold learning is quite broad
and the criteria for finding a low-dimensional parameterization varies. One of
the most well known algorithms is PCA, Principal Components Analysis, which
projects data on a n-dimensional linear subspace which maximizes the variance
of the data in the new space.

Figure 4.1: Left – Right: A 1-D manifold embedded in R
2. A 1-D manifold immersed in

R
2. The torus, a 2-D manifold embedded in R

3. Boy´s surface, an immersion
of the projective plane RP

2 in R
3.

If the original data points lie on a manifold, the mapping to a new space may give
an embedding or an immersion of the original manifold. In differential geometry,
an immersion corresponds to a smooth mapping f(x) for which the differential
of f(x), dxf(x): Tp(M) → Tf(p)(N), is non-singular and injective. When the
mapping f(x) itself is also injective, it corresponds to an embedding. An example
of an embedding is the mapping of a set of pictures (high-dimensional) of a clock
to a representation on the unit circle in R

2. An immersion could then be a mapping
to a curve in R

2 shaped like the figure “8”.
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4.1 Dimensionality Reduction

Linear methods for dimensionality reduction is a rather mature area of research,
starting with PCA, Principal Components Analysis (Pearson, 1901) a.k.a. the
Hotelling transform (Hotelling, 1933) and the Karhunen-Loève Transform (Karhunen,
1947). Variants of PCA include generalizations such as Empirical Orthogonal
Functions (Lorentz, 1956) and Kernel Principal Components Analysis (Schölkopf
et al., 1998). See figure 4.2 for a schematic view of linear methods for dimension
reduction.

The basic idea in PCA is to find a projection of the data that maximizes variance.
For a set of vectors xi ∈ R

N , this can be done by the following procedure.

1. Calculate the N × 1 sample mean vector, u = 1
M

∑M
i=1 xi.

2. Subtract mean from the data points x̃i = xi − u

3. Organize x̃i into a N × M matrix X.

4. Create the sample covariance matrix C = 1
M−1X̃X̃T .

5. Calculate the K largest eigenvalues of C and store the corresponding eigen-
vectors in a N × K matrix called W.

6. Projections on the PCA basis may now be calculated as yi = WT (xi −u).

PCA has been widely used; “eigenfaces” (Turk and Pentland, 1991) is one of the
more well known applications where it is used to create a low-dimensional linear
subspace describing variations in images of human faces. The Karhunen-Loève
transform is also known to be useful to create natural basis functions for image
compression in general.

Figure 4.2: A schematic view of the fitting of 1-D linear model to a set of data points
embedded in 2-D.

Another well known linear method to find embeddings or immersions of data
points, possibly sampled from a manifold, is Multidimensional Scaling (MDS)
(Torgerson, 1952; Young and Householder, 1938). Instead of preserving variance
in the projection, it strives to preserve all pairwise distances during the projec-
tion. Similar to PCA, the basic variant of Multidimensional Scaling is possible
to calculate by solving an eigenvalue problem. This is attractive since eigenvalue
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problems are optimization problems for which efficient and globally convergent
algorithms exist. The classic MDS is stated as a minimization problem of find-
ing new low-dimensional coordinates yi for the dataset xi given all pairwise Eu-
clidean distances d(xi,xj). The solution, up to a rotation, is given by

{yi} = arg min
{yi}

M
∑

i=1

(

d(xi,xj)
2 − ||yi − yj||2

)2 (4.1)

Important to note is that classical MDS works with quadratic distances, which
might seem unnatural but makes it possible to solve the minimization problem
by the solution of an eigenvalue problem. If distances correspond to Euclidean
distances, classical MDS is equivalent to PCA.

Variants of MDS include non-metric Multidimensional Scaling and weighted MDS.
In weighted MDS the objective function is replaced by

arg min
{yi}

M
∑

i=1

wij (d(xi,xj) − ||yi − yj ||)2 . (4.2)

This objective function differs from classical MDS. It does not fit squared dis-
tances. As a consequence, this objective function might have several local min-
ima and eigen-decomposition cannot be used to solve the problem in one step.
Therefore some strategy for coping with local minima should be employed in the
numerical minimization procedure. The benefit of weighted MDS is that uncer-
tainty and missing data can be modeled using appropriate weights.

Other important linear projections of data in vector spaces include Projection Pur-
suit (Friedman and Tukey, 1974) and Independent Component Analysis (Jutten
and Herault, 1991). A well known related example for non-metric data is La-
tent Semantic Indexing or LSI (Berry et al., 1995). LSI maps document-vectors,
describing the occurrences of words in documents, to a low-dimensional vector
space.

4.2 Manifold Learning

Recently there has been a great interest in methods for parameterization of data
using low-dimensional manifolds as models. Within the neural information pro-
cessing community this has become known as manifold learning. Methods for
manifold learning are able to find non-linear manifold parameterizations of data-
points residing in high-dimensional spaces, very much like Principal Component
Analysis (PCA) is able to learn or identify the most important linear subspace
of a set of data points. In two often cited articles in Science, Roweis and Saul
introduced the concept of Locally Linear Embedding (Roweis and Saul, 2000)
and Tenenbaum et al. introduced the so called Isomap (Tenenbaum et al., 2000).
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Figure 4.3: A schematic view of the fitting of 1-D non-linear manifold to a set of data
points embedded in 2-D.

This seems to have been the start of the most recent wave of interest in manifold
learning.

Early work was done by Kohonen with the so called Self-Organizing Maps (SOM)
(Kohonen, 1982), in which a topologically constrained manifold is modeled by a
grid of points, usually rectangular, which are fitted to the data set. This work was
later improved in the Generative Topographic Map (GTM) (Bishop et al., 1998).
Bregler and Omohundro were also early in adopting the view of data as points
on a non-linear manifold in a vector space, modeling the manifold of lip images
(Bregler and Omohundro, 1994). A non-linear variant of PCA, called Kernel
Principal Components Analysis (KPCA) (Schölkopf et al., 1998), has also been
introduced. In KPCA the input vectors are mapped to a new feature space before
applying PCA, a procedure which due to mathematical properties is possible to
solve mostly using linear methods. Later, contemporary with Isomap and LLE,
Belkin and Niyogi described how approximations to the Laplacian operator and
heat equation defined on the manifold (Belkin and Niyogi, 2002) may be used to
perform manifold learning by so called Laplacian Eigenmaps (LE).

4.3 Laplacian Eigenmaps

As an example of a method for manifold learning, we first mention Laplacian
Eigenmaps (Belkin and Niyogi, 2002). The basic algorithm consists of three steps:

1. First a graph is constructed where each node corresponds to a data point xi.
Edges are created to each of the K nearest neighbors of xi. See figure 4.4.

2. Weights are then assigned to each edge in the graph, for instance using
a Gaussian kernel to give strong weight to edges connecting data points
which are close in the original space. The weights are collected in a matrix
Wij .

3. To find a low-dimensional embedding {yi} corresponding to {xi}, define
an objective function V which has a low value when nodes with a strong
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edge are mapped close to each other.

V ({yi}) =
1

2

∑

i,j

||yi − yj ||2Wij (4.3)

Define a diagonal matrix D, such that Dii =
∑

j Wij and the Laplacian
matrix L = D − W . If Y gives the m-dimensional coordinates of yi on
the ith row of Y , and the constraint Y T DY = I is added, the Laplacian
eigenmap of dimension m is now found by the solution of the eigenvalue
problem Lv = λDv. If the eigenvectors {v(0),v(1), . . . ,v(N−1)} are or-
dered after the size of the eigenvalues, the first being the smallest (actually
equal to 0), then Ŷ = (v(1),v(2), . . . ,v(m)) gives the solution for the opti-
mal embedding, minimizing the value of V .

Figure 4.4: A schematic view of the formation of a graph by connecting nearby samples.

The Laplacian Eigenmaps is sometimes referred to as a local method for manifold
learning, meaning that it is an attempt to preserve local geometrical properties in
the mapping to a low-dimensional space (de Silva and Tenenbaum, 2002).

4.4 Isomap – Isometric feature mapping

An example of a global method for manifold learning is Isomap (Tenenbaum et al.,
2000). It tries to preserve the geometry of the data manifold in all scales, mapping
nearby points to nearby points and faraway points to faraway points (de Silva and
Tenenbaum, 2002). The basic steps of the algorithm are:

1. Create a neighborhood graph G for the dataset {xi}, based for instance on
the K nearest neighbors of each point xi.

2. For every pair of nodes in the graph, compute the shortest path as an esti-
mate of intrinsic distance within the data manifold. The edges of the graph
are weighted according to the Euclidean distance between the correspond-
ing data points.

3. Use the intrinsic distance estimates as input to classical MDS and find an
optimal m-dimensional embedding {yi}.
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The convergence properties of the estimation procedure for the intrinsic distances
is further described in Bernstein et al. (2000).

Computing N × N pairwise distances is a computationally heavy operation, and
so is solving a large eigenvalue problem. In comparison to for instance Lapla-
cian Eigenmaps, the eigenvalue problem in Isomap is not sparse. A variation of
Isomap is the L-Isomap, based on the so called Landmark MDS method. It works
by first calculating the Isomap embedding for n points, the landmarks, selected
at random. Then the solution for the rest of the points are computed by an in-
terpolation technique similar to triangulation. This technique is also very similar
to the proposed method for calculating the sample logmap, and even though the
two approaches are different in philosophy, they share some obvious similarities.
The interpolation procedure is the following for a point xi which is not a land-
mark. Let the m-dimensional landmark coordinates be column vectors in a m×n
matrix L. Let ∆n be the squared distance matrix for all pairs of landmarks and
∆n the column mean of ∆n. Let ∆i be a column vector of all squared distances
from xi to the landmarks. Also assume that the landmarks are centered. Then the
interpolated coordinate is given by

yi =
1

2
L†(∆n − ∆i) (4.4)

where † denotes the Moore-Penrose pseudoinverse. This is basically an estimate
of −1/2 times the derivative of the squared distance function to xi, evaluated at
the origin.

4.5 Sample Logmaps

The sample logmaps presented in chapter 11 are related to the Isomap algorithm
and in particular the variation called Landmark-Isomap or L-Isomap. However,
the goal of the sample logmaps is fundamentally different in philosophy and the
sample logmaps should not be seen as variations of Isomap. The sample logmaps
try to approximate the well known Log map on a manifold, while Isomap is a
unique mapping in its own right, trying to preserve all pairwise distances during
the mapping.

The function logp(x) in a manifold is a mathematically well defined function,
which maps points x on the manifold to the tangent space in p, TpM . It is the
inverse of the exponential function, expp x, which maps a vector x ∈ TpM to
points on the manifold.

One way to see how the logmap may be estimated is to consider some results
related to how the intrinsic mean is computed (Karcher, 1977; Fletcher et al.,
2004). Let {xi} be N data points in a manifold M and seek the minimizer to the
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Figure 4.5: A schematic view of the estimated logmap procedure. The manifold is de-
noted M while X corresponds to a set of samples from M . Left: 1. All
distances d(x, y), (x, y) ∈ (N(p) × X) are calculated. Right: 2. For each
y ∈ X , gradients at p are calculated using the information from the previous
step.

function

f(x) =
1

2N

N
∑

i=1

d2(x, xi), (4.5)

where d2(x, y) is the squared intrinsic distance between points x and y. It is then
shown in Karcher (1977), under the appropriate assumptions of convexity, that the
gradient of f is

∇f(x) = − 1

N

N
∑

i=1

logx xi. (4.6)

From this we directly see that for N = 1, we have

logp(y) = −1

2
∇pd

2(p, y) (4.7)

which shows that the logmap of x1 calculated at the base point x, is precisely
−1/2 times the gradient of the squared distance function. The approach for cal-
culating sample logmaps in this thesis is based on this result, the squared distance
function is calculated using the estimate of intrinsic distances proposed in (Tenen-
baum et al., 2000; Bernstein et al., 2000) and the gradient is calculated numeri-
cally. It is also proposed to use a robust method to calculate the gradient, while
the squared distance function is not smooth for points close to the cut locus of the
base point x.

The steps in the sample logmap algorithm for a single point y are as follows:

1. Select a ball of points around a base point p, B(p).

2. Calculate the coordinates of all points in B(p) in an ON-basis.

3. Estimate the distances from a point y in the manifold to all points in B(p).
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4. Estimate the gradient in p of the squared distance function of y, for instance
using a non-robust approach such as the one used in L-Isomap.

The similarities with the L-Isomap algorithm also makes it tempting to formulate
the sample logmap estimation as a minimization problem. The exact details are
left for future research, but it is reasonable to assume that sample logmaps can be
formulated as minimizers of

V ({yi}) =
∑

i∈I(B(p))

∑

j∈I(X)

(d2(xi, xj) − ||yi − yj ||2)2, (4.8)

where I(x) is a function which maps points to indices and d(x, y) is the Rieman-
nian metric on M . The way we “solve” this minimization problem at the moment
is to first find an embedding of all points in B(p) and then use interpolation to
find the optimal coordinates for the rest of points. Considering the structure of
the objective function above, the sample logmaps may be seen as a local-global
approach to manifold learning.

The logmap, logp(x) may produce a very distorted mapping of the manifold for
points x faraway from p, if the manifold is intrinsically curved. Distances and
angles measured at p are however perfectly preserved and geodesics through p are
mapped to straight lines. In this aspect the logmap is equal to the map projection
called Azimuthal Equidistant Projection for mapping of the Earth, a map projec-
tion often used in radio communications, which also happens to be the projection
of the earth used in the flag of the United Nations (see figure 4.6).

Figure 4.6: The flag of the United Nations was adopted on October 20, 1947. The em-
blem of the flag contains an azimuthal equidistant projection of a world map,
centered at the North Pole (Wikipedia, 2005). Image from the Open Clip Art
Library, http://www.openclipart.org.

One goal in manifold-valued signal processing is to represent the signal process-
ing algorithms in a coordinate free way. This means that the operations has a ge-
ometric, intrinsic meaning, not relying on any particular coordinate system. For
example, using coordinate free methods, operations can be defined on the whole
of S

2 while any coordinate description must have coordinate singularities. In a
way, coordinate free approaches actually points towards not using manifold learn-
ing to find a low-dimensional parameterization of the data manifold, but instead
perform all data- and signal processing intrinsically in the manifold.
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Subtraction −→xy = y − x −→xy = logx(y)
Addition y = x + −→xy y = expx(−→xy)
Distance dist(x, y) = ||y − x|| dist(x, y) = ||−→xy||X

Mean value (implicit)
∑

i

−→
xxi = 0

∑

i logx(xi) = 0
Gradient descent xt+ε = xt − ε∇C(xt) xt+ε = expxt

(−ε∇C(xt))
Linear interpolation x(t) = x1 + t−−→x1x2 x(t) = expx(t−−→x1x2)

Table 4.1: In (Pennec et al., 2005) the above analogies are made between operations in
vector spaces and manifolds.

As pointed out in (Pennec et al., 2005)

“the implementation of logx and expx is the basis of any program-
ming on Riemannian manifolds”.

Using sample logmaps we now have the basic building block for performing these
calculations for signal and data processing in sampled manifolds. Even the expp

function is easily evaluated when the manifold is flattened in the point p by inter-
polation in the resulting mapping. In table 4.5, which is reproduced from (Pennec
et al., 2005), some basic operations in vector spaces are compared to analogous
operations in manifolds.

4.6 Some Concluding Remarks

A full review of dimension reduction and manifold learning is out of scope for this
thesis. The activity in this field is increasing and the following list is a summary
which may also serve as a timeline.

• Principal Components Analysis, PCA (Pearson, 1901; Hotelling, 1933; Karhunen,
1947).

• Multidimensional Scaling, MDS (Young and Householder, 1938; Torger-
son, 1952)

• Empirical Orthogonal Functions, EOF (Lorentz, 1956)

• Projection Pursuit, PP (Friedman and Tukey, 1974)

• Self Organizing Maps, SOM (Kohonen, 1982)

• Principal Curves (Hastie and Stuetzle, 1989)

• Independent Component Analysis, ICA (Jutten and Herault, 1991).

• Surface Learning with Applications to Lip Reading (Bregler and Omohun-
dro, 1994)

• Curvilinear Component Analysis, CCA (Demartines and Herault, 1997)



34 Chapter 4. Dimensionality Reduction and Manifold Learning

• Generative Topographic Mapping (Bishop et al., 1998)

• Kernel Principal Components Analysis, KPCA (Schölkopf et al., 1998)

• Isometric feature mapping, Isomap (Tenenbaum et al., 2000) and C-Isomap
and L-Isomap (de Silva and Tenenbaum, 2002).

• Locally Linear Embedding, LLE (Roweis and Saul, 2000)

• Laplacian Eigenmaps, LE (Belkin and Niyogi, 2002)

• Local Tangent Space Alignment, LTSA (Zhang and Zha, 2002)

• Hessian Eigenmaps, HLLE (Donoho and Grimes, 2003)

• Diffusion Maps (Nadler et al., 2006)

• Relational Perspective Map, RPM (Li, 2004)

• Sample Logmaps (Brun et al., 2005b)

In general, linear methods for dimension reduction are more stable and more ma-
ture. Principal Components Analysis and Multidimensional Scaling are still very
popular and have the advantage of being able to learn meaningful relations from
few samples. Some of the oldest methods for manifold learning, such as the Self
Organizing Feature Maps, have also been used in many applications and may be
considered as mature from an application point of view. The more recent methods
for manifold learning have mainly two advantages: they are 1) based on global
optimization and the solution of eigenvalue problems (unlike SOMs which are
sensitive to local minima in the objective function) and 2) they have shown to be
efficient for difficult datasets, such as the “Swiss roll” (Tenenbaum et al., 2000;
Roweis and Saul, 2000) dataset, where linear methods such as PCA and MDS fail.

Also, while not mentioned here, a lot of work has been done in related topics. One
important method for dimensionality reduction is Canonical Correlation Analysis,
which finds meaningful relationships and performs dimension reduction between
paired datasets. It has also been used to find manifold representations, for instance
in image analysis Knutsson et al. (1998); Knutsson and Borga (1999); Knutsson
et al. (2000). Another related topic is learning functions on manifolds (Landelius
and Knutsson, 1993; Bregler and Omohundro, 1994; Landelius, 1997).



5
Diffusion Tensor Magnetic

Resonance Imaging

5.1 Diffusion Imaging

In the physical world, diffusion is the collective process of random motion of
particles in a solution or gas. On a macroscopic scale this phenomenon is visible
to the eye, for instance by adding a drop of ink to a glass of water and watching
it dissolve. The process, also known as Brownian motion, was named after the
Scottish botanist Robert Brown who observed the random motion of individual
plant spores in a water solution using a microscope. In 1905 Albert Einstein
presented a theoretical analysis of Brownian motion and linked it to the Boltzmann
constant.

Today diffusion processes are fundamental for the understanding of both physics
and mathematics. In Magnetic Resonance Imaging, MRI, it is possible to measure
and visualize diffusion of water molecules inside living organisms. The advent
of this technology named Diffusion Weighted MRI has today become clinical
practice for the diagnosis of for instance stroke. More recent methods, such as
Diffusion Tensor MRI combined with so called fiber tractography, are able to in
vivo infer the anatomy and connectivity of white matter in the human brain. The
usefulness of this, for morphological or functional studies of the brain or perform
surgical planning prior to the removal of a tumor, is evident.

5.1.1 Diffusion

To get some intuition on diffusion processes, consider the following example of
coin flipping.

Let two players, player A and player B, flip a coin. If heads come up, player B
gives one dollar to player A. If tails come up, A gives one dollar to B. Call the
profit for player A after n turns a(n) ∈ [−n, n] and let a(0) = 0. Each turn of
the game, a(n + 1) is either a(n) + 1 or a(n) − 1, and the variable a(n) perform
a random walk in Z. Whether A or B is the winner after n turns in a particular
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game is impossible to say from the beginning, but the variance, V ar(a(n)) =
E{a(n)2}, after many games lasting for n turns is easy to calculate. The variances
of n independent variables, each with variance 1, is n. Thus V ar(a(n)) = n,
meaning that the variance of the profit is growing linearly with the respect to the
number of turns in the game.

The Diffusion Coefficient
Translating the example of coin flipping to particles performing a random walk in
discrete time in one dimension, the variance is growing linearly if the jumps of
the particle are according to a set of independent and identically distributed (i.i.d.)
variables. Generalizing to continuous time, a natural physical unit to measure the
strength of diffusion is m2/s.

Diffusion in a 3-D isotropic medium is in a similar way characterized by the diffu-
sion coefficient, c. The variance of the distance, |r|, a particle moves by a random
walk during time t is V ar(|r|) = 6ct. Looking at the individual dimensions, we
have V ar(rx) = V ar(ry) = V ar(rz) = 2ct.

The diffusion tensor is a generalization of c to account for anisotropic diffusion
in three dimensions. It is defined as D = V ar(r)

2t = E{rrT }
2t . Similar to the vari-

ance, it is a second order contravariant tensor, described by a symmetric positive
semidefinite 3 × 3-matrix. Using D, we may measure the diffusion coefficient
along a particular direction ĝ by the formula c(ĝ) = ĝT Dĝ. In an isotropic
medium the diffusion tensor (in a ON basis) simply becomes

D =





c 0 0
0 c 0
0 0 c



 (5.1)

The Apparent Diffusion Coefficient
The diffusion coefficient and the diffusion tensor both describe the behavior of
unrestricted diffusion. For water molecules in biological tissue, the diffusion is
often restricted by for instance cell membranes. For short time intervals, the dif-
fusion of a single molecule is governed by the diffusion tensor or the diffusion
coefficient. On a larger time scale however, collisions with boundaries of various
kinds will restrict diffusion. This will affect the measurement of diffusion and the
term apparent diffusion coefficient (ADC) is used instead.

5.1.2 Estimating Diffusion Tensors

Using diffusion weighted MRI, it is possible to measure the apparent diffusion
coefficient in different directions. The Stejskal-Tanner equation relates measure-
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Figure 5.1: A total of eight axial slices of a human brain have been acquired to calculate
one slice of diffusion tensors. The six first images are diffusion weighted and
have been collected with non-zero gradients in six different gradient direc-
tions ĝ. The two last images have been collected with zero gradients, g = 0.

ments to ADC values:

Sk = S0e
−γ2δ2 [∆−(δ/3)]c (5.2)

A generalization to diffusion tensors D and gradient directions ĝ is straight for-
ward.

Sk = S0e
−γ2δ2 [∆−(δ/3)]gT Dg (5.3)

In the equation above, γ is the proton gyromagnetic ratio (43MHz / Tesla), and g

is the gradient field vector, δ is the duration of the diffusion gradient pulses and
∆ is the time between the diffusion gradient RF pulses. The value Sk refers to
the measured signal, attenuated by diffusion, and S0 is the corresponding value
obtained when the diffusion gradient strength is zero.

Estimation of D from a series of diffusion weighted measurements is possible, ei-
ther using a least squares approach (Westin et al., 2002) or using statistical meth-
ods. The unknown values are S0 and D, containing in total 7 degrees of freedom
(due to the symmetry of D). See figure 5.1 for a set of 8 images used in DT-MRI
(two of the images are averaged before estimation begins). The measurements Sk

will be affected by Rician distributed noise (Gudbjartsson and Patz, 1995) from
the MRI acquisition process.
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Eigenvalues of D

(10−6mm2/s)
Pyramidal
tract (WM)

Splenium of
the corpus
callosum
(WM)

Optic radia-
tion (WM)

Caudate Nu-
cleus (GM)

Cerebrospinal
fluid (CSF)

λ1 1, 708± 131 1, 685 ± 121 1, 460 ± 75 783 ± 55 3, 600± 235
λ2 303 ± 71 287 ± 71 496 ± 59 655 ± 28 3, 131± 144
λ3 114 ± 12 109 ± 26 213 ± 67 558 ± 17 2, 932± 212

Table 5.1: Typical ADC values found in the human brain, measured in the orientations
of the three eigenvectors of D (Pierpaoli et al., 1996).

5.1.3 Diffusion in the Human Brain

Inside the human brain, the apparent diffusion properties will vary depending of
the type of tissue. In table 5.1 some values of ADC is measured for various tissues.
The different eigenvalues mentioned will be explained in more detail below, but
refers to the fact that diffusion varies in different directions – the diffusion tensor
D is anisotropic – for certain types of tissue, in particular inside white matter
(WM).

Close to fiber structures in the brain, the diffusion of water molecules is restricted.
The variance of the random walk is attenuated in directions perpendicular to the
fibers, while the movement along the fibers is similar to free diffusion. The
anisotropy of the apparent diffusion is captured in the diffusion tensor. By study-
ing the main direction of diffusion, derived from the eigenvalues and eigenvectors
of the diffusion tensor, it is possible to infer the orientation of fibers going through
a voxel. This forms the basis for fiber tracking. Studying the degree of anisotropy
of a diffusion tensor also give a lot of information about the organization of tissue
within that specific voxel.

5.1.4 Applications of DT-MRI

The applications of DT-MRI in a clinical setting include examples of both quan-
titative and qualitative methods.

Surgical Planning

During surgical planning involving the brain, knowledge of the location of impor-
tant fiber bundles may guide the surgeon to avoid damage on important functional
parts of the brain. This is particularly important when planning the removal of
tumors, while fiber tracts may have been distorted by the growth of the tumor so
that experience and prior knowledge of fiber bundles are of little importance in
the case at hand.
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Clinical Studies
For morphological and functional studies of the human brain, in both healthy
populations and patients, diffusion tensor MRI can be useful to derive knowledge
related to white matter variations and abnormalities. This includes for instance
studies on Schizophrenia and Multiple Sclerosis. With DT-MRI it is also possible
to perform non-invasive and harmless experiments on human subjects to find out
about pathways in the brain, and confirm hypotheses about the human brain de-
rived from invasive and dangerous studies previously only performed on animals
and in particular monkeys.

5.2 Processing Diffusion Tensor Data
Processing and analysis of tensor-valued data in image volumes requires a treat-
ment different from that of scalar data. While image processing for tensor images
was available prior to the introduction of DT-MRI, see for instance (Knutsson,
1989; Granlund and Knutsson, 1995), the recent advances in acquisition of tensor-
valued data in medicine (Westin et al., 2002) has made this field of research pop-
ular again.

5.2.1 Scalar Invariants

Tensors and tensor volumes are more difficult to visualize and analyze than scalars
and scalar-valued volumes. For this reason, methods for calculating scalar values
derived from tensors are important, in particular methods which yields scalars that
are invariant to rotations of the coordinate frame. Three important invariants are
the trace, fractional anisotropy and the shape classification of tensors by Westin.

Trace
The trace of the tensor is defined

Tr(D) =

n
∑

i=1

Di
i (5.4)

For a mixed second order tensor, the trace is a scalar which is invariant to changes
of basis and thereby invariant to rotations. While the diffusion tensor is a con-
travariant tensor, Dij , and the trace is only defined for mixed tensors, it is neces-
sary to first transform the diffusion tensor Dij to a mixed tensor Di

j = Dikgkj .
Using the trace, a mean diffusion coefficient can be calculated using

c =
1

3
Tr(Di

j) =
1

3
Tr(Dikgjk) =

1

3
Dikgik =

1

3

n
∑

i=1

n
∑

k=1

Dikgik (5.5)
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This scalar invariant is formed by letting the metric tensor operate on the diffusion
tensor. It is thus dependent of the choice of unit used to define the metric, i.e.
whether length one represents one meter, one centimeter or one foot. In most
context related to diffusion tensor imaging one simply speaks of the trace of the
tensor, indirectly assuming that the tensor is expressed in an ON-basis for which
the metric tensor is the identity matrix.

If the eigenvalue equation

Di
jx

j = λxi (5.6)

has n = dimV non-trivial solutions with corresponding linearly independent
eigenvectors ei with eigenvalues λi, the matrix Di

j may be decomposed accord-
ing to the eigen decomposition theorem as

Di
j = (PWP−1)ij (5.7)

where P = [ei
1, e

i
2, . . . , e

i
n], Wj

i = λi if i = j and W i
j = 0 if i 6= j. The

eigenvalues may be found by solving the so called characteristic equation
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A3 =

∣

∣

∣

∣

∣

∣

D1
1 D1

2 D1
3

D2
1 D2

2 D2
3

D3
1 D3

2 D3
3

∣

∣

∣

∣

∣

∣

(5.11)

(5.12)

λ3 − λ2A1 + λA2 − λA3 = 0 (5.13)

Any invariant which is independent of coordinate system may be written as a
function of A1, A2 and A3. The left hand side of the last equation is called the
characteristic polynomial. Eigenvalues are independent of the choice of coordi-
nate system and for this reason the coefficients in the polynomial are invariant to
coordinate changes as well.
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Figure 5.2: Typical linear, planar and spherical tensors.

Fractional Anisotropy

The fractional anisotropy (FA) is a measure explaining how much the norm of the
tensor stems from anisotropic contributions.

FA =
1√
2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2
√

λ2
1 + λ2

2 + λ2
3

(5.14)

=

√
3√
2

|D− 1
3Tr(D)δi

j |
|D| (5.15)

Due to the properties of the norm and the trace, it is invariant to rotations and
scaling. See figure 5.5 for a typical axial slice displayed using FA.

Linear, Planar & Spherical

In (Westin et al., 2002) the following three measures of diffusion tensor shape are
defined, corresponding to linear, planar and spherical shape

cl =
λ1 − λ2

λ1
(5.16)

cp =
λ2 − λ3

λ1
(5.17)

cs =
λ3

λ1
(5.18)

See figure 5.2 for an intuitive explanation of the concept.

5.2.2 Fiber Tracking

While scalar invariants have been used widely, both to visualize and obtain quan-
titative measures of diffusion within the human brain, even more stunning visu-
alizations and analyses of connectivity may be performed using so called fiber
tracking algorithms. They release seeds, virtual particles, in the data volume, cre-
ating streamlines while following the principal direction of diffusion (PDD). The
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Figure 5.3: A dissection of a real brain showing the structure of white matter (from The
Virtual Hospital, University of Iowa).

tracking is usually seeded within white matter and terminates when reaching a
gray matter mask or when the FA value becomes too low. See figure 5.6 for an
example of fiber tracking.

PDD tracking

The simplest and maybe most widely used kind of fiber tracking is to follow the
principal direction of diffusion. Each particle, seeded within white matter, is it-
eratively propagated along the principal direction of diffusion in the data. Great
care should be taken in order to interpolate the tensor field within each voxel in
order to obtain smooth fiber traces.

Stochastic Tracking

In stochastic or probabilistic fiber tracking (Brun et al., 2002; Björnemo et al.,
2002; Behrens et al., 2003b; Hagmann et al., 2003; Behrens, 2004; Behrens et al.,
2003a; Friman and Westin, 2005), particles are propagated in a similar way as in
PDD tracking. For each time step, a particle is propagated in a direction taken
as a random sample from the estimated probability distribution of the PDD. In
this way, uncertainty from the measurements and the model is taken into account.
Seeding from a particular voxel A, multiple fiber traces are possible, and a kind
of “connectivity estimate” p(B|A, t) may be calculated to measure the proportion
of particles starting in a point A and reaching a point B after t time steps.

5.2.3 Fiber Tract Connectivity

Estimation of “connectivity” in the human has been something of a holy grail for
the DT-MRI imaging community. Figures 5.3 and 5.4 show a dissection of a real
brain, revealing some of the complexity of the human brain white matter architec-
ture. If one can see fiber traces and fiber bundles in DT-MRI and in dissections of
real brains, extending the algorithms to give a quantitative measure of connectivity
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Figure 5.4: A dissection of a real brain showing the structure of white matter (from The
Virtual Hospital, University of Iowa).

ought to be possible. The probabilistic and stochastic algorithms for fiber tracking
give quantitative answers to the question: p(B|A) = “what are the chances of end-
ing of in voxel B if we start in voxel A” but this measure is not the same as p(A|B)
which is a somewhat confusing property. Sometimes the connectivity measure is
simply made symmetrical by brute force, i.e. c(A,B) = 1

2(p(A|B) + p(B|A))
(Behrens, 2004).

One way to obtain a symmetric measure of connectivity would be to embed all
voxels in a metric space (or even a manifold) in which a short (geodesic) distance
d(A,B) means that two points A and B are more connected. In for instance
(O’Donnell et al., 2002) the image volume is embedded by warping the metric
according to the inverse of diffusion tensors. A problem with this approach could
be that the triangle inequality plays a trick. Assume we have three points A, B
and C in the brain. A is connected to B and A is also functionally connected to
C. However, B and C are not connected at all. The triangle inequality says that
d(B,C) ≤ d(A,B) + d(A,C) and thus forces the points B and C to be close if
A is connected to both B and C.

Apparently some work remains to be done before everybody agree on what kinds
of anatomical connectivity there are, to what extent these quantities are possible
to measure in DT-MRI and what the exact axiomatic properties, in a mathematical
sense, should be for the various kinds of connectivity.

5.2.4 Segmentation of White Matter

Without diffusion weighted imaging, it is difficult to segment fiber bundles in hu-
man brain white matter. In other image modalities, voxels within white matter
are represented by one single intensity and there is no way to distinguish be-
tween different bundles. With DT-MRI on the other hand, voxels in white matter
may be segmented depending on what areas of the brain they connect. The same
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technique also works for segmenting gray matter into areas related to function
(Behrens et al., 2003a).

Virtual dissection (Catani et al., 2002) is one example of how a medical doctor
can interactively explore the anatomy of white matter by selecting fiber traces of
interest depending on their connectivity. Other examples include automatic Fuzzy
C-means (Shimony et al., 2002) clustering and NCut clustering (Brun et al., 2004)
of DT-MRI fiber traces.

5.3 Visualization of Streamline Data

The approach for visualization of DT-MRI data, presented in chapter 8 and 9, use
methods inspired by dimension reduction and manifold learning in order to en-
hance the perception of connectivity in DT-MRI data of the human brain. This is
different from obtaining quantitative measurements of connectivity and we envi-
sion these approaches to be useful for the purpose of interactive visualization and
explorative analysis of DT-MRI. The primary goal is to create a visual interface
to a complex dataset.

5.3.1 Local and Global Features in DT-MRI

The scalar invariants presented in 5.2.1 are important features of the kind of
tensor-valued data obtained from DT-MRI. Using scalar invariants, local features
of the data inside a voxel may be visualized using for instance a color map. This
is one example of a local feature of the dataset. Other slightly less local features
in tensor data include edge information (O’Donnell et al., 2004; Granlund and
Knutsson, 1995) For vector-valued velocity data, which is also a kind of tensor
data, features based on vortex and convergence/divergence have been proposed
(Heiberg, 2001).

Connectivity as a feature

The connectivity of a voxel, for instance defined by streamlines or probabilistic
fiber tracking, may also be regarded as a feature of that voxel. This not a local fea-
ture, while the connectivity of one single voxel depends on a spatially distributed
set of voxels within the dataset. We call this a macro-feature. Voxels with a similar
connectivity profile may be mapped to similar places in a feature space describing
connectivity.

Viewing voxels as the atomic unit when visualizing connectivity in DT-MRI is one
alternative. The other alternative is to visualize streamlines. The main difference
is that a streamline is itself a representation of its connectivity. A streamline also
has a simpler connectivity profile, while it connects exactly two endpoints with
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each other. A single voxel on the other hand may, through for instance probabilis-
tic fiber tracking, connect to multiple endpoints. One single voxel may also con-
tain several, perhaps crossing, streamlines. This is particularly true if the tracking
algorithm or the data is rich enough to cope with crossing fiber bundles.

The shape and position of a streamline reveals its connectivity and in a way also
the connectivity of the voxels it goes through. Similar streamlines usually belong
to the same fiber bundle

The Fiber Bundle Assumption
Performing fiber tracking can be seen as a kind of feature transform, where the
data volume is transformed into a set of feature points. Each voxel inside the white
matter in the brain is used for seeding a fiber tracking procedure or performing
stochastic fiber tracking. The result is similar to a Hough transform, where each
fiber trace is analogous to the line integral of the Hough transform and maps to a
specific point in a fiber feature space.

In this fiber feature space we assume there are clusters of points, corresponding to
major fiber tracts such as the corpus callosum and the cingulum bundles. These
clusters of points live in a high-dimensional space, the fiber feature space, but
will intrinsically have only two dimensions corresponding to the cross section of
a fiber bundle. Early work on a similar topic may be found in (Westin, 1991).

5.3.2 Learning and Representations

To bring order into the fiber feature space, we propose to utilize methods inspired
by dimension reduction, manifold learning and spectral clustering.

Laplacian Eigenmaps

Laplacian Eigenmaps is spectral technique for manifold learning, which maps
nearby points on a manifold in a possibly high-dimensional Euclidean feature-
space to nearby points a low-dimensional Euclidean space. Using this method, it is
possible to map high-dimensional objects such as fiber traces into a 3-dimensional
Euclidean space. This mapping is used in this thesis to assign colors to fiber traces,
in a way that fiber traces with similar connectivity, shape and position are mapped
to similar colors. This greatly enhances the perception of connectivity in the fiber
trace dataset.

Normalized Cuts

A recently proposed clustering technique, called Normalized cuts or NCut, make
a strong connection between recent spectral methods for manifold learning and
certain graph-based methods for data clustering. The eigenvalue problem solved
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Figure 5.5: An axial slice of a brain. Left: Intensity corresponds to fractional anisotropy.
Middle: Color corresponds to main principal direction of diffusion. Red:
left–right, green: anterior-posterior, blue: superior–inferior. Right: A ren-
dering using tensor ellipsoid glyphs. Courtesy of Gordon Kindlmann.

in NCut is almost identical to the one solved for creating Laplacian Eigenmaps.
Using this method for data clustering, fiber traces are clustered into fiber bundles.
In fact any clustering technique would be possible to use for this task, NCut was
chosen mainly because of its similarity to the Laplacian Eigenmaps and other
spectral methods for manifold learning.

5.3.3 Visualization of Fiber Tract Connectivity

Scalar Invariants

Using the scalar invariants defined in 5.2.1 we may visualize a 2-D slice of a 3-D
DT-MRI volume of a human brain. See figure 5.5 for a demonstration of fractional
anisotropy.

Glyphs

If the (2,0) or contravariant diffusion tensor is transformed into a (1,1) mixed
tensor using the metric gij , it is possible to interpret it as a linear transformation
and a spectral decomposition into eigenvectors and eigenvalues is possible.

In figure 5.6, two variants of tensor glyphs are shown: Ellipsoids and superquadrics
(Kindlmann, 2004). Tensor glyphs show the strength, anisotropy and orientation
of the diffusion tensors.

Streamlines/Streamtubes

The result of fiber tracking may be visualized using either streamlines or stream-
tubes. By choosing the appropriate viewpoint, lighting and possibly a selection of
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Figure 5.6: A detail of an axial slice of the brain shown in figure 5.5. Left: Tensor el-
lipsoids. Middle: Tensor superquadrics (Kindlmann, 2004). Right: Stream-
tubes. Courtesy of Gordon Kindlmann.

a subset of fiber traces to visualize, it is possible to understand the geometry and
connectivity of the dataset. See figure 5.6.

Streamtube Coloring
When the set of fiber traces becomes too complex, an enhancement of the per-
ception of connectivity may be created if the fiber traces are colored according
to their position, shape and connectivity. Similar colors help the user to mentally
group fiber traces into bundles. Fiber traces may also be clustered and colored in
very different colors, to emphasize the difference between distinct clusters.

Voxel Coloring
Finally, the result of streamtube coloring may be transformed to voxel space so
that each voxel is colored or clustered in the same way as the fiber trace(s) passing
through it. Alternatively this may be viewed as coloring each voxel according to
its connectivity profile – voxels connecting similar parts of the brain are mapped
to similar colors or clusters. See chapter 9 figure 9.4 for a demonstration of the
concept.
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Review of Papers

This chapter provides a short review of the papers included in the second part of
this thesis. All papers have been reformatted and minor changes have been made
to correct misspellings and typographical errors.

6.1 Paper I: Coloring of DT-MRI Fiber Traces Using Lapla-
cian Eigenmaps

This paper (Brun et al., 2003) was presented in 2003 at the 9th International Work-
shop on Computer Aided Systems Theory (Eurocast’03) in Las Palmas de Gran
Canaria, Spain. The proceedings were published in Springer Lecture Notes in
Computer Science. Here the concept of fiber coloring or streamline coloring is
introduced for the first time. The idea is to visualize a set of streamlines, ob-
tained e.g. by tractography in DT-MRI data, by choosing colors for the individual
streamlines such that similar streamlines are assigned similar colors. This greatly
enhances the user’s perception of connectivity within the white matter as well as
the separation of fiber traces into fiber bundles for the DT-MRI application.

To create the mapping from streamlines to colors, a recently proposed method for
manifold learning called Laplacian Eigenmaps (Belkin and Niyogi, 2002) is used.
This paper thus shows that dimensionality reduction and manifold learning can
be used to solve a medical visualization problem. In principle many other meth-
ods for dimensionality reduction could also have been used, for instance Isomap
(Tenenbaum et al., 2000) or LLE (Roweis and Saul, 2000).

Since the paper was first presented, the idea of embedding streamlines or fiber
traces in a low-dimensional space has been further explored in (O’Donnell and
Westin, 2005). Also, the particular measure of fiber similarity described in this
paper have been evaluated by others in (Moberts et al., 2005). This method for
spectral coloring of fiber traces have been widely appreciated for its aesthetic
value. A large poster of colored fiber traces from a human brain has for instance
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been displayed for the public at the nationally touring exhibition Se Hjärnan (See
the Brain) sponsored by Vetenskapsrådet (The Swedish Research Council).

6.2 Paper II: Clustering Fiber Traces using Normalized Cuts

The second paper (Brun et al., 2004) was presented at the Seventh International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI’04) in Saint-Malo, France, and published in Springer Lecture Notes
in Computer Science. Here a spectral graph theoretical method strongly related
to the Laplacian Eigenmaps (Belkin and Niyogi, 2002), called Normalized Cuts
(Shi and Malik, 2000) is used to cluster fiber trace data in DT-MRI into discrete
bundles. Our interest in this method came mainly from the fact that it was highly
similar to Laplacian Eigenmaps.

Methods inspired by this paper has already been implemented by other people
(Enders et al., 2005), and cited several times (O’Donnell and Westin, 2005; Moberts
et al., 2005; Blaas et al., 2005; Enders et al., 2005; Jonasson et al., 2005; Maddah
et al., 2005; Kouby et al., 2005; O’Donnell and Westin, 2006). It was the first ap-
plication of a spectral clustering method to find fiber bundles in Diffusion Tensor
MRI fiber trace data. It also featured a novel measure of fiber similarity based on
the mean vector and covariance matrix of the points building up the fiber trace.

6.3 Paper III: A Tensor-Like Representation for Averag-
ing, Filtering and Interpolation of 3-D Object Orien-
tation Data

In a paper (Brun et al., 2005a) presented in Genoa at the IEEE International Con-
ference on Image Processing (ICIP’05) an extrinsic method for averaging, filtering
and interpolation of data on SO(3) is presented. In the literature, many methods
for performing signal processing on SO(3) have been described.

The contribution in this paper is mainly that it points out how algorithms for lin-
ear averaging, filtering and interpolation can be directly translated into tools for
manifold-valued signal processing, given a suitable extrinsic representation. From
the discussion in the previous chapter 3, it is clear that while one common opinion
among researchers is that extrinsic methods should be seen as approximations to
intrinsic ditto, extrinsic methods may in fact be optimal in some cases.
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6.4 Paper IV: Fast Manifold Learning Based on Rieman-
nian Normal Coordinates

In the fourth paper (Brun et al., 2005b), presented at the Scandinavian Confer-
ence on Image Analysis (SCIA’05) and published in Springer Lecture Notes in
Computer Science, a new kind of method for manifold learning is presented. This
method is highly related to differential geometry and the logarithm, the inverse
of the exponential map, on the manifold. From an algorithmic point of view this
method shares some similarities with Isomap, but is different from most modern
methods for manifold learning by not relying on the solution of a large eigenvalue
problem. Apart from being useful for visualization and dimensionality reduction
of manifold-valued data, the logarithm defined on a manifold is also a fundamental
building block in methods for performing intrinsic signal processing on manifold
valued signals.

The method is called LOGMAP in the paper, but for the rest of this thesis the
name Sample Logmaps or S-Logmaps will be used for the whole class of methods
that estimate the log map on a manifold given a set of samples.





7
Discussion

The results presented in this thesis point towards the usefulness of manifolds and
manifold learning in image analysis and visualization.

7.1 Manifold Learning in Diffusion Tensor Imaging

The work on Diffusion Tensor MRI should be seen mainly as a proof of concept,
indicating that new techniques for nonlinear dimensionality reduction are useful
in real applications. It is also important to note that manifold learning gives inspi-
ration to look at data in new ways.

The main contributions in this part of the thesis are:

• The introduction of fiber coloring and voxel coloring, i.e. continuous map-
ping of position and shape of fiber traces to a color space in order to enhance
visualization of connectivity and organization of the white matter in the hu-
man brain.

• The first use of the NCut criteria to perform fiber trace clustering, and the
first use of spectral clustering, to organize fiber traces into fiber bundles.
It should be noted that the use of NCut for clustering of voxels based on
connectivity was independently reported in (Behrens, 2004).

• The introduction of two simple and novel ways to measure fiber similarity:
The similarity of fiber trace endpoints and the similarity of fiber trace mean
vector and covariance matrix.

Mapping of fiber traces to colors, such that similar fiber traces are assigned sim-
ilar colors, also works for streamlines in general and the results are therefore
not limited to Diffusion Tensor MRI but applicable to all approaches involving
streamlines.

So far only Laplacian Eigenmaps have been tested for fiber coloring. It is likely
that other methods for manifold learning and even linear dimension reduction
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work equally well or even better. The method of sample logmaps presented in this
thesis however is probably not useful for this particular application, at least not
without heavy preprocessing of the data and transformation of fiber traces into a
suitable feature space.

While methods such as Laplacian Eigenmaps works fairly well even for data that
does not strictly come from a single manifold, but rather from many smaller man-
ifolds scattered in feature space (each corresponding to a fiber bundle), the sample
logmaps rely heavily on the assumption of a single manifold. For this reason, the
main criticism of the work presented here should be that it exploits the robustness
of the Laplacian Eigenmaps, to give reasonable results even for data where the
assumption of a single manifold fails.

7.2 Intrinsic vs. Extrinsic Methods for Manifold-Valued
Signal Processing

In this part of the thesis, signal processing on a manifold embedded in Euclidean
space was explored using the examples of the circle, S

1, and the Q-representation
for SO(3). Both of these manifolds are examples of symmetric spaces.

The main contributions of the work presented in this part of the thesis are:

• The idea of translating algorithms for linear averaging, filtering and inter-
polation for 1-D signals to 3-D object orientation data on SO(3). This is
not always the best choice, but it may sometimes be convenient from an
application point of view.

• The embryo of a motivation for using extrinsic averaging and signal pro-
cessing in compact symmetric spaces through the diffusion mean. This is
clearly work that has not been completed, but it is still mentioned in this the-
sis while the idea might be important for future work. It also serves as a mo-
tivation for exploring extrinsic means on SO(3) using the Q-representation.

While our research group has been working with extrinsic signal processing on
RP

n for many years, for instance to represent and filter line- and hyperplane ori-
entations, this piece of research is useful to put some of the earlier work into
context.

Future uses of the Q-representation could be for instance to perform template
matching in an image volume with a rotating template.
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7.3 Sample Logmaps – Intrinsic Processing of Empirical
Data

Finally the sample logmaps present a novel way to perform nonlinear dimension
reduction as well as the beginning of a framework for intrinsic signal processing
on manifolds known only from samples.

The main contributions of the work presented in this part of the thesis are:

• A simple and novel way to perform manifold learning and nonlinear dimen-
sion reduction using sample logmaps.

• A way to translate algorithms for vector spaces to sampled manifolds and
perform intrinsic manifold-valued signal processing.

Even though the current way of estimating a sample logmap could be improved,
the theoretical properties of the analytical log map and its importance to manifold-
valued signal processing, makes methods for estimation of sample logmaps a
promising field of research. Important is also to compare the sample logmaps
with other approaches for manifold learning, a work which has already addressed
in part by other researchers in the field (Kayo, 2006).

One last note on sample logmaps is that the terminology used in chapter 11 might
not be perfect while “LOGMAP”, “LogMap” or “Logmap” is very similar to “log
map” which is usually the analytical log map on the manifold and nothing else. It
is more appropriate to talk about “an estimated log map” and name this class of
methods “sample logmaps” or “S-Logmaps” for short.

7.4 Future research
The main objective of future research for the PhD thesis is to seek a more unified
framework for dealing with manifold-valued data and signals. Here are some
directions which could be fruitful:

• Mapping fiber traces to an RGB color space, trying to preserve some kind
of shape metric in the RGB space, is far from optimal for human perception.
Careful mapping of fiber traces into a CIE Lab or CIE XYZ color system
may, at least in theory, create a mapping where perceived color distance
corresponds more accurately to distances in the feature space at hand.

• Sampled manifold-valued data is often affected by noise, for instance isotropic
Gaussian noise added in the embedding space. This increases the apparent
dimensionality of the manifold. It would be useful to have methods to re-
move this noise from the data before applying manifold learning.

• From a more philosophical point of view, the mapping of fiber traces to
a feature space give raise to many new possibilities related to registration
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of datasets. One aspect of this has already been explored in (O’Donnell
and Westin, 2005) where fiber traces from different brains are mapped to
a common feature space using Laplacian Eigenmaps. This allow for new
ways to compare connectivity between different brains in a population.

Another aspect related to registration is to actually perform registration of
two DT-MRI volumes using features derived from connectivity. Just like
scalar invariants may be used to register two DT-MRI datasets, features de-
scribing voxel connectivity may also be used to steer the registration. Either
features of voxel connectivity which are invariant to rotation or features for
which we have transformation laws so that they transform appropriately
with the volume. Describing the connectivity of a single voxel by the co-
variance tensor of the fiber traces passing through the inside of the voxel is
one example of a simple but suitable representation for this. It will naturally
transform as a contravariant tensor for linear (affine) transformations of the
image volume.

• Many things remain to be explored related to connectivity based voxel col-
oring and direct volume rendering.

• Investigate the properties of the “diffusion mean” in various manifolds.

• Improved estimation of distance functions on sampled manifolds. Apart
from the work which is the core of the Isomap algorithm (Bernstein et al.,
2000), some recent activity have focused on a more robust estimation of dis-
tances on sampled manifolds which are less sensitive to “shortcuts” (Nils-
son and Andersson, 2005).

• More applications for manifold learning in medical image analysis.

• The creation of a generic framework for manifold-valued signal-processing,
for analytical manifolds as well as sampled and “learned” manifolds.

• Robust gradient Estimation. One of the steps in the current sample logmap
algorithm is to estimate the gradient. This is difficult in the vicinity of the
cut locus and there is a clear need for robust methods here.

• Can image processing be applied in manifolds to find edges, corners and
other interesting features inside sampled manifolds?

• Are there ways to characterize sampled manifolds with respect to genus and
topology?

Inside manifolds, new worlds are waiting to be explored and studied. There is
a need for quantitative as well as explorative analysis of manifolds. And there
is a great need to standardize methods for working with manifold-valued signal
processing.
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Abstract: We propose a novel post processing method for visualization of fiber
traces from DT-MRI data. Using a recently proposed non-linear dimensionality
reduction technique, Laplacian eigenmaps (Belkin and Niyogi, 2002), we cre-
ate a mapping from a set of fiber traces to a low dimensional Euclidean space.
Laplacian eigenmaps constructs this mapping so that similar traces are mapped to
similar points, given a custom made pairwise similarity measure for fiber traces.
We demonstrate that when the low-dimensional space is the RGB color space,
this can be used to visualize fiber traces in a way which enhances the perception
of fiber bundles and connectivity in the human brain.

8.1 Introduction

Diffusion Tensor MRI (DT-MRI) makes it possible to non-invasively measure wa-
ter diffusion, in any direction, deep inside tissue. In fibrous tissue such as muscles
and human brain white matter, water tend to diffuse less in the directions perpen-
dicular to the fiber structure. This means that despite the fact that spatial resolu-

1Published in the Proceedings of the 9th International Conference on Computer Aided Systems
Theory (EUROCAST’03).



58
Chapter 8. Coloring of DT-MRI Fiber Traces

Using Laplacian Eigenmaps

tion in MRI is too low to identify individual muscle fibers or axons, a macroscopic
measure of diffusion in a voxel may still reveal information about the fiber struc-
ture in it. Using DT-MRI it is therefore possible to infer the direction of the fiber
in for instance white matter in the human brain. In particular, it is possible to
estimate the direction of the fibers when the fiber organization is coherent within
the voxel.

When a whole volume of data is acquired using DT-MRI, each voxel contains in-
formation about the local characteristics of diffusion inside that particular voxel.
The diffusion is described by a tensor D, a symmetric positive definite 3 × 3 ma-
trix, which through the Stejskal-Tanner equation (8.1) explains the measurements
obtained from the MR scanner

Sk = S0e
−bĝT

k
Dĝk . (8.1)

Here ĝk is a normalized vector describing the direction of the diffusion-sensitizing
pulse, b is the diffusion weighting factor (Bihan et al., 1986) and S0 is a non-
diffusion weighted measure. In order to estimate a tensor D inside each voxel,
at least one non-diffusion weighted image S0 and six diffusion weighted images
with different directions are needed (Westin et al., 1999). The product ĝT

k Dĝk is
often referred to as the Apparent Diffusion Coefficient, ADC, and describes the
amount of diffusion in the gradient direction.

The tensor can be visualized as an ellipsoid, described by the eigenvectors of
the diffusion tensor D, scaled with the square root of their respective eigenvalue.
This ellipsoid will represent an isosurface of the probability distribution which
describes the position of a water molecule, due to diffusion, a short time after it
has been placed in the center of the tensor. A spherical ellipsoid therefore cor-
responds to an isotropic tensor, which describes that water diffusion is equally
probable in any direction. When the ellipsoid is more oblate or elongated, it
means that water diffuses less or more in a particular direction, and the tensor
is therefore referred to as anisotropic. The anisotropy is often characterized using
some rotationally invariant and normalized tensor shape measure, for instance the
Fractional Anisotropy index (Westin et al., 1999)

FA =
1√
2

√
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√

λ2
1 + λ2

2 + λ2
3

. (8.2)

One of the most intriguing uses of DT-MRI data is the possibility to follow and
visualize fiber pathways in the brain. Traditionally this has been accomplished us-
ing fiber tracking algorithms, see for instance (Basser, 1995; Basser et al., 2000;
Westin et al., 1999). In these approaches a path originating from a seed point is
calculated by iteratively moving a virtual particle in the direction in which dif-
fusion is strongest, the principal diffusion direction (PDD). This direction corre-
sponds to the major eigenvector of the diffusion tensor, which is the eigenvector
corresponding to the largest eigenvalue. It is widely believed that for human brain
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white matter, in areas where the diffusion tensors are highly anisotropic, the PDD
is highly correlated with the orientation of the underlying fiber structure.

One way to visualize the fiber organization of white matter is to place a virtual
particle inside a voxel in white matter and iteratively move it according to a ve-
locity field defined by the principal diffusion direction. This trace will be aligned
with the underlying fiber structures and visualizing it will give the impression of
looking at actual fiber pathways.

This paper will in the following sections introduce a novel post processing method
for visualization of fiber traces from DT-MRI. We will focus on enhancing the per-
ception of organization and connectivity in the data. The method will not specif-
ically address the shortcomings of fiber tracking, but assume that a set of fiber
traces has already been obtained. Instead the main contribution of this paper will
be to show how a spectral non-linear dimensionality reduction technique, such as
Laplacian eigenmaps, can be applied to the problem of organizing fiber trace data.
The main application will be visualization of large collections of fiber traces.

8.2 Previous Work

Visualization of DT-MRI still poses a challenge for the medical imaging commu-
nity, since the data is high dimensional and contains a lot of interesting anatom-
ical structure. A simple but effective way to visualize tensor data is to map the
tensors to scalars or colors and then visualize the data using any method for vol-
ume or image visualization. Commonly used scalar mappings include Fractional
Anisotropy Index, trace and the norm of the tensor. Color mapping has also been
used to encode orientation of the PDD. While these mappings are good in some
applications, they are unintuitive or insufficient in others.

To cope with the high dimensionality of tensor data, special tensor glyphs have
been designed, see for instance (Westin et al., 1999). Commonly used glyphs
are short line segments showing the orientation of the PDD and ellipsoids rep-
resenting all six degrees of freedom of a tensor. Other interesting approaches to
encode tensor shape and orientation are reaction diffusion patterns (Kindlmann
et al., 2000) and line integral convolution (McGraw et al., 2002).

Fiber traces, as described in the introduction, have been successfully been used to
reveal fiber pathways in the brain, see for instance (Basser et al., 2000). Often the
traces have been represented by streamtubes (Zhang et al., 2003), sometimes in
combination with coloring schemes and/or variation of the streamtube thickness
according to some quality of the underlying tensor field.

In the area of post processing of fiber traces, prior to visualization, work on clus-
tering of fiber traces have been reported recently. These approaches depend on
a similarity measure between pairs of fiber traces, which is used in combination
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Figure 8.1: Left: Fiber traces from a human brain. Simple PDD fiber tracking have
been initiated from and constrained to voxels with high anisotropy index. A
sagittal view. The head facing left. Right: A schematic view of major fiber
bundles in the brain. Adapted from Gray’s Anatomy of the Human Body as
displayed at Bartleby.com.

with a traditional clustering method (“fuzzy c-means clustering” (Shimony et al.,
2002) and “K nearest neighbors” (Ding et al., 2003)). Outside the medical field,
model based curve clustering has been studied in (Gaffney and Smyth, 2003). The
method presented in this article will share many similarities with automatic clus-
tering methods. It will however give a continuous coloring of the fiber traces, as
opposed to the discrete set of labels assigned during clustering. It could also be
considered as a preprocessing step to clustering. Similar to the clustering meth-
ods, our approach is automatic and involves no user intervention except parameter
selection. This is in sharp contrast from manual approaches to organize traces into
bundles, such as the virtual dissection proposed in (Catani et al., 2002). However,
all the post processing methods for fiber traces share the same weakness: they rely
on a good fiber tracking algorithm to perform well.

8.3 Embedding Fiber Traces – a Motivation

If fiber traces are initiated from seed points in the entire white matter, as in figure
8.1 left, a quick glance motivates the need for some kind of color mapping in
order to enhance the perception of the fiber organization in the brain. We therefore
propose a post processing step, prior to visualization, in which each fiber trace is
assigned a color from a continuous RGB color space. The intuition is that similar
traces should be assigned similar colors, while dissimilar traces are mapped to
dissimilar colors. This will enhance the visualization of fiber bundles.



8.4 Spectral Clustering and Embedding 61

8.4 Spectral Clustering and Embedding
In order to map the fiber traces we use a spectral embedding technique called
Laplacian eigenmaps which was recently proposed by Belkin and Niyogi in (Belkin
and Niyogi, 2002). The core of the algorithm is the use of a local similarity mea-
sure, which is used to construct a graph in which each node correspond to a data
point and where the edges represent connections to neighboring data points. It is
the structure of this graph which represents the manifold to be discovered, which
is accomplished through the solution of an eigenvalue problem which maps each
data point to a low-dimensional Euclidean space. This mapping locally preserves
the graph structure. In short, points close in the graph are mapped to nearby points
in the new Euclidean space.

In our application, the data points are fiber traces. The effect we would like to
obtain is that traces within a fiber bundle are mapped to similar points in the
low-dimensional space. The manifolds we hope to reveal would correspond to
a parameterization of a specific fiber bundle. Not a parameterization along the
fibers – all points of a fiber trace should project to the same point in the new low-
dimensional space – but in the direction perpendicular to the fibers. In the case of a
thin bundle such as the cingulate fasciculus we would expect a clustering effect to
dominate, all traces within this thin bundle should project to more or less a single
point in a low dimensional space. On the other hand, a large bundle structure such
as the corpus callosum can be parameterized along the anterior-posterior axis and
we would expect it to be represented as a one-dimensional manifold.

While fiber traces naturally reside in a low dimensional 3-D space, a trace itself
must be considered as a high-dimensional object, or at least an object which we
have difficulties in representing as a point in a low dimensional vector space. Con-
structing an explicit global similarity measure for fiber traces is also somewhat
difficult – to what extent are two traces similar? How can we come up with a sim-
ilarity measure which corresponds to a mapping of traces into a low-dimensional
space? Luckily Laplacian eigenmaps and other spectral methods only needs a lo-
cal similarity measure, a measure which determine the similarity between a data
point and it’s neighbors. This means that we only need to construct a similarity
measure which is able to identify and measure similarity between two very similar
traces. In the case of two very dissimilar traces, we may assume zero similarity.

Using this similarity measure, a graph is constructed in which nodes represent
fiber traces and where edges connect neighboring traces.

8.5 Laplacian Eigenmaps
For an in depth explanation of Laplacian eigenmaps, as explained by Belkin and
Niyogi, see (Belkin and Niyogi, 2002). In brief, the algorithm for Laplacian eigen-
maps consists of three steps:
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1. Construction of a graph where each node corresponds to a data point. Edges
are created between nodes which are close to each other in the original
space. A neighborhood of fixed size around each data point or the set of
K nearest neighbors could for instance be used as criteria for creating the
edges in the graph.

2. Weights are assigned to each edge in the graph. In general, larger weights
are used for edges between points which are close to each other in the orig-
inal space. In the simplest case, all weights are set to 1. A Gaussian kernel
or similar could also be used.

3. Solution of the generalized eigenvalue problem:

Dij =

{
∑N

k=1 Wik if i = i
0 if i 6= j

(8.3)

L = D − W (8.4)
Ly = λDy (8.5)

where N is the number of nodes and L is called the Laplacian matrix of the
graph. The eigenvectors derived from equation 8.3 are ordered according to
their eigenvalues. Due to the structure of the L, the smallest eigenvalue will
correspond to a constant eigenvector and is discarded, but the n eigenvec-
tors corresponding to the next smallest eigenvalues are used as embedding
coordinates for the data points in the new space.

We never performed the formation of the graph in step one explicitly, but per-
formed a thresholding of the weights so that very small weights were set to zero,
which corresponds to absence of an edge in the graph.

Laplacian eigenmaps share many similarities with other recent spectral algorithms
for clustering and embedding of data, for instance Kernel PCA (Schölkopf et al.,
1998) and spectral methods for image segmentation (Meila and Shi, 2001), and we
expect a qualitatively similar behavior from all of them even if the interpretation
of the results is somewhat different in the various methods. For a unifying view
of the behavior of spectral embeddings and clustering algorithms, see (Brand and
Huang, 2003). One of the most important aspects of spectral methods for clus-
tering and embedding, including Laplacian eigenmaps, is the fact that they are all
posed as eigenvalue problems, for which efficient algorithms are widely available.

8.6 Similarity Through Connectivity

There is no similarity measure given for fiber traces per se and therefore many
ways of choosing the edge weights exist. In this initial effort to cluster and em-
bed traces for visualization purposes, we will only try a simple but yet effective
similarity measure.
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The measure is based on the idea that two traces with similar end points should be
considered similar. That is, we only look at the endpoints for a pair of fiber traces,
and discard all other information. In figure 8.1 (right) we would for instance want
a trace with endpoints {A,A’} to have high similarity with a trace with endpoints
{B,B’}. However, trace {C,C’} should be considered dissimilar from both {A,A’}
and {B,B’}, even though they all share a common origin. This could also be
interpreted as a measure of connectivity.

Here fi,1 and fi,end corresponds to the first and last coordinates of the ith fiber
trace and Wij is the weight between nodes / fiber traces i and j:

fi = (fi,1, fi,end), (8.6)
f̃i = (fi,end, fi,1), (8.7)

Wij =

{

0 if i = j

exp
(

−‖fi−fj‖2

2σ2

)

+ exp
(

−‖fi−f̃j‖2

2σ2

)

if i 6= j
(8.8)

We note that Wij is symmetric with respect to i and j. This measure is also
invariant to re-parameterization of the fiber trace, for instance reverse numbering
the fiber trace coordinates. It will also give traces which connects similar points
in space a large weight while dissimilar connectivity will result in a weight close
to zero given that σ is chosen carefully.

This similarity measure will work fine in most cases where the fiber traces are
not damaged and really connect different parts of the brain in an anatomically
correct way. Other similarity measures used in clustering methods have been
based on correlation measures between fiber traces (Shimony et al., 2002; Ding
et al., 2003). Those correlation measures could be used as well to build up the
graph needed by a spectral embedding method such as Laplacian eigenmaps. For
the purpose of demonstration and under the assumption that the fiber traces are
ok, the above described similarity should work fine and it is also faster to compute
than correlation measures.

8.7 In Vivo DT-MRI Data
Real DT-MRI data from the brain of a healthy volunteer was obtained at the
Brigham and Women’s Hospital using LSDI technique on a GE Signa 1.5 Tesla
Horizon Echospeed 5.6 system with standard 2.2 Gauss/cm field gradients. The
time required for acquisition of the diffusion tensor data for one slice was 1 min;
no averaging was performed. The voxel resolution was 0.85mm × 0.85mm ×
5mm.

A random sample of 4000 points inside white matter with diffusion tensors having
high FA were selected as seed points for the fiber tracking. Traces were then
created by tracking in both directions starting from these seed points, following
the principal eigenvector of diffusion using a step length of 0.5mm and linear
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interpolation of the tensors. The tracking was stopped when reaching a voxel with
FA lower than certain threshold approximately corresponding to the boundary
between white and gray matter. Fiber traces shorter than 10mm were removed.
This resulted in a set of approximately 3000 fiber traces.

8.8 Experiments

The algorithm was implemented in MATLAB. While the number of fiber traces
were at most 5000 the PDD tracking method, calculation of the graph Laplacian
and the solution of the generalized eigenvalue problem could be performed with-
out optimizations. MATLAB was used for visualization except in figure 8.5, where
the in-house software 3-D Slicer (Gering, 1999; Gering et al., 1999) was used.

For the color mapping, the The second, third and fourth eigenvector were scaled
to fit into the interval [0, 1] and then used for the channels red, green and blue, to
color the corresponding fiber traces.

The embedding of fiber traces into a RGB color space was tested first on syn-
thetic data, then on real human brain DT-MRI data. The synthetic toy examples
should be considered as illustrations of the method rather than near realistic or
challenging experiments.

Figure 8.2 shows how the embedding into color space works for a set of fiber
traces arranged as a Möbius strip. The traces on (left) are mapped into an RGB
space, which determines the color of each trace. In the right plots, the image of
this mapping in RGB space (first two embedding coordinates) is shown. Each
dot in the right plots correspond to a single trace in the left plots. The circular
structure of the Möbius strip can thus be seen in the geometry of the left image, in
the coloring of the left image and in the shape of the fiber bundle after embedding
it into RGB space to the right.

Figure 8.3 (left) shows how traces connecting opposite sides of a sphere are col-
ored. Coloring according to the three first embedding coordinates. This set of
traces has the topology of the “projective plane”, RP

2. Note that even though it is
impossible to see the traces inside the sphere, we can deduce how traces connect
by looking at the colors which match on opposite sides. However, the projective
plane cannot be embedded in three dimensions without intersecting itself, which
means that the color mapping of this set of traces is many-to-one in some sense.

Figure 8.3 (right) shows a synthetic example of four fiber bundles, two crossing
each other and two having the same origin. Because of our similarity measure
based on connectivity of the fiber trace endpoints, crossings and overlaps will not
disturb the embedding. Laplacian eigenmaps will color each in a color close to
its neighbors colors. In this case the clustering properties of Laplacian eigenmaps
becomes obvious, which is welcomed as no obvious manifold structure exists in
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Figure 8.2: Synthetic toy examples of coloring “fiber traces” shaped as a Möbius strip.
Top: A very regular bundle (left) and its embedding (right). Note how the
embedding finds a perfect circle. Bottom: A more random bundle (left) and
its embedding using a little too small σ (right). Note how the embedding
tends to enhance clusters in the data, but the topology is still somewhat a
circle.

the data.

The experiments on real data in figures 8.4 and 8.5 show how the method works in
practice. The value of the only parameter σ was chosen empirically. Starting with
a large sigma is safe in general, while a too small sigma give unstable solutions of
the eigenvalue problem. In figure 8.5 an example is shown where the fiber traces
have been projected back to a T2 weighted coronal slice.

8.9 Discussion

All the figures show different aspects of the idea of using Laplacian eigenmaps,
together with a custom made similarity measure, to enhance the visualization of
fiber organization. Both the synthetic and real brain data show very promising
results, and the colors reveal that the method has been able to organize and em-
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Figure 8.3: Synthetic examples with “fiber traces” connecting opposite points on a sphere
(left) and with four fiber bundles (right), two crossing each other and two
having the same origin. Coloring according to the three first embedding co-
ordinates.

Figure 8.4: Fiber traces from a human brain, colored such that traces with similar end-
points have been assigned similar colors. Simple PDD fiber tracking have
been initiated from and constrained to voxels with high anisotropy index.
Left: Axial view. The head facing up. Middle: Sagittal view. The head
facing left. Right: Coronal view. The head facing inwards.

bed the fiber traces into a space where different anatomical structures have been
mapped to different positions. In the real brain data, it can for instance be noted
that traces on the left hemisphere in general have a different color from those on
the right. Small structures such as the cingulum, going from posterior to anterior
above the corpus callosum, are also more visible thanks to the coloring.

The experiments presented in this paper have been chosen with great care. Finding
the correct σ has not always been easy and what is a good embedding of fiber
traces in RGB-space for visualization is subjective. Optimal choice of σ as well
as an analysis of the stability for the embedding is certainly interesting topics for
future research.
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Figure 8.5: Left: Fiber traces from a human brain, colored such that traces with similar
endpoints are assigned similar colors. A cutting plane is used to give a cross
section view of corpus callosum and slices from a T2 weighted volume add
additional understanding of the anatomy. Visualization done using the 3-D
Slicer (Gering, 1999; Gering et al., 1999). Right: Fiber traces from a human
brain, colored such that traces with similar endpoints are assigned similar
colors. Only the intersection of the traces with a coronal T2 weighted slice is
shown. This kind of voxel coloring could for instance assist when manually
segmenting white matter in DT-MRI images.

We have so far not focused on optimizing the speed of this post processing method
for fiber traces. After the coloring is only done once per dataset. However, for
more than a maximum of 5000 fiber traces used in our experiments, we feel there
is a need to take greater care in terms of memory management and speed. First of
all the eigenvalue problem solved in Laplacian eigenmaps is sparse, given the right
similarity measure. Also there exists methods to reduce the size of the eigenvector
calculation by using sampling methods such as in the Nyström method (Fowlkes
et al., 2001).

The similarity measure used so far is efficient, but simple. Correlation measures
of fiber trace similarity have been used by other groups and this method for fiber
trace visualization could definitely benefit from a better definition of local fiber
trace similarity. Two issues raises. One is to define a better similarity measure
which is able to “glue together” broken fiber traces, as fiber tracking is sensitive
to noise. The other issue is speed, as the fiber trace similarity measure is evaluated
for all pairs of traces. We have done experiments with highly efficient and more
correlation-like similarity measures, but the results are still too preliminary to
present here.
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8.10 Conclusion
The goal of this project was to find a post processing method for DT-MRI fiber
traces, to enhance the perception of fiber bundles and connectivity in the brain in
general. We can conclude that despite the simplicity of the similarity function, this
approach based on Laplacian eigenmaps has been able to generate anatomically
interesting visualizations of the human brain white matter. Many interesting new
topics arise in the light of this novel way of organizing DT-MRI data: clustering,
segmentation and registration being prominent candidates for future research.
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Abstract: In this paper we present a framework for unsupervised segmentation of
white matter fiber traces obtained from diffusion weighted MRI data. Fiber traces
are compared pairwise to create a weighted undirected graph which is partitioned
into coherent sets using the normalized cut (Ncut) criterion. A simple and yet
effective method for pairwise comparison of fiber traces is presented which in
combination with the Ncut criterion is shown to produce plausible segmentations
of both synthetic and real fiber trace data. Segmentations are visualized as colored
stream-tubes or transformed to a segmentation of voxel space, revealing structures
in a way that looks promising for future explorative studies of diffusion weighted
MRI data.

1Published in the Proceedings of the 7th International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI’2004).
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9.1 Introduction

Diffusion Weighted MRI (DWI) makes it possible to non-invasively measure wa-
ter diffusion within tissue. In a volume acquired using DWI, each voxel contains
a diffusion tensor or other higher order descriptor for the local water diffusion. In
fibrous tissue such as muscles and human brain white matter, water tend to diffuse
less in the directions perpendicular to the fiber structure. This makes it possible
to study the local fiber orientations indirectly by interpreting the water diffusion
within the voxel. From DWI data it is therefore possible to create so called fiber
traces from virtual particles, traveling along the direction of maximum diffusion,
starting from a set of seed points (Basser, 1995; Basser et al., 2000; Westin et al.,
2002), a.k.a fiber tracking. Performing fiber tracking in DWI data from the human
brain gives valuable insights about fiber tract connectivity, useful in for instance
surgical planning and for the study of various diseases such as schizophrenia.

In our experiments we have exclusively used data from so called diffusion tensor
MRI (DT-MRI) (Bihan et al., 1986), where the diffusion inside a voxel is de-
scribed by a second order symmetric positive definite 3 × 3 tensor, which may be
thought of as an ellipsoid. An elongated ellipsoid represent high diffusivity in a
particular direction, which may be interpreted as the dominant orientation of the
fibers going thru that particular voxel. From this data, fiber traces were created
within the white matter areas using a standard fiber tracking algorithm following
the principal direction of diffusion based on a fourth-order Runge-Kutta integra-
tion scheme.

The contribution of this paper is a novel post processing method for clustering or
segmentation of such fiber traces. Fiber traces are grouped according to a pair-
wise similarity function which takes into account the shape and connectivity of
fiber traces. The clustering method we propose builds on so called normalized
cuts, which have previously been introduced in the computer vision community
by Shi and Malik (Shi and Malik, 2000) for automatic segmentation of digital im-
ages. This results in an unsupervised segmentation of human brain white matter,
in which fiber traces are grouped into coherent bundles, applicable to any DWI
technology able to produce fiber traces. For an overview of the method, see figure
9.1.

9.1.1 Previous Work

There are numerous examples where fiber traces from DWI have successfully
revealed fiber tracts in the human brain, see for instance (Basser et al., 2000;
Behrens et al., 2003a; Westin et al., 2002). Stream-tubes have often been used
for visualization (Zhang et al., 2003), sometimes in combination with coloring
schemes and variation of the stream-tube thickness according to some aspect of
the underlying local diffusion descriptor. The idea of using fiber traces to ob-
tain segmentations of white matter fiber tracts, as well as gray matter areas, have
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Figure 9.1: An overview of the proposed method. Whether the result should be in voxels
or fiber traces depends highly on the application. Fiber traces are flexible,
they are for instance able to represent multiple fiber directions going thru
a point in space. Voxels are on the other hand more suitable for volume
rendering.

been explored in a number of papers recently. In (Behrens et al., 2003a) a seg-
mentation of deep gray matter structures is performed using probabilistic fiber
tracking, which connects pre-segmented areas of the human cortex with the tha-
lamus. There also exist manual approaches to organize fiber traces into fiber bun-
dles, such as the virtual dissection proposed in (Catani et al., 2002). In (Brun
et al., 2003) the idea of pseudo-coloring (soft clustering) fiber traces to enhance
the perception of connectivity in visualizations of human brain white matter was
presented. Some unsupervised approaches to clustering of fiber traces, similar to
the one in this paper, have also been reported. For instance fuzzy c-means cluster-
ing (Shimony et al., 2002) and K nearest neighbors (Ding et al., 2003). Outside
the area of medical image processing, clustering of curves (Gaffney and Smyth,
2003) has been reported.

9.2 Determining Fiber Similarity
Many clustering methods, including the NCut being used in this paper, operate
on a graph with undirected weighted edges describing the pairwise similarity of
the objects to be clustered. This graph may be described using a weight matrix
W , which is symmetric and has values ranging from 0 (dissimilar) to 1 (similar).

A fiber trace, represented as an ordered set of points in space, is a fairly high-
dimensional object. Therefore the pairwise comparison of all fiber traces could
potentially be a time-demanding task if fiber trace similarity is cumbersome to
calculate and the number of fiber traces is high. In this paper we propose to split
the computation of similarity into two steps:

1. Mapping high-dimensional fiber traces to a relatively low-dimensional Eu-
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clidean feature space, preserving some but not all information about fiber
shape and fiber connectivity. This mapping is oblivious, acting on each fiber
separately.

2. The use of a Gaussian kernel for comparison of points in the Euclidean
feature space. This function acts on pairs of fiber traces.

It is important to point out early that even though the above mapping to a feature
space may seem to be crude at a first glance, it works surprisingly well for fiber
traces in practice. For a set of N fiber traces the first calculation above cost O(N),
while the second calculation cost O(N 2) operations. This is also the reason for
pre-processing the fiber data in the first step, making the second calculation more
computationally efficient.

9.2.1 Mapping Fiber Traces to an Euclidean Feature Space

The position, shape and connectivity are important properties of a fiber trace to
preserve in the mapping to a feature space. If we regard a fiber trace as just a
set of points in space, we capture a sketch of these properties by calculating the
mean vector m and the covariance matrix C of the points building up the fiber
trace. In order to avoid non-linear scaling behavior, we take the square root of the
covariance matrix, G =

√
C Now the mapping of a fiber F may be described

Φ(F ) = (mx,my,mz, gxx, gxy, gxz, gyy, gyz , gzz)
T , (9.1)

which is a 9-dimensional vector. This mapping has the desirable property that it is
rotation and translation invariant in the sense that the Euclidean distance between
two fiber traces mapped to the 9-dimensional space is invariant to any rotations or
translations in the original space. For applications where mean and covariance is
not enough to discriminate between different clusters of fiber traces, higher order
central moments could add more feature dimensions to the above mapping. Also,
in cases when fiber connectivity is more important than shape, a higher weight
could be given to the fiber trace end-points in the calculation of the mean vector
and covariance matrix above. Different weights could also be given to the mean
vector and the covariance components in the mapping in eq (9.1).

9.2.2 Using the Gaussian Kernel for Pairwise Comparison

When fiber traces have been mapped to points in a Euclidean feature space, they
may be compared relatively easy for similarity. We choose Gaussian kernels
(a.k.a. Radial Basis Functions in Neural Networks literature)

K(x, y) = exp(−‖ x − y ‖2

2σ2
) (9.2)

which are symmetric and contain a parameter σ which we may use to adjust the
sensitivity of the similarity function. This function maps similar points in feature
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space to unity and dissimilar points to zero.

9.2.3 Constructing W

By combining the mapping to a Euclidean feature space with the Gaussian kernel,
we obtain the weights of an undirected graph describing the similarity between all
pairs of fiber traces. The weights are stored in a matrix W defined as

wab = K(Φ(Fa),Φ(Fb)). (9.3)

This matrix is expected to be sparse, having most of the values close to zero.

9.3 Normalized Cut and Clustering

Clustering, segmentation and perceptual grouping using normalized cuts was in-
troduced to the computer vision community by Shi and Malik in (Shi and Ma-
lik, 2000). The points to be clustered are represented by a undirected graph
G = (V,E), where the nodes correspond to the points to be clustered and each
edge has weight w(i, j) which represent the similarity between point i and j. The
cut is a graph theoretical concept which for a partition of the nodes into two dis-
junct sets A and B bipartitioning V is defined as

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (9.4)

Using the cut, an optimal partitioning of the nodes may be defined as one that
minimizes the cut. Intuitively this could be used for segmentation, while the min-
imum cut corresponds to a partitioning which keeps well connected components
of the graph together. However, there is no bias in the minimum cut which says
it should partition the graph in two parts of equal size. Shi and Malik therefore
defined the normalized cut, which is defined as

Ncut(A,B) =
cut(A,B)

asso(A, V )
+

cut(A,B)

asso(B, V )
(9.5)

where asso(A, V ) =
∑

u∈A,t∈V w(u, t). This new measure Ncut tries to min-
imize the cut, while at the same time penalizing partitions in which one set of
nodes is only loosely connected to the graph at large. If we define xi = 1 when
node i ∈ A, xi = −1 when node i ∈ B, d(i) =

∑

j w(i, j), k =

P

xi>0
di

P

i di
, D is a

matrix with d = d(i) in it’s diagonal and W is the matrix defined by w(i, j) then
it is shown in (Shi and Malik, 2000) that

Ncut =
(1 + x)T (D − W )(1 + x)

k1
T
D1

+
(1 − x)T (D − W )(1 − x)

(1 − k)1
T
D1

. (9.6)
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which can be shown to be equivalent to

Ncut =
yT (D − W )y

yT Dy
(9.7)

where yi ∈ {1,−b}, b = k/(1 − k), for y = (1 + x) − b(1 − x) while yTd = 0.
Relaxing the problem by allowing y to take any real values results in the mini-
mization of the so called Rayleigh quotient, which can be minimized by solving

(D − W )y = λDy (9.8)

It is shown in (Shi and Malik, 2000) that the second smallest eigenvector of eq.
(9.8) minimizes the real valued version of the normalized cut.

In our implementation we used the second smallest eigenvector to obtain a 1-
d ordering of the vertices of the graph. A random search was then performed
to determine a good threshold for the bipartitioning of the graph. To test the
goodness of a specific threshold the true discrete Ncut was calculated. When the
graph has been split into two, (Shi and Malik, 2000) recommends the partitioning
continues recursively until the Ncut raises above a certain value.

9.4 Results
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Figure 9.2: Top left: A set of synthetic fiber traces in 2-D. Top middle: The matrix W .
Rows and columns sorted according to the second smallest eigenvector. The
Gaussian kernel have been chosen so that five clusters present themselves
naturally. Top right: The 15 smallest eigenvalues of (D − W )/D. Bot-
tom: Segmentation obtained from recursive bipartitioning of the fiber traces.
Maximum value of the Ncut set to 0.2, 2.5 and 4.5 respectively.
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Figure 9.3: Left: Axial view of a segmentation obtained from recursive bipartitioning
of the white matter fiber traces. Maximum value of the Ncut was set to 1.5
and Gaussian kernel σ = 20. . The colors of fiber traces indicate cluster
membership. Middle: Coronal view. Right: The matrix W . Rows and
columns sorted according to the second smallest eigenvector.

Figure 9.4: Pseudo-coloring of fiber traces. RGB colors are derived directly from scaled
versions of the 2nd, 3rd and 4th eigenvector of (D − W )/D. Using a very
large Gaussian kernel, σ = 100, results in a soft clustering effect. Note
the enhanced perception of fiber connectivity and shape, despite the lack of
discrete clusters. Left: Whole brain white matter visualized using pseudo-
colored fiber traces. Middle: A subset of the white matter fiber traces visu-
alized using pseudo-colored fiber traces. Right: Pseudo-coloring of voxels
belonging to white matter enhance perception of connectivity in slices or vol-
umes. To fill in holes in white matter when fiber traces were transformed to
voxels, a nearest-neighbor approach combined with a white matter mask was
used.

The method was tested on both synthetic datasets and fiber traces from real dif-
fusion weighted MRI. Results are visualized using both stream-tubes and color
coded voxel data. All algorithms were implemented in MATLAB.

• In figure 9.2 the method is tested on synthetically generated fiber traces in
2-D.

• In figure 9.3 real fiber traces obtained from DT-MRI was used as input.

• In figure 9.4 the method was tested with a very large value of σ and direct
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mapping of the second, third and fourth eigenvector to colors similar to the
approach described in (Brun et al., 2003).

9.5 Discussion

We have not yet investigated the effects of noise to the clustering. Also, the max-
imum number of fiber traces we have analyzed so far is only about 5000, due to
the current implementation in MATLAB which does not fully exploit the sparsity
of W . Never the less, the experiments show the potential of the NCut criterion
and the proposed measure of fiber similarity.

One insight from the experiments is that pseudo-coloring of fiber traces is very
effective to reveal errors in fiber tracking algorithms. A collection of fiber traces
may look ok at a first glance, but after pseudo-coloring, the anomalies are easily
spotted. One example of this is in figure 9.4 (middle) where the red fiber traces
may be identified instantly as outliers because they have a very different color
than surrounding fiber traces.

In our experiments we have segmented fiber traces and then sometimes trans-
formed the results back to voxel space. One may ask if it would be possible to
segment voxels directly, and what features to use to discriminate voxels. A so-
lution with obvious similarities to the approach presented in this paper would be
to perform fiber tracking, possibly stochastic (Behrens et al., 2003a), from each
voxel inside white matter and regard the fiber traces as a non-local features of the
voxels – macro features.

The continuous coloring in figure 9.4 appears to be more visually pleasing than
the discrete coloring according to the segmentation in figure 9.3. One may in
fact ask if a structure such as the corpus callosum is meaningful to partition into
several clusters or whether it is better described as one fiber bundle parameterized
by a coordinate system going from anterior to posterior. One could think of the
smoothly varying colors in figure 9.4 as coordinate systems, parameterizing all
fiber traces in the cross bundle directions. It is in fact then also natural to add a
parameterization of each bundle in the fiber direction.

In conclusion the proposed clustering method seems to be a promising new way to
automatically reveal the global structure of white matter by segmentation of fiber
traces obtained from DWI data. We believe this to be useful in for instance explo-
rative studies of the brain and for visualization of DWI data in surgical planning
applications. Important to note though is that all post processing methods for fiber
traces share the same weakness: they all rely on a good fiber tracking algorithm
to perform well.
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Abstract: Averaging, filtering and interpolation of 3-D object orientation data is
important in both computer vision and computer graphics, for instance to smooth
estimates of object orientation and interpolate between keyframes in computer
animation. In this paper we present a novel framework in which the non-linear
nature of these problems is avoided by embedding the manifold of 3-D orienta-
tions into a 16-dimensional Euclidean space. Linear operations performed in the
new representation can be shown to be rotation invariant, and defining a projec-
tion back to the orientation manifold results in optimal estimates with respect to
the Euclidean metric. In other words, standard linear filters, interpolators and es-
timators may be applied to orientation data, without the need for an additional
machinery to handle the non-linear nature of the problems. This novel represen-
tation also provides a way to express uncertainty in 3-D orientation, analogous to
the well known tensor representation for lines and hyperplanes.

10.1 Introduction

Averaging, filtering and interpolation of scalar and vector valued sets and signals
using linear methods has been common practice in engineering science for a long
time. However, when the data belongs to a non-linear manifold, theory is not
as developed. This paper discuss an important special case of the latter, namely
when the data belongs to the set of all 3-D orientations. Problems related to this

1Published in the Proceedings of the IEEE International Conference on Image Processing
(ICIP’05).
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manifold has been studied in both computer vision and computer graphics. In
computer animation, object and camera orientations are interpolated over time,
to create smooth transitions between keyframes specified by the animator (Shoe-
make, 1985; Barr et al., 1992; Grassia, 1998; Lee and Shin, 2002; Johnson, 2003).
In computer vision it is common to estimate the orientation of objects, such as air-
planes and faces(Srivastava and Klassen, 2002), relative to the coordinate system
of a camera. Other application areas include reduction of noise from raw data in
sequence-dependent continuum modeling of DNA and the study of plate tectonics
(Moakher, 2002).

Object orientation is often mixed up with rotations, because it is a well known
fact that any 3-D orientation may be obtained by a single rotation of an object
from a reference orientation. In short, orientation is a state, rotation is an action
or a change of orientation. One early approach to deal with orientation data in
computer graphics was to describe orientation using Euler angles, which specifies
orientation as a sequence of rotations about three pre-chosen axes. In a classi-
cal paper by Shoemake(Shoemake, 1985), this approach was shown to be inferior
to a representation using quaternions. The key observation was that unit quater-
nions could represent orientation and thus interpolation could be done on S

3. One
drawback however is that antipodal quaternions, q and −q, represent the same
rotation and thus quaternions has to be flipped to the same hemisphere prior to
interpolation. This approach has been extended by several others, see for instance
(Barr et al., 1992). Other approaches have used the intrinsic metric of the space of
orientations and rotations, such as parameterization and interpolations using the
logarithm and exponential map defined on the lie-group of rotations in 3-D, SO(3)
(Grassia, 1998; Lee and Shin, 2002; Moakher, 2002; Johnson, 2003). Other ap-
proaches have been based on e.g. intrinsic formulations of non-linear optimization
problems (Lee and Shin, 2002), global linearization such as in (Johnstone and
Williams, 1999) and extrinsic mean values for orientation data (Srivastava and
Klassen, 2002). The approach presented in this paper is related to the notion of
extrinsic mean. We will build from the quaternion representation of rotations, cre-
ating a novel one-to-one mapping of orientations into 16-dimensional Euclidean
space. In this new representation, standard linear methods for interpolation and
filtering can be applied, and the result is then projected back to the set of unit
quaternions which are then interpreted as orientations.

10.2 Quaternions

Quaternions were invented by Sir William Rowan Hamilton in 1843, after a 15
year search for a successor of complex numbers. The history and theory of quater-
nions is too rich to cover in a short paper, and we will here focus on some main
properties which make quaternions suitable for representing rotations in 3-D. A
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quaternion q can be written on the forms

q = q1 + q2i + q3j + q4k
= (q1, [q2 q3 q4]

T ) = (s,v)
(10.1)

where the coefficients q1, q2, q3 and q4 ∈ R. The conjugate is then defined as

q = q1 − q2i − q3j − q4k. (10.2)

The purely imaginary parts of a quaternion satisfy Hamilton’s rules

i2 = j2 = k2 = −1 (10.3)

ij = −ji = k (10.4)
jk = −kj = i (10.5)
ki = −ik = j. (10.6)

Addition and multiplication can then be defined

a + b = (a1 + b1) + (a2 + b2)i
+(a3 + b3)j + (a4 + b4)k

(10.7)

ab = (a1b1 − a2b2 − a3b3 − a4b4)
+(a1b2 + a2b1 + a3b4 − a4b3)i
+(a1b3 − a2b4 + a3b1 + a4b2)j
+(a1b4 + a2b3 − a3b2 + a4b1)k.

(10.8)

The norm is defined as

n(a) =
√

qq =
√

qq =
√

a2
1 + a2

2 + a2
3 + a2

4, (10.9)

and it is multiplicative

n(ab) = n(a)n(b). (10.10)

A rotation in 3-D of a point p about the unit vector n̂ by an angle θ may be
calculated using quaternions using

p′ = qpq−1 = qpq, (10.11)

where

q = (s,v) = (cos(
θ

2
), n̂ sin(

θ

2
)) (10.12)

and points are represented by

p = (0,p). (10.13)

From (10.11) and (10.12) it can be seen that every unit quaternion, n(q) = 1, may
be interpreted as a rotation in 3-D, and every rotation in SO(3) maps to antipodes
on S

3 with q and −q representing the same rotation (Shoemake, 1985; Barr et al.,
1992; Grassia, 1998; Lee and Shin, 2002).
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10.3 Mapping Orientations to R
16

The antipodal nature of the quaternion representation of rotations is analogous to
that of representing line orientations using unit length vectors pointing along the
line. These vectors might point in either of two directions. In R

2, line orientation
may be represented using the double angle representation (Granlund, 1978). In n
dimensions, n ≥ 2, line orientations can be represented by taking the outer prod-
uct of a unit vector n̂ pointing along the line, which results in a n × n symmetric
positive semi-definite matrix (or tensor of order 2) (Knutsson, 1989).

T = n̂n̂T = (−n̂)(−n̂T ) (10.14)

This tensor representation is invariant to flips of the unit vector. It identifies an-
tipodal points on S

n−1, which reveals that the topology of line orientation in
n dimensions is equivalent to the projective plane RP

(n−1). Fully generalized,
this representation may continuously represent not only line orientations, but also
planes and hyper planes in higher dimensions, and it is called the structure tensor
when used to analyze image and volume data local neighborhood.

Seen from the quaternion representation of rotations, SO(3) maps to antipodal
points on S

3. By identifying these antipodal points one realizes that SO(3) has
the topology of the projective space RP

3. Analogous to the tensor representation
of line orientations, we now define the following map for unit quaternions:

Q = M(q) = M(−q) (10.15)
= qTq (10.16)
= (q1, q2, q3, q4)

T (q1, q2, q3, q4) (10.17)

= (cos
θ

2
, sin

θ

2
n̂T )T (cos

θ

2
, sin

θ

2
n̂T ) (10.18)

=

(

cos2 θ
2 cos θ

2 sin θ
2 n̂

T

cos θ
2 sin θ

2 n̂ sin2 θ
2 n̂n̂T

)

(10.19)

=
1

2

(

(1 + cos θ) sin θn̂T

sin θn̂ (1 − cos θ)n̂n̂T

)

(10.20)

The new object Q is a 4 × 4 symmetric positive semi-definite matrix and thus the
manifold of SO(3) has been mapped to R

16, or R
10 if symmetry is taken into

account. This mapping from unit quaternions is two-to-one, M(−q) = M(q).
Combined with the mapping from SO(3) to quaternions, which is one-to-two, a
continuous one-to-one mapping from 3-D orientations into a Euclidean space has
been obtained.

10.4 ... and Back Again
The basic idea of this paper is to apply linear methods on the manifold of orienta-
tions by inheriting the Euclidean metric of R

16. In (Srivastava and Klassen, 2002)
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the so called extrinsic mean is defined, which is the minimization of the sum of
squared distance to all data points, using the extrinsic metric inherited from the
space embedding the manifold

qmean = arg min
|q|=1

N
∑

i=1

d(q, qi)
2 (10.21)

While the most natural distance metric should be the intrinsic metric, the extrinsic
metric may be a good approximation in many cases. It is shown in (Srivastava and
Klassen, 2002) that finding the extrinsic mean on the manifold is equivalent to first
finding the mean µ in the embedding space, and then find the point qmean = P (µ)
on the manifold which minimizes the distance to µ. Using the Frobenius norm on
matrices Q ∈ R

42 (equivalent to the Euclidean metric on R
16) as extrinsic metric,

we obtain the extrinsic mean of orientations as

qmean = arg min
|q|=1

N
∑

i=1

|(M(q),M(qi))|2F (10.22)

= P (
1

N

N
∑

i=1

M(qi)). (10.23)

The orientation which maps to the point on the manifold closest to Q may be
calculated using

P (Q) = arg min
|q|=1

|M(q) − Q|2F (10.24)

= arg min
|q|=1

Tr((qqT − Q)(qqT − Q)T ) (10.25)

= arg max
|q|=1

Tr(Q qqT ), (10.26)

and it can be shown that choosing q to be the largest eigenvector of Q will mini-
mize this distance.

The inverse mapping P (Q) is not only useful for calculating the extrinsic mean.
It may be used to map any point Q ∈ R

42 back to the manifold of orientations,
after performing any linear combination of data points mapped by M . In fact,
any variational approach which ends up minimizing an energy function in R

42

which can be expressed as a monotone increasing function of d(Qmin, Q), for
some global minimum Qmin, should be possible to minimize on the manifold of
orientations using P (Qmin). In particular, we may use P (Q) to get back to the
manifold after having performed interpolation and filtering in R

42 .

10.5 Rotation Invariance

Are linear operations on Q rotation invariant?



84
Chapter 10. A Tensor-Like Representation for Averaging, Filtering and

Interpolation of 3-D Object Orientation Data

Lemma 1 (Rotation) Applying a rotation qr to q prior to mapping results in

M(qrq) = (Rq)(Rq)T (10.27)
= R(qqT )RT (10.28)

for some 4 × 4 rotation matrix R.

Proof 1 Quaternion multiplication is a linear operation on the coefficients. The
norm is multiplicative and thus every |q| = 1 will be mapped into a new unit
quaternion, so the mapping must be a rotation in R

4.

Theorem 1 (Rotation invariance)

RM(qa)R
T + RM(qb)R

T = R(M(qa) + M(qb))R
T (10.29)

λRM(qa)R
T = R(λM(qa))R

T (10.30)

Proof 2 Follows directly from matrix algebra.

This is sufficient to make all linear operations rotation invariant. The interpreta-
tion should be that linear operations can be applied with the same result regardless
of any prior rotation of the data set, just what is expected for a fair and well bal-
anced representation.

10.6 Experiments
To test the new representation, two experiments were performed. First cubic
splines were used to interpolate orientations in the new representation. Then di-
rectional noise was added and finally a FIR filter was applied on the sequence
of orientation data to restore the signal. See figure 1. In order to visualize se-
quences of orientations, a curve is plotted on a sphere, which can be thought as
representing the path of a camera pointing towards origo.

10.7 Discussion
This paper describes how to obtain a continuous and rotation invariant representa-
tion of orientation, which can be used in a plug-and-play fashion with pretty much
any method for averaging, filtering and interpolation of vector valued data. The
calculation of extrinsic mean value is similar to the method described at page 115
in (Johnson, 2003) to calculate a mean orientation. However, what we propose
here is a representation of orientation, in which interpolation and filtering can be
done directly. Analogous to the tensor representation of line and hyper plane ori-
entations (Knutsson, 1989), it may also be seen as a simultaneous representation
of a mean value and uncertainty, when the rank of Q is larger than one, which
could be used for instance to perform rotation invariant statistical tests on a set of
orientations.



10.7 Discussion 85

(a) Interpolated

(b) Noisy

(c) Smoothed

Figure 10.1: Interpolation and filtering of noisy orientation data. First a set of keyframe
orientations (filled circles) are interpolated using cubic splines to form a
continuous path in a). Then directional noise is added in b). Finally the
noisy data in b) is filtered using a smoothing FIR filter of length 10. The
path between the keyframes corresponds to the position of a virtual camera
pointing towards origo. The line-glyphs tangent the sphere and represent
the up-direction relative to the camera.

While the method is easy to implement, it is not yet fully understood what negative
effects there might be of using a global embedding approach. Other methods
based on the more natural intrinsic metric may also be both computationally faster
and more direct to implement. Never the less, we believe the simplicity of the
method will be attractive for at least some applications. For the image analysis
community, the similarity of this representation with the tensor representation of
line- and hyperplane orientations should be of particular interest. It would also be
interesting to further investigate how low-level image features in 3-D volume data
can be represented using this new representation. The matching of a small 3-D
template, rotated in all possible orientations and translated all over the volume, is
one example of a signal which can be described using the proposed representation.
In the computer graphics community on the other hand, this representation may be
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able to compete with the commonly used quaternions in some specific application
areas. We guess the possibility to replace non-linear signal processing of 3-D
object orientation data, with simple 1-D signal processing, might not always give
the desired result but it will work well enough in many situations.
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Abstract: We present a novel method for manifold learning, i.e. identification
of the low-dimensional manifold-like structure present in a set of data points in a
possibly high-dimensional space. The main idea is derived from the concept of
Riemannian normal coordinates. This coordinate system is in a way a general-
ization of Cartesian coordinates in Euclidean space. We translate this idea to a
cloud of data points in order to perform dimension reduction. Our implementa-
tion currently uses Dijkstra’s algorithm for shortest paths in graphs and some basic
concepts from differential geometry. We expect this approach to open up new pos-
sibilities for analysis of e.g. shape in medical imaging and signal processing of
manifold-valued signals, where the coordinate system is “learned” from experi-
mental high-dimensional data rather than defined analytically using e.g. models
based on Lie-groups.

11.1 Introduction

A manifold can be seen as a generalization of a surface to higher dimensions.
Locally a manifold looks like a Euclidean space, R

N , but on a global scale it may
be curved and/or compact, like a sphere or a torus. A manifold with a metric
tensor defined at each point is called a Riemannian manifold.

1Published in the Proceedings of the 14th Scandinavian Conference on Image Analysis
(SCIA’05).
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Recent developments in so called manifold learning has opened up new perspec-
tives in non-linear data analysis. Classical methods such as Principal Compo-
nents Analysis (PCA, a.k.a. the Karhunen-Loeve transform) and Multidimen-
sional Scaling (MDS) efficiently finds important linear subspaces in a set of data
points. Methods within the field of manifold learning are however able to identify
non-linear relations as well. In this paper we present a new tool for data analysis
of this kind, based on the concept of Riemannian normal coordinates.

Manifold learning has become an established field of research, Kohonen’s Self
Organizing Maps (SOM) (Kohonen, 1982) being an important early example.
Characteristic for the newest generation of manifold learning techniques is ef-
ficiency and global convergence, in particular many of them are based on the
solution of very large eigenvalue problems. This include for instance the recent
Kernel PCA (Schölkopf et al., 1998), Locally Linear Embedding (Roweis and
Saul, 2000), Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin and
Niyogi, 2002) and Hessian Eigenmaps (Donoho and Grimes, 2003).

p
2

R=
c´ b´

a´

a

C Further 600km

= the surface of the Earth

A Town  200km

b

c

p

LOGMAP

p´

B Square 700 km

TM

M

Figure 11.1: Traveling along a geodesic, starting at a specific location in a specific di-
rection, will eventually take you to any place on the surface of the Earth.
Riemannian normal coordinates captures this information, mapping points
on the sphere to R

2 in a way that direction and geodesic distance from the
origin to any point is preserved. Riemannian normal coordinates are there-
fore quite natural to use for navigation on a manifold, at least in the vicinity
of a point. Also note that geodesics on a manifold M (left) are mapped to
lines in Riemannian normal coordinates (right).

Manifolds arise in data for instance when a set of high-dimensional data points
can be modeled in a continuous way using only a few variables. A typical exam-
ple is a set of images of a 3-D object. Each image may be represented as a very
high-dimensional vector, which depends on the scene and a few parameters such
as relative camera orientation, camera position and lighting conditions. Camera
orientation itself is a good example of a non-linear manifold. The manifold of
orientations, SO(3), can be represented by the set of all rotation matrices. While
the manifold-valued parameter space is equivariant to important features of the
data, namely camera- and lighting information, it should also be invariant to un-
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interesting things such as noise from the image sensors.

In the following sections we present a novel technique for manifold learning based
on the concept of Riemannian normal coordinates. We have translated this tech-
nique from its original setting in differential geometry, to the task of mapping a
set of experimental high-dimensional data points, with a manifold-like structure,
to a low-dimensional space. An intuitive explanation of Riemannian normal coor-
dinates is given in figure 11.1. They contain information about the direction and
distance from a specific point on a manifold to other nearby points. The useful-
ness of such information for navigation is obvious, not only for navigating on the
Earth, but also for creating user interfaces to navigate in manifold-valued data in
general. The Riemannian normal coordinates are also closely related to geodesics
and the exponential and logarithmic maps of Lie-groups, which have been used
recently for the analysis of shape in medical images (Fletcher et al., 2003) and
to perform time-dependent signal processing of orientation data (Lee and Shin,
2002).

11.2 Theory

In this section we briefly review some basic concepts of differential geometry
necessary to understand the method we propose.

To each point p on a manifold M there is a associated tangent space, TpM , con-
sisting of a Euclidean space tangential to M at p. Derivatives at p of smooth
curves passing through a point p belongs to TpM .

A special class of curves defined on Riemannian manifolds are the geodesics, i.e.
length minimizing curves on M . These define a metric d(x, y) on a manifold
derived from the length of a geodesic passing through x and y.

The Riemannian exponential map, exp(v) ∈ M , v ∈ TpM , is a function which
maps points in the tangent space of p, to points on M . If H(t) is the unique
geodesic, starting at p with velocity v, then exp(v) = H(1). Intuitively this
can be thought of as walking with constant velocity in particular direction on the
manifold, from a point p, during one time unit. This mapping is one-to-one in a
neighborhood of p and its inverse is the log map.

The set of points on M for which there exists more than one shortest path from p
is called the cut locus of p. The cut locus of a point on a sphere is for instance its
antipodal point. Some manifolds, such as R

2, lack a cut locus. Other manifolds,
such as the torus, have a quite complex looking cut locus.

Given a point p and an orthonormal basis {êi} for the tangent space TpM , a
Riemannian normal coordinate system is provided by the exponential mapping.
A point x ∈ M gets the coordinate (x1, . . . , xN ) if x = exp(xiêi).
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The gradient of a scalar function f is a dual vector field which components are
simply the partial derivatives (in the induced basis).

11.3 Method

Given a basis point p from a data set X and an orthonormal basis of the tangent
space at p to a thought manifold M , we would like to, via the log map into TpM ,
express all data points x ∈ X using Riemannian normal coordinates. Due to the
properties of Riemannian normal coordinates, this is equivalent to measuring the
distance and direction from p to every other point in the data set. We choose to
call this framework LOGMAP:

1. From a set of data points, X , sampled from a manifold M , choose a base
point p ∈ X .

2. To determine the dimension of M , select a ball B(p) of the K closest points
around p. Then perform standard PCA in the ambient space for B(p). This
will give us TpM , with dimTpM = N , where we choose any suitable ON-
basis {êi}. All y ∈ B(p) are mapped to TpM by projection on {êi} in the
ambient space. This is the Ψ-mapping in figure 11.2.

3. Approximate distances on M . In the current implementation we do this by
defining a weighted undirected graph, with each node corresponding to a
data point and with edges connecting each node to its L closest neighbors.
Let the weights of these edges be defined by the Euclidean distance between
data points in the ambient space. We then use Dijkstra’s algorithm for find-
ing shortest paths in this graph, to approximate the geodesic distances in
M . This gives estimates of d(x, y) for all (x, y) ∈ X × B(p).

4. To calculate the direction from p to every point x ∈ X , estimate g =
∑

giêi = ∇yd
2(x, y)|y=p numerically, using the values obtained in the

previous step. While we only have values of d2(x, y) for y ∈ B(p), we must
interpolate this function in TpM , e.g. using a second order polynomial, in
order to calculate the partial derivatives at Ψ(p).

5. Estimates of Riemannian normal coordinates for a point x are then obtained
as xi = d(x, p) gi

|g| .

In step 4) above, the numerical calculation of the gradient at p uses the squared
distance function. The reason for not just taking the gradient at p of the plain
distance function from x, which is known to point in the direction of the geodesic
connecting p and x, is that it is not smooth for p ≈ x. Using the square of the
distance function, which is much easier to interpolate, solves this problem while
giving a gradient in the same direction. However, when x is close to the cut locus
of p, even the squared distance function becomes non-smooth. In the experiments
shown in the next section, we have actually used a slightly more robust scheme
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Figure 11.2: A schematic illustration of a geodesic from x to p in a manifold M . Dashed
curves correspond to iso-levels of d2

x(y) = d2(x, y). These iso-curves are
perpendicular to every geodesic passing through x. The ball around p and
the mapping Ψ defines a chart that maps a part of M to R

2. The domain
of exp is actually the tangent space of M at p, and it is natural to identify
vectors in R

2 with TpM .

to estimate the gradient for points close to the cut locus. This was done by using
the RANSAC algorithm (Fischler and Bolles, 1981), to select points close to p
consistent with a second order polynomial model of the squared distance function.

11.4 Experiments

The LOGMAP method was evaluated using Matlab. The most critical part of the
algorithm, the calculation of shortest paths, was borrowed from the Isomap imple-
mentation of Dijkstra’s shortest paths (Tenenbaum et al., 2000). In the LOGMAP
implementation, the selection of p was made interactively by the click on the
mouse and the resulting log map was calculated almost in real time.

Three experiments on synthetic data are presented here to illustrate the behavior
of the algorithm. In each of the experiments we have assumed knowledge of
how to choose L, the number of neighbors for building the graph, and K , which
determines the size of the neighborhood used for dimension estimation and later
the estimation of gradients. It is important to point out that selection of these
parameters is actually non-trivial for many data sets, e.g. when noise is present.
We will not go further into the details of choosing these constants in this paper
however.

11.4.1 The Swiss Roll

In the first experiment we use the “Swiss roll” data set, consisting of points sam-
pled from a 2-D manifold, embedded in R

3, which looks like a roll of Swiss
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cheese. It has been used before to illustrate methods for manifold learning, see
e.g. (Tenenbaum et al., 2000; Roweis and Saul, 2000), and we include it mainly
as a benchmark. A set of 2000 points from this data set were used in the experi-
ment and the results are presented in figure 11.3. The experiment shows that the
LOGMAP method correctly unfolds the roll and maps it to Riemannian normal
coordinates in R

2.

It is important to note that the resulting mapping in the Swiss roll example is more
or less isometric, which is expected for simple flat manifolds. This is similar to the
behavior of Isomap. On the other hand, both Isomap and LOGMAP would fail to
produce isometric embeddings if we would introduce a hole in the Swiss roll data
set. This particular problem is solved by Hessian Eigenmaps for flat manifolds.

11.4.2 The Torus

In the second experiment we tested the method on a data set consisting of 2000
points from a torus embedded in 3-D. The results in figure 11.4 illustrate how
the method cuts the coordinate chart at the cut locus of the point p. This par-
ticular behavior of “cutting up” the manifold allows us to save one dimension in
this particular example. There is no embedding of the torus into R

2. Any stan-
dard method for dimension reduction, e.g. LLE, Laplacian Eigenmaps or Isomap,
would embed this manifold into R

3 at best. However, the automatic introduction
of a cut by the LOGMAP method makes it possible to make a one-to-one mapping
of this manifold to R

2.

11.4.3 The Klein Bottle

The third experiment finally, shown in figure 11.5, tests the method on truly high-
dimensional data. The data set consists of 21 × 21 pixel image patches. Each of
the 2-D image patches were rendered as a 1-D sine wave pattern with a specific
phase and orientation. A small amount of normal distributed white noise was also
added to the images. The resulting data set consisted of 900 data points, in a
441-dimensional space, representing image patches sampled uniformly from all
possible values of phase and orientation . It is natural to assume that the intrinsic
dimensionality of this data set is 2, since the variables phase and orientation adds
one degree of freedom each.

We observed slightly different shapes of the cut locus, i.e. the border of the result-
ing map, depending on the choice of base point p. This was somewhat unexpected,
but it has a logical explanation. Even though the data set seems to be highly sym-
metric in terms of orientation and phase, the square shape of the image patches
themselves will break the otherwise expected rotation invariance and introduce
variations in curvature on the manifold.

The mapping of image patches to R
2 is visualized by simply using the image
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patches as glyphs, placed at various locations in the plane. By carefully identify-
ing the edges of the cut locus, we manually obtain an interpretation of the mapping
shown in the top left of figure 11.5. This directed labeled graph reveals that the
topology of this particular image manifold is actually the well known Klein bottle
(Weisstein, 2005). Similar conclusions for the topology of local descriptions of
phase and orientation has previously been described in (Tanaka, 1995; Swindale,
1996), where the topology of Gabor filters is derived from theoretical investiga-
tions. Our investigation is on the contrary experimental, and to the best of our
knowledge it is a new example of how manifold learning can be used to experi-
mentally infer the topology of a data set.
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Figure 11.3: A set of 2000 points from the “Swiss roll” example (Tenenbaum et al.,
2000). Colors correspond to the first Riemannian normal coordinate de-
rived from the method. Left: The original point cloud embedded in 3-D.
Right: Points mapped to 2-D Riemannian normal coordinates.
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Figure 11.4: A set of 2000 points from a torus embedded in 3-D. Colors correspond to
the first Riemannian normal coordinate derived from the method. Left:
The original point cloud embedded in 3-D. Notice the discontinuity (red-
blue) in the coordinate map, revealing a part of the “cut locus” of p. Right:
Points mapped to 2-D Riemannian normal coordinates. Because the metric
of a torus embedded in 3-D is not flat, the manifold is not mapped to a
perfect rectangle. Some outliers are present, due to incorrect estimation of
the gradient for points near the cut locus.
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11.5 Discussion

The presented LOGMAP method is rather different from many other methods for
manifold learning and dimension reduction, both in terms of the output and in
terms of algorithmic building blocks.

The possibility of a cut, a discontinuity in the mapping at the so called cut lo-
cus, could be seen not only as a problem but also as a feature of the method.
This allows for instance the torus and the Klein bottle to visualized using a two-
dimensional plot. Other methods, such as (Tenenbaum et al., 2000; Roweis and
Saul, 2000; Schölkopf et al., 1998; Belkin and Niyogi, 2002; Donoho and Grimes,
2003), tries to find a continuous embedding of the manifold, and for that at least
4 dimensions are needed for the Klein bottle and 3 for the torus. (The top mid-
dle illustration in figure 11.5 is actually an example of an immersion and not an
embedding of the Klein bottle in 3-D, meaning roughly that it intersects itself at
some points.)

The use of other criteria for assigning a global coordinate system to a manifold
could also be considered, for instance conformal mappings of 2-D manifolds. In
almost every case when mapping a manifold to a low-dimensional space, some
kind of distortion is introduced while some features of the original manifold will
be preserved. For most manifolds, Riemannian normal coordinates create a very
distorted mapping far away from the base point p, in some cases they even intro-
duce a cut. However, they also preserve all geodesic distances and angles from
p to other points on the manifold, which makes this mapping quite intuitive and
particularly useful for the purpose of navigating inside a manifold. At least this is
true in the vicinity of the base point p.

The LOGMAP method is built up by two major algorithmic building blocks:

1. Approximation of distances on a manifold given a set of sampled data
points.

2. Calculation of gradients on manifolds, from a set of function values defined
at the sampled data points.

For the first building block we have here used Dijkstra’s method, mainly inspired
by the Isomap implementation. This method has obvious problems to truthfully
approximate distances, because distances are measured along zigzag trajectories
in a graph. One way to make LOGMAP more accurate is therefore to switch to a
more accurate method based on higher order approximations of the manifold.

The second building block, which is about calculating gradients, could also be
improved a lot compared to the current implementation. Measuring gradients for
smooth functions is not a problem, but for points close to the cut locus the distance
function will introduce a discontinuity which makes the problem quite delicate.
The difficulty of gradient estimation manifests itself by producing spurious points
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in the mapping, most easily seen in the torus and the Klein bottle examples, close
to the cut locus.

In this paper we have chosen examples of manifolds with low intrinsic dimen-
sionality, mainly to illustrate the method, but in principle the method works for
manifolds of higher dimensionality too. In the examples we have also used only
little or no noise. While this can be seen as very optimistic assumptions about the
data, we would like to stress the fact that the LOGMAP method does not try to
explicitly deal with noise. In order to handle noise efficiently, it should either be
removed prior to the use of LOGMAP or handled by more robust versions of the
distance and gradient estimation steps within the LOGMAP framework. This is
clearly an important area of future research.

Regarding the efficiency or speed properties of the LOGMAP method, it is impor-
tant to mention that it, in contrast to many other methods for manifold learning,
does not involve the solution of any large eigenvalue problem or any other large
scale iterative minimization procedure. Instead it relies totally on the ability to fast
approximate distances on the manifold and calculate gradients. A key observation
is also that distances d(x, y) are only calculated for pairs (x, y) ∈ X×B(p). This
is far less demanding than calculating the distance for all pairs (x, y) ∈ X × X ,
which is done in for instance Isomap.

In summary, we have introduced a novel method for manifold learning with in-
teresting mathematical and computational properties. We have also provided an
example of how manifold learning can assist in identifying a rather non-trivial
manifold, in this case a Klein bottle, from a high-dimensional data set. We be-
lieve this to be of general interest to people within the fields of manifold learning
and medical image analysis, to for instance develop better tools for shape analysis,
and to inspire the future development of manifold learning and manifold-valued
signal processing in general.
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Figure 11.5: To test the proposed method on a high-dimensional data set, a set of 900
image patches, each being of 21 × 21 pixels with a characteristic orienta-
tion/phase, were generated and mapped to Riemannian normal coordinates.
This experiment reveals the Klein bottle-structure of local orientation/phase
in 2-D image patches! Top left: An idealized Klein bottle aligned to the
mapping below. Edges correspond to the cut locus of p and should be iden-
tified according to the arrows. Top middle: An immersion of the Klein
bottle in 3-D. Top right: 15 random examples of image patches used in the
experiment. Bottom: The mapping of image patches to Riemannian normal
coordinates using the proposed method.
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