
Topics in Geometric Combinatorics

Francis Edward Su

August 13, 2004



Chapter 1

Introduction

1.1 What is geometric combinatorics?

Geometric combinatorics refers to a growing body of mathematics concerned with
counting properties of geometric objects described by a finite set of building blocks.
Primary examples include polytopes (which are bounded polyhedra and the convex
hulls of finite sets of points) and complexes built up from them. Other examples
include arrangements and intersections of convex sets and other geometric objects.
As we’ll see there are interesting connections to linear algebra, discrete mathematics,
analysis, and topology, and there are many exciting applications to economics, game
theory, and biology.

There are many topics that could be discussed in a course on geometric combi-
natorics; but in these lectures I have chosen what I consider to be my favorite topics
for inclusion in such a course. Mostly the lectures reflect what I like in the subject.
Some of the topics are of relatively recent development and reflect either my current
interests (e.g., combinatorial fixed point theorems) or material I assimilated in the
“Discrete and Computational Geometry” program at MSRI in Fall 2003.

Along the way, I will provide some exercises to allow the reader to play with the
concepts, and some pointers to problems in the field.
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Chapter 2

Combinatorial convexity and
Helly’s theorem

Convexity is a geometric notion with some interesting combinatorial consequences.

2.1 Application: Centerpoints

We all know what a median of a data set of real numbers is— it is a number for which
half the data lies above it, and half the data lies below. In other words, the median
gives a notion of a “center” of a set of points on the real line.

But what if the data set are points in the plane or points in Rd for d > 1? Can
one define a kind of ”median”? For instance, for a data set in the plane, is there
always a point in the plane for which any line through that point cuts the data set
in half? Investigate by constructing some examples.

If not, is there a weaker notion? For instance, is there always a point in the plane
so that any line through that point has at least 1/3 of the points on each side?

2.2 Convex sets

Definition 2.1. A subset C of Rd is said to be convex if for any two points in C, the
line segment between them is also contained in C.

Draw examples of convex and non-convex sets.

Definition 2.2. The convex hull of a set A in Rd, denoted by conv(A), is the inter-
section of all convex sets that contain A.

Since the arbitrary intersection of convex sets is convex (see HW), the convex hull
of set is always convex.
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Definition 2.3. A convex combination of points a1, ..., an in A is a linear combination∑n
i=1 λiai in which the coefficients λi are non-negative and sum to 1. The set of all

convex combinations of points in A is called the convex span of A.

Proposition 2.4. For any set A in Rd, conv(A) is identical to the convex span of A.

Actually, one never needs more than d + 1 points of A to express any point in
conv(A) as a convex combination.

Theorem 2.5 (Carathéodory’s theorem). For A in Rd, each point of conv(A) is
a convex combination of at most d + 1 points of A.

Carathéodory’s theorem can be viewed as a combinatorial consequence of a ge-
ometric notion. It can be proved as a consequence of another theorem that relates
geometry and combinatorics.

Theorem 2.6 (Radon’s Lemma). Let A be a set of size d + 2 (or greater) in Rd.
Then A can be partitioned in two sets R and B (red and blue) such that conv(R) ∩
conv(B) 6= ∅.

Definition 2.7. A set of points x1, ..., xm in Rd is said to be affinely dependent if∑
i λixi = 0 and

∑
i λi = 0 for some λ1, ..., λm not all zero. Thus in this case one of

the points can be expressed as an affine combination of the other points. (Otherwise,
if the λi must all be zero, the points are said to be affinely independent.)

Corollary 2.8. Any set of d + 2 (or more) points in Rd must be affinely dependent.

Theorem 2.9 (Helly’s Theorem). Suppose A1, ..., Am are convex sets in Rd, such
that every subset of size d + 1 has non-empty intersection. Then the intersection
capm

i=1Ai is non-empty.

Is there a version of Helly’s theorem for an infinite number of convex sets? Well,
if the sets are not closed, the conclusion may not hold (find an example). And if the
sets are not bounded, you could run into problems as well. However,

Theorem 2.10. If A = {Aα} is an infinite collection of compact convex sets in Rd

such that any d + 1 of them have a common point, then all the sets in A have a
common point.

Helly’s theorem has many interesting consequences. Each of the following can be
proved using Helly’s Theorem.

Theorem 2.11 (Kirchberger’s Theorem). Let S is a set of sheep and G is a set
of goats in Rd, such that there are at least d + 2 animals in total. Suppose that for
every set C of d+2 animals, the sheep and the goats can be separated by a hyperplane.
Then S and G can be separated by a hyperplane.
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Theorem 2.12 (Jung’s theorem). Every set of diameter 1 in Rd lies in a closed
ball of radius

√
d/2(d + 1).

Theorem 2.13 (Krasnosselsky’s Theorem). Let K be an infinite compact set in
Rd. Suppose that for every d + 1 points in K, there’s a point of K from which all
these points are visible in K. Then there’s a point of K from which all of K is visible.

A set K with this property is said to be star-shaped. A special case of the above
problem is the gallery problem in the homework exercises.

2.3 Return to Application

Let A be a set of n points in Rd. A point c is called a centerpoint of A if each closed
half-space containing c contains at least n

d+1
points of A. Note that c does not have

to be a point of A.

Theorem 2.14. If A is a finite point set in Rd, then A has at least one centerpoint.

2.4 Exercises

1. Let {Aα} be a family of convex sets in Rd. Show that the intersection A = ∩αAα

is convex. (We use the letter α here as an index to indicate that the indexing
set might possibly be infinite or uncountable.)

2. In this problem, we investigate the relationship between the notions of linear
span and affine span of set of points.

(a) Let w1, w2 be two linearly independent points in R3. Explain why the
linear span of w1 and w2 is a plane P that passes through the three points:
w1, w2, and the origin.

(b) Let x0, x1, x2 be three points in R3, and let w1 = x1 − x0, w2 = x2 − x0.
Explain why the plane P ′ that passes through x0, x1, x2 is just the plane
P (defined as above) translated by x0.

(c) Thus any point in P ′ has the form x0+λ1w1+λ2w2 for real numbers λ1, λ2.
Rewrite this expression as a linear combination of x0, x1, x2 and verify that
the coefficients of the xi sum to 1, and conclude that the affine span of the
three points xi is exactly the plane P ′ through those points.

3. Given a finite set S in Rd, let RS be the set of all Radon points of S (over all
possible Radon partitions).

(a) Is RS necessarily convex? Prove or provide a counterexample.



Note Sketches (minus proofs): Topics in Geometric Combinatorics F. Su

(b) If |S| = d + 2, does RS necessarily consist of a single point?

(c) If |S| = d + 2, and if no d + 1 points are affinely dependent, prove that RS

is a single point, i.e., the Radon point is unique. [Hint: think about the
rank of some suitable matrix.]

4. Use Radon’s lemma to prove Carathéodory’s theorem.

5. Let K ⊂ Rd be a convex set and and let C1, ..., Cn ⊂ Rd, n ≥ d + 1, be convex
sets such that the intersection of every d+1 of them contains a translated copy
of K. Prove that the intersection of all the sets Ci also contains a translated
copy of K.

6. Show that if you have a finite collection of parallel line segments in R2 such that
every 3 of them are cut by a common transversal, then there is a transversal
that cuts all the line segments.

7. An art gallery is in a room that has the shape of a simple closed polygon (finitely
many sides, but not necessarily convex), and there is one painting hung on each
wall. Suppose that for any 3 paintings, there is a point in the gallery where
those 3 paintings are visible. Show that there is some point of the gallery from
which all paintings are visible.

If you enjoy a challenge, try to prove the more general case of Krasnosselsky’s theorem for extra credit, and come see me if

you do it.)



Chapter 3

Polytopes

As we shall see, a polytope is a convex object that can be defined as a convex hull
of a finite set of points, or as the intersection of a finite set of half-spaces. Such a
geometric object has a natural combinatorial structure.

3.1 Applications: in other areas

The book of Cromwell(1997) contains a nice discussion of the uses of polytopes in art
(perspective in painting, ornaments), architecture (pyramids), computer-aided geo-
metric design, nature (crystals, compressed cells, polyhedral molecules), cartography
(grids), philosophy (Kepler’s model of the planet distances).

3.2 Polytopes and Faces

Definition 3.1. A V-polytope is the convex hull of finitely many points in Rd. An
H-polyhedron is the intersection of finitely many half-spaces in Rd. An H-polytope is
a bounded H-polyhedron.

A basic but non-trivial fact (that we shall prove soon) is that any V-polytope is
an H-polytope, and vice versa, so we may speak of a polytope and be assured that
there is a description of either kind.

Convex sets have faces.

Definition 3.2. Let K in Rd be a convex set. Any set H in Rd of the form Ha(b) =
{x|a · x = b} for some a and b is called an (affine) hyperplane. Let us denote the
associated half-spaces by H+ = {x|a · x ≥ b}, and H− = {x|a · x ≤ b}.

Definition 3.3. A subset K of F is said to be a face if there exists a hyperplane
H such that (a) F = H ∩ K and (b) K is contained in H−. Such an H is called
a supporting hyperplane and a face may have many supporting hyperplanes. The
dimension of F is the dimension of its affine span.
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Note a convex set K always has as faces itself and the empty set ∅. For instance,
the empty set is supported by the degenerate hyperplane H0(−1) and K is supported
by H0(0).

Polytopes have finitely many faces. Moreover, in a polytope P , if F is a face, then
any face of F is a face of P . This is not true for arbitrary convex sets (construct an
example!).

Let F(P ) be the poset of faces of a polytope P , ordered by inclusion. (Recall that
a poset is a partially ordered set.) We call F(P ) the face lattice of P .

Definition 3.4. Two polytopes P ,Q are said to be combinatorial equivalent if they
have isomorphic face lattices: F(P ) ∼= F(Q).

3.3 Examples

We now mention several examples of polytopes. In each case, thinking combinatori-
ally, it is fun to ask: what does the face lattice look like? Which subsets of vertices
form faces? It is also instructive to compare the V-description and the H-description
of a given polytope.

In dimension 2, the 2-dimensional polytopes are just the (convex) polygons, and
there is exactly one combinatorial type of 2-polytope for each n, namely, the n-gon.

The standard d-simplex is

conv({0, e1, e2, ..., ed}),

and a simplex is any combinatorially equivalent polytope.
The standard d-cube is

conv({+1,−1}d),

and a cube is any combinatorially equivalent polytope.
The standard d-crosspolytope is

conv({+e1,−e1, +e2,−e2, ..., +ed,−ed}),

and a cube is any combinatorially equivalent polytope. The 3-crosspolytope is called
an octahedron.

The moment curve in Rd is the curve x(t) = (t, t2, ..., td), and the cyclic polytope
is defined by

Cd(t1, ..., td) := conv({x(t1), ...,x(td)}.
The standard cyclic polytope Cd(n) is the n-vertex cyclic polytope Cd(1, 2, ..., d). It is
a (surprising) fact that the combinatorial equivalence class of a cyclic polytope only
depends on d and n and not on the argument ti. (We shall prove this later, too.)

The permutahedron Πd−1 is a (d − 1)-dimensional polytope defined in Rd as the
convex hull of vectors that are permutations of the coordinates of (1, 2, ..., d). From a
picture of Π2 and Π3, do you notice any patterns? Which pairs of vertices will form
edges? Which subsets of vertices form faces?
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3.4 New Polytopes from Old

If P is a polytope conv(V ) where V is a finite set of points, then the pyramid over P
is conv(V ∪ {x}) where x is some point affinely independent of V .

The bipyramid over P is conv(V ∪ {x, y}) where x and y are affinely independent
of P and such that conv({x, y}) ∩ int(P ) 6= ∅.

The Minkowski sum P + Q of two polytopes P and Q in Rd is the set {p + q : p ∈
P, q ∈ Q}. It is a polytope (why?) in Rd.

The product P × Q of a polytopes P in Rm and Q in Rn is the set {(p, q) : p ∈
P, q ∈ Q} in Rm+n. It is also a polytope (why?).

The prism over P is P × I where I is the unit interval.

3.5 Schlegel diagrams

Schlegel diagrams provide useful ways of visualizing a d-polytope by projecting (the
skeleton of) a polytope onto one of its faces. This is especially useful for 4-dimensional
polytopes.

3.6 Exercises

1. Draw the face lattice of a pyramid over a square. (Number the vertices of the
square by 1, 2, 3, 4 and the top vertex by 5.)

2. Give a facet description of the standard d-crosspolytope as an H-polytope (i.e.,
tell me all the half-spaces that define the polytope).

3. (a) Consider the permutahedron Π3. How many facets does it have?

(b) How many ordered partitions are there of the set {1, 2, 3, 4} into two
non-empty parts? [An ordered partition of a set is a partition of the set
into parts, in which the order of the parts matters, but the order within
the parts does not, e.g., (123/45) is same as (132/45) but different from
(45/123).]

(c) Can you see a correspondence between the two questions? (Refer to the
figure of the permutahedron.)

(d) Make a conjecture about the number of k-faces of this permutahedron and
ordered partitions of the set {1, 2, 3, 4}.

4. For each of the examples of polytopes described in this chapter, see if you can
determine which subsets of vertices span faces.

5. Can you construct a 3-polytope with seven edges? Why or why not?



Chapter 4

Polar Duality

4.1 The Polar Dual

Let Ha denote the hyperplane Ha(1): {x : a · x = 1}. Any hyperplane that does not
pass through zero can be put uniquely in this form. Define the half-spaces

H−
a = {x : a · x ≤ 1},

H+
a = {x : a · x ≥ 1}.

There is an interesting geometric duality between non-zero points and hyperplanes
in Rd, namely to each point a we can associate the hyperplane Ha, and vice versa.
Moreover, by considering the definitions, it is easy to see that

y ∈ Hx ⇐⇒ x ∈ Hy

but this is somewhat surprising geometrically. Also, verify that

y ∈ H−
x ⇐⇒ x ∈ H−

y . (4.1)

Definition 4.1. Given a set X in Rd, the polar dual X4 is defined by

X4 := {y : y · x ≤ 1,∀x ∈ X}.

Notice that this may be rewritten:

X4 = ∩x∈XH−
x , (4.2)

the intersection of half-spaces And because of (4.1), we may also say:

X4 = ∪X⊆H−y
{y}.

(Yes, this could be written ∪{y : X ⊆ H−
y } but we write it in the format above to

emphasize the duality between it and the previous displayed equation.)
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Do a few examples here. What is the polar dual of a non-zero point? What is the
polar dual of the origin? What is the polar dual of four points of a square? A filled
in square? A circle? A halfspace H−

x ? A halfspace H+
x ?

After doing a few examples of polar duals of convex hulls of a set of points V , one
may notice in (4.2) that one need not intersect all the half-spaces— it is sufficient to
just use half-spaces corresponding to the vertices of V .

Theorem 4.2. If X = conv(V ), then:

X4 = ∩v∈V H−
v .

Some other properties are easy to check. For any X in Rd, X4 is closed, convex,
and contains 0. If X ⊆ Y , then Y 4 ⊆ X4.

Also, if X44 denotes the polar dual of the polar dual of X, then X ⊆ X44.
X44 is sometimes called the double-polar of X, and you may check that it is just
{z : y · x ≤ 1,∀x ∈ X =⇒ y · z ≤ 1}.

The double-polar of X won’t always be equal to X, since even if X doesn’t contain
0, X44 will contain 0. But one can show the following theorem. Recall the closure
of a set A is the smallest closed set containing A.

Theorem 4.3. X44 is the closure of conv(X ∪ {0}).
This can be shown by appealing to another property of convex sets:

Theorem 4.4 (Hyperplane Separation). If C, D are disjoint convex sets in Rd,
there exists a hyperplane separating them, i.e., there exists an a such that C ⊆ H−

a ,
and D ⊆ H+

a . Moreover, if C, D are closed sets, then the hyperplane separates them
strictly, i.e., Ha does not intersect either set.

For our purposes, this is most often used when C is a point and D is a polytope.
In that case, the proof is quite easy; just take the line achieving the minimum distance
between the point and polytope, and construct a hyperplane orthogonal to that line,
intersecting it at its midpoint.

The following fact is a useful observation about polar duals:

Lemma 4.5. If C ⊆ Rd is convex, then C4 is bounded if and only if 0 is in the
interior of C.

(A point x is in the interior of C if there exists a closed ball of positive radius
around x that is contained in C.)

We can now show the following main theorem about polytopes, which dates back
to Minkowski and Weyl:

Theorem 4.6. Any V-polytope is an H-polytope, and vice versa.

Why is this such a useful theorem? Try showing that the intersection of polytopes
is a polytope. This is easy to see in the facet description, but not vertex description.
Now try showing that the projection of a polytope on a plane is a polytope. This is
easy to see in the vertex description, but not the facet description.
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4.2 Polar Duals of Faces

We have seen from (4.2) that the vertices of a polytope P give rise to corresponding
half-spaces in the polar P4. These in fact define facets of P4. An even stronger
statement can be made.

Theorem 4.7. The j-faces of a polytope P are in 1-1 correspondence with the (d−j−
1)-faces of its polar dual P4. This correspondence is inclusion-reversing and hence
the posets F(P ) and F(P4) are opposite (i.e., the same posets but with partial orders
reversed).

This can be seen by constructing the correspondence explicitly. If F is a face of
P , then define

F � := {c : c · x ≤ 1 ∀x ∈ P, c · x = 1 ∀x ∈ F}.

This is clearly a subset of P4 (same definition but with more constraints) and one
can check that it is indeed a face of P4, that F �� = F and that F ⊆ G iff G� ⊆ F �.

This means that in a 3-polytope, vertices of P correspond to facets of P4, and
edges of P correspond to edges of P4, and facets of P correspond to vertices of P4.
(Also, the empty face of P corresponds to all of P4, and all of P corresponds to the
empty face of P4.)

Check that the polar of the d-cube is the d-crosspolytope, and their face lattices
are opposite. What is the polar dual of the dodecahedron? The polar dual of the
simplex?

4.3 Simple and Simplicial Polytopes

Some special classes of polytopes are the simple and simplicial polytopes.

Definition 4.8. A polytope P is said to be simple if each vertex is in exactly d
facets. A polytope P is said to be simplicial if every facet is a simplex (i.e., every
facet contains d vertices).

These two classes of polytopes are polar duals of each other (as witnessed by the
fact that their definitions are polar to each other).

As examples: the crosspolytope is simplicial, the cube is simple, the simplex is
both simple and simplicial, and the pyramid over a square base is neither.

4.4 Graphs of Polytopes

The graph G(P ) of a polytope P is the graph formed by just the vertices and edges of
P . What can we learn about P from its graph? Can every graph appear as the graph
of some polytope P? Here are a few famous theorems about graphs of polytopes.
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A graph is simple if it contains no loops or doubled edges. A graph is said to be
d-connected if removing any d− 1 vertices leaves the graph connected.

Theorem 4.9 (Balinski). If P is a d-polytope, G(P ) is d-connected.

Project Idea 1. Understand the proof of this theorem and some of its generalizations.

Theorem 4.10 (Steinitz). A finite graph G is isomorphic to G(P ) for some 3-
polytope P if and only if G is simple, planar, and 3-connected.

A very surprising fact holds for simple polytopes:

Theorem 4.11 (Blind and Mani-Levitska, 1987). If P is simple, then G(P )
completely determines F(P ).

Project Idea 2. Understand the nice short proof of this result by Kalai(1988)

Theorem 4.12. For a polytope P that is simple or simplicial, there exists some
combinatorially equivalent polytope Q with integer vertex coordinates (i.e., it is a
lattice polytope).

This is not true in general— for instance, there is a 4-polytope which cannot be
a lattice polytope in any realization!

4.5 Exercises

1. Show that y ∈ H−
x ⇐⇒ x ∈ H−

y .

2. Let X, Y be sets in Rd. Show that if X ⊆ Y , then Y 4 ⊆ X4.

3. Show that for any X in Rd, X ⊆ X44.

4. Let C ⊆ Rd be a convex set. Show that C4 is bounded if and only if 0 is in
the interior of C. (A point x is in the interior of C if there exists a closed ball
of positive radius around x that is contained in C.)

5. Using (4.2), describe the polar dual C4 of each of the following convex polytopes
C as the intersection of a finite number of half-spaces. (Specify the equations
for those half-spaces.)

(a) Let C be the d-cube: the convex hull of all points of all d-tuples of the form
(±1,±1, ...,±1).

(b) Let C be the 24-cell: the convex hull of all points of the form ±ei ± ej for
i, j = 1, 2, 3, 4 and i 6= j. (This is a very special polytope in R4 with a lot of
symmetry.)
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6. Draw the face lattices of a 3-cube and a 3-crosspolytope (octahedron), and verify
that there is a 1-1 correspondence of faces that takes j-faces to (3− j− 1)-faces
and reverses inclusion.

7. Show that the set S = {x : 0 ≤ x1 ≤ x2 ≤ ... ≤ xd ≤ 1} is a simplex in two
ways:

(a) by writing it as the convex hull of d+1 points.

(b) by writing it as the intersection of d+1 half-spaces.

8. Consider the 4-polytope P that is the triangle cross the triangle. Which graph
is the graph of the polar dual of P? (Recall that the graph of a polytope is the
graph of its vertices and edges.)

9. Let Q be a polytope containing the origin in Rd, with a half-space description:
Q = ∩Hq for some collection of halfspaces Hq. We now wish to construct the
bipyramid over Q in Rd+1 by taking the cones from (0, 0, ..., 1) and (0, 0, ...,−1)
to Q× 0 (which is just a copy of Q in the hyperplane xd+1 = 0).

For each half-space Hq = {x : q · x ≤ 1} that defines Q, there are two corre-
sponding half-spaces that define the bipyramid over Q in Rd+1. What are they?
(When you define a vector, be careful to state whether your vectors live in Rd

or Rd+1.)

10. Let P be any d-polytope. Show that the bipyramid of the polar dual of P is
the polar dual of the prism over P .

11. (do not need to turn in, but let me know if you make progress) Suppose a convex
n-gon P in the plane has integer vertex coordinates. Let f(n) be the smallest
integer coordinates required to do this. Try to find upper and lower bounds for
f(n).



Chapter 5

Combinatorics of Faces

5.1 Which subsets of vertices span faces?

In the following examples, which subsets of vertices span faces? The d-simplex. The
d-crosspolytope.

For cyclic polytopes, the combinatorics of the faces is very well understood, and
quite interesting.

Theorem 5.1 (Gale’s evenness condition). The cyclic polytope Cd(n) is simplicial
and a d-subset S ⊆ [n] forms a facet if and only if for all pairs i, j /∈ S, the number
of integers between i and j is even.

So the combinatorial type of Cd(n) doesn’t depend on the parameters!

Corollary 5.2. The cyclic polytope Cd(n) is bd/2c-neighborly, i.e., every subset S ⊆
[n] of size d/2 vertices forms a face!

This is counterintuitive for ≥ 4 in Cd(n), because it says that every pair of vertices
has an edge between them, even if n is much bigger than d. Thus the graph of cyclic
polytope C4(n) is the complete graph on n vertices!

It is known from McMullen’s Upper Bound Theorem that cyclic polytopes have
the maximum possible number of k-faces for fixed n, d.

5.2 Euler’s Formula

If P is a polytope, let fk = fk(P ) denote the number of k-faces of P . Thus f0 is the
number of vertices, f1 the number of edges, fd−1 the number of facets, and fd = 1 and
f−1 = 1 since the full polytope is a face of dimension d and we can regard the empty
set as a face of dimension −1. We call the vector (f−1, f0, ..., fd−1, fd) the f -vector of
a d-polytope.

14
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A very important question is to characterize the f -vectors of polytopes. Which
vectors can be f -vectors for some polytope?

There is a linear relation:

Theorem 5.3 (Euler-Poincaré formula). For any d-polytope P ,

f0 − f1 + ... + (−1)d−1fd−1 = 1− (−1)d.

This can also be written:

−f−1 + f0 − f1 + ... + (−1)d = 0.

In dimension 3, this says that the number of vertices V minus the number of edges
E plus the number of facets F must be 2. By stereographic projection, this can be
viewed as a statement about planar graphs in the plane. In this setting, the formula
is true for any connected planar graph:

Theorem 5.4. For any connected planar graph, V − E + F = 2.

For 3-polytopes, we can establish some other relations between the face numbers,
known to Euler. For instance,

2E ≥ 3F

and
2E ≥ 3V.

Also, V ≥ 4 and F ≥ 4.
Also, from the equations above, we find V ≥ 1

2
F + 2 and V ≤ 2F − 4. In the

V, F -plane we find that polytopes must lie in the cone formed by these two lines. Can
all lattice points in this cone be achieved? Investigate, and try to construct examples
for each such lattice point.

For d-polytopes, there are many inequalities that the fi must satisfy, and huge
literature on f -vectors.

5.3 Products

There are some nice properties of f -vectors and products of polytopes. What is
the relationship between the face numbers fi for the 2-simplex (triangle) and the
face numbers fi for the product of 2-simplex with itself? Compare to the algebraic
expression (3 + 3x + x2)2 = 9 + 18x + 15x2 + 6x3 + x4. Yes, generating functions are
at work here, because the faces of the product are just products of the faces in the
factors.

It is also interesting to explore the relationship between various other operations
on polytopes (e.g., prisms, pyramids, etc.) and see what happens to the face numbers.
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5.4 Exercises

1. Consider the standard d-simplex P = conv({0, e1, ..., ed}). Let S be a subset
of the vertices that contains 0. Show that S forms a face of P by exhibiting a
hyperplane that passes through the points of S and contains P in one half-space.

2. Based on inequalities developed thus far for 3-polytopes, show that V ≤ 2F −4.

3. Exhibit a 3-polytope for each lattice point on the line V = F
2

+ 2.

4. Exhibit a 3-polytope for each lattice point on the line V = 2F − 4.

5. A 3-polytope is said to be regular if (i) all facets are identical regular polygons,
and (ii) the same number of polygons meet at each vertex. Show that there are
only 5 possible regular 3-polytopes.

6. Show another theorem of Euler: that every 3-polytope contains at least one
triangular, square, or pentagonal facet.

[Hint: Let Fi be the number of i sided faces. Then F =
∑∞

i=3 Fi. Now write
2E in terms of the Fi.]

7. Let P be the 4-polytope obtained by taking the product of a triangle T 2 with
a square Q2. Draw two different Schlegel diagrams for P .

Justify your diagrams by also computing the number of faces that P should
have in each dimension.



Chapter 6

Phylogenetic Trees

Here’s an important problem in biology. Assuming that all life is related by some
grand “tree of life”, how can one reconstruct that tree from data?

For instance, one might have DNA sequences for various species. It is a reasonable
to assume that if two species are close, then their DNA sequences will be similar; if
so, then one might estimate a “distance” between species by looking at the number
of places in which their DNA sequences differ.

This is just one example of how to measure a “distance” between species. Another
method might involve comparing common morphological characteristics, for instance.
We won’t be concerned here with how we might actually convert data into a set of
pairwise distances (although mathematics is very important in the modeling of this
aspect of the problem).

What we shall focus on is: given pairwise distances d(i, j) between every two
species i and j, how can one find a tree that best represents the data? (Hopefully, such
a tree will accurately model the evolutionary relationships between all the species.)
For instance, can one tell when a metric d does represent distances along some tree?

6.1 Terminology

A tree is a graph that has no cycles. Let T represent a weighted tree, i.e., a tree with
edge weights, and let L represent its leaves, i.e., all the nodes with degree 1. Let
dT (i, j) be the metric on the leaves that takes the unique path from i to j and sums
the tree weights along that path. We call dT a tree metric.

A cherry in a tree T is a pair of leaves i, j which has just one intermediate node
(the cherry node) on the unique path between them. Call the edge that connects the
cherry node to the rest of the tree the cherry stem.

A equidistant tree T is (i) rooted, (ii) has the same distance from root to any leaf
(called the height of T ), and (iii) has non-negative weights on interior edges. (Note
that weights on leaf edges can be non-negative.)

17
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6.2 Ultrametrics

A metric d is an ultrametric on L if for any i, j, k in L,

dij ≤ max{dik, djk},

or equivalently, the maximum of {dij, djk, dik} is achieved at least twice.

Theorem 6.1. A metric d is an ultrametric if and only if d = dT for some equidistant
tree T .

It is easy to see that if d = dT for some equidistant tree, then d must satisfy
the ultrametric property, since for any three leaves i, j, k, the subtree spanned by
those leaves will contain two nodes i, j that are closest together and one leaf k whose
distances from i, j must be the same. Thus the maximum of the three distances
dij, djk, dik is achieved at least twice.

The other direction is harder, and involves constructing a tree T for any given
ultrametric d. This can be done by induction, and the basic idea is to take i, j where
dij is minimal and replace those leaves by a single leaf z. Then define a new leaf
set (with one fewer leaf) by letting L′ be the same as L but with i, j removed and z
added. Define a metric d′ on L′ which agrees with the metric d on all leaves in L′\{z}
and for each k in L′ \ {z}, define d′(z, k) := d(i, k). Then d′ will be an ultrametric,
and by the inductive hypothesis it will have a tree T ′ that represents it. Now replace
the leaf z by a cherry using leaves i and j, whose with branch lengths from the cherry
node equal to dij/2. The cherry stem length is chosen so that the total length of the
stem and dij/2 is just the length of the original leaf edge for z. This gives the desired
tree T .

We can thus define the space of (equidistant) n-leaf trees to be the set of all

ultrametrics, which can be considered a subset of R(n
2). What does this space look

like?
For trees of fixed height H, the space of trees on 3 leaves is a subset of R3 consisting

of all triples (d23, d13, d12) in which the maximum is achieved at least twice. One may
check that this space is topologically a cone over 3 points. The cone point is the triple
(H, H, H), and the three rays that emanate from it represent 3 combinatorial types
of trees, parametrized by the length of the interior edge.

Similarly, for fixed height H, the space of trees on 4 leaves turns out to be a cone
over the Petersen graph.

6.3 The Tree Metric Theorem

A metric d satisfies the four-point condition if for all i, j, k, l in L, the maximum of
{dij + dkl, dik + djl, dil + djk} is achieved at least twice.



Note Sketches (minus proofs): Topics in Geometric Combinatorics F. Su

Theorem 6.2 (Tree Metric Theorem). A metric d arises from a metric on a
weighted tree if and only d satisfies the four-point condition.

In one direction, the result is clear; any tree metric must satisfy the four-point
condition, since any subtree generated by 4 leaves topologically consists of two cherries
with a common stem.

In the other direction, the idea is to pick an arbitrary leaf l in L, and construct a
new distance δl(i, j) := dij − dil − djl. One may check that this is an ultrametric by
using the four-point condition and subtracting dil + djl + dkl from it. Then one may
construct an rooted equidistant tree that represents δl. To change this into a tree
that represents d, we need to add weight dil to leaf edge for i, and add an edge from
the root to a new leaf l of length −H. The resulting tree will realize d.

References for this subject and these theorems can be found in the new books by
Semple-Steel, Phylogenetics, and Felsenstein, Inferring Phylogenies.

6.4 Connections to Polytopes

Given a metric d, one may consider the set

Pd = {x ∈ Rn : xi + xj ≥ dij, 1 ≤ i ≤ j ≤ n}.

This is a convex polyhedron. Let Bd be the set points in bounded faces of Pd.
Then if d arises from a tree metric, then Bd is the desired metric tree, under the

supremum norm!
Why is this? For any point x in a tree, let xi be the distance of that point from

vertex i along the tree. Thus every point x is represented by a n-tuple in Rn. Then
clearly for these xi, the inequalities of Pd must be satisfied, and equality must hold
for at least n− 1 of the defining equalities and these inequalities are all independent.
The intersection of n− 1 hyperplanes will therefore correspond to 1-face, or an edge.
The remaining inequalities will keep this edge bounded. Hence x lives in a bounded
edge of Pd.

One may also check that the actual distance between two points is given by the
supremum norm on difference in their coordinates.

6.5 Exercises

1. Show that these conditions (for being an ultrametric) are equivalent: for any
i, j, k in L, (i) dij ≤ max{dik, djk}, and (ii) the maximum of {dij, djk, dik} is
achieved at least twice.

2. (a) Pick any weighted tree, and write out the corresponding tree metric d for
each pair of leaves.
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(b) Using the metric d that you found in part (a), reconstruct a tree that
represents d.



Chapter 7

Tropical Geometry

In this section we introduce some very recent ideas about a funky geometry called
tropical geometry that has connections to many areas of mathematics. Some ideas
are motivated by considerations from algebraic geometry. And, as we shall, see there
are some interesting connections to phylogenetic trees.

The subject is so recent that almost all of the papers that have been written on
the subject can be found as preprints on the mathematics arXiv by doing a search
on the word tropical. Many have been written by Bernd Sturmfels and co-authors.
We shall attempt to build some intuition for this subject here.

7.1 The Tropical Semi-ring

The real numbers R come equipped with two operations + and ×, which turns it into
a ring. The beginnings of tropical arithmetic start with equipping R with two other
operations ⊕ and ⊗ that turn it into a semi-ring. We let ⊕ represent the operation
of taking minimums, and ⊗ represent the usual addition in R. One may check that
⊗ distributes over ⊕. We may put in ∞ to get a “0”-like element, something that
behaves like an additive identity. Note that 0 behaves like a multiplicative identity.

It will be convenient to work in tropical projective space TP n−1, which are equiv-
alence classes of vectors in Rn under the relation that two vectors are equivalent if
they differ (under usual arithmetic) by a real scalar multiple of (1, 1, ..., 1). Thus
(6, 0, 7) = (0,−6, 1) in TP 2. As a canonical representative we will usually make the
first coordinate 0.

7.2 Tropical Convexity

We can define a tropical linear combination in the usual fashion, but with tropical
operations. Thus a⊗v⊕ b⊗w is a tropical linear combination of vectors v,w. What
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do the set of all tropical linear combinations (the tropical linear span) of two points
look like? Investigate.

We can also define what it means to be tropically convex: we say that a set S in Rn

is tropically convex if for any two points v,w in S and scalars a, b, the combination
a⊗ v⊕ b⊗w is also in S. You may be wondering at this point why we don’t require
a⊕b to equal the multiplicative identity 0, by analogy with usual geometry. Actually,
we could require a ⊕ b = 0 but a moment’s reflection will reveal that this does not
really add any restriction in TP n−1.

We can thus define a tropical convex hull of a set S as the tropical linear span
of S. Similarly, a tropical polytope is then the tropical convex hull of a finite set of
points.

Then we may ask which of the theorems in the usual geometry on Rn have ana-
logues in tropical geometry. For instance, Develin-Sturmfels have shown that the
intersection of tropically convex sets are still tropically convex, and one may also
prove a tropical Caratheodory theorem as well as a tropical hyperplane separation
theorem.

7.3 Tropical Hyperplanes

What does it mean to define a tropical hyperplane? We consider a linear form

a1 ⊗ x1 ⊕ a2 ⊗ x2 ⊕ ...⊕ an ⊗ xn

and instead of setting it equal to zero to get a hyperplane (as we would in usual
geometry), we will demand (since this linear form represents the computation of
some minimum) that the minimum of this expression is achieved at least twice.

Do some examples to see what a tropical hyperplane in TP 2 looks like.

7.4 Connections to Phylogenetic Trees

As it turns out, a tropical line in TP n−1 corresponds to a tree on n-leaves. The space
of such lines (the tropical Grassmannian) is the space of trees on n leaves!

Moreover, one may also define a notion of tropical determinant, which is like the
usual determinant, interpreted tropically (and without minus signs). The following
theorems, due to Develin-Sturmfels, shows an interesting connection between metrics,
tree metrics, and minors of the corresponding distance matrices.

Theorem 7.1. A symmetric matrix D is a metric if and only if the principal 3× 3
minors of −D are tropically singular.

Theorem 7.2. A metric D is a tree metric if and only if the principal 4× 4 minors
of −D are tropically singular.
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The proof of the first result follows by noting that the 3 × 3 determinant is a
minumum of six expressions, and to check that it is singular means that the minimum
is achieved twice. But those six expressions are just 0,−2d12,−2d23,−2d13,−d12 −
d13−d23,−d12−d13−d23, the last two of which are identically equal. One may check
that if the minimum is achieved twice, it must be achieved by the last two expressions,
and the fact that it is less than or equal to all the other expressions gives the required
triangle inequalities.

The proof of the second result is similar, with a lot more algebra.



Chapter 8

Triangulations

One way to try to understand smooth objects combinatorially is by breaking it into
“nice” pieces, such as simplices.

Points in a simplex can be described by barycentric coordinates. If σ = {x : x =∑
tiai,

∑
ti = 1}, then the ti are called barycentric coordinates of x with respect to

the points {ai}.
A simplicial complex K in Rd is a collection of simplices such that: (i) σ ∈ K

implies every face of σ is in K, (ii) the intersection of any 2 simplices is a face of each.
A subcomplex is a subcollection of K that’s also a complex. Let K(p) denote the

subcomplex of K consisting of all faces with dimension at most p, called the p-skeleton
of K. Thus K(0) are the vertices of K, and K(1) is the graph of edges and vertices.

Simplicial complexes are very nice because all the information about intersections
of simplices is combinatorial. We can define an abstract simplicial complex to be a
collection of finite sets such that if some subset A is in the collection, so are all subsets
of A.

Theorem 8.1. Every abstract simplicial complex can be realized.

Thus is it enough to specify the maximal faces.
Why study simplicial complexes? (i) They are good ways of representing geometric

or topological objects as combinatorial objects, (ii) they pop up in interesting places,
and (iii) they provide good ways of computing things piece-by-piece.

A triangulation is a simplicial complex which is pure, i.e., all the maximal faces
are of the same dimension. Some interesting questions to ask: given a space X, how
many triangulations are there? What is the size of the minimal triangulation? What
is the structure of the space of triangulations?

8.1 Triangulations of polygons

For instance, consider a polygon, and try to answer the questions above. How many
triangulations does an n-gon have?
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Theorem 8.2. The number of triangulations of an n-gon is

1

n− 1

(
2n− 4

n− 2

)
.

For a direct proof of the above result, see the homework exercises.
You may recognize this last expression as the (n−2)-th Catalan number. As such,

it is not surprising that there are many equivalent ways of counting the triangulations
of an n-gon.

Theorem 8.3. The number of triangulations of a (convex) n-gon is the same as:
(i) the number of rooted, planar binary trees with n− 1 leaves,
(ii) the number of ways to parenthesize the product of n− 1 factors,
(iii) sequences of n− 2 plus signs and n− 2 minus signs such that in every initial

segment the number of plus signs is never smaller than the number of minus signs,
and

(iv) the number of paths from (0, 0) to (n− 2, n− 2) in the integer grid not going
above the diagonal and always moving right or up.

See if you can construction the bijections required by the statement of the theorem.

8.2 Triangulations of cubes

How can one triangulate a d-cube? There is a standard triangulation with d! simplices;
can you find it? The idea is to associate to each permutation a simplex of the cube
in a natural way, an verify that these simplices meet face-to-face, and do not overlap.

What is the minimal triangulation of a 3-cube? Of a d-cube in general? This is a
difficult question, but exact answers for various kinds of triangulations are known in
low dimensions.

8.3 Flips

There are relationships between triangulations. For instance, in a planar triangula-
tion, two triangles that share an edge can be replaced by two other triangles that
represent the same quadrilateral, but with the internal diagonal “flipped”. This leads
to a flip graph of triangulations, which is a graph in which each node is a triangu-
lation, and two nodes are connected by an edge if there is a flip that connects the
corresponding triangulations.

What can we say about the flip-graph of a polygon? Try drawing one for a
pentagon or a hexagon.

There a higher-dimensional analogue of a “flip”. Can you figure out how it should
be defined?
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8.4 Triangulations of Point Sets

Given a point set in the plane, is there a good way to triangulate its convex hull
so that the point set forms the vertices of a triangulation, and the triangulation is
“nice”? For instance, we might not want long skinny triangles if we can use shorter
and fatter ones.

Given a point set V in the plane, and a point p in V , let R(p) = {x : d(x, p) ≤
d(x, q) ∀q ∈ V }. Thus R(p) is the set of all points in the plane that are closer to p
than to any other point in V .

The sets R(p) for each p in V are called Voronoi cells and the subdivision of
the plane into such cells is called a Voronoi diagram. The Delaunay triangulation is
obtained from the Voronoi cells by connecting p, q in V by an edge iff the cells R(p)
and R(q) are adjacent (share an edge). In some sense this is the “dual” of the Voronoi
diagram.

As long as no 3 points of V are collinear and no 4 points are co-circular, this process
will triangulate conv(V ). The Delaunay triangulation has some very nice properties—
it makes nice, non-skinny triangules for instance: it maximizes the minimum angle
occurring in any triangulation of V , and it minimizes the maximum circumradius of
any triangulation of V . Such results are usually proved by “local flipping”.

8.5 Application: Robot Motion Planning

Given a finite set of obstacles in the plane, what path should a robot take to avoid
these obstacles?

A nice answer is given by using a Voronoi diagram. If V is the set of locations
of obstacles, and if motion is possible for the robot through the obstacle course, it
should be possible along edges of the Voronoi diagram.

Project Idea 3. There are many other applications of Voronoi diagrams and Delaunay
triangulations, in biology (medial axis transforms), chemistry (Wigner-Seitz zones),
crystallography (domains of action), and meterology (Thiessen polygons). Investigate
and explain.

8.6 Voronoi diagrams and polyhedra

There’s a nice connection between Voronoi diagrams and polyhedra. Let u(x) =
x2

1+ ...+x2
d. Let U be the unit paraboloid given by the graph of u: {(x1, ..., xn, u(x))}.

Let Hp be the hyperplane tangent to U at u(p).

Theorem 8.4. The Voronoi diagram of V is the vertical projection of the facets of
the polyhedron ∩p∈V H+

p onto the hyperplane xd+1 = 0 in Rd+1.
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8.7 Exercises

1. Consider a square with 4 vertices {a, b, c, d}, and look at the collection F of faces:
{abcd, ab, ac, ad, bd, a, b, c, d, ∅}. Why is F not an abstract simplicial complex?
Which condition does it not satisfy?

2. In any triangulation of an n-gon, show that: (a) the number of triangles is
exactly n− 2, and (b) the number of internal edges is exactly n− 3. [Hint: use
Euler’s relation, and the fact that regions are triangles.]

3. Show that the number of triangulations of an n-gon is

1

n− 1

(
2n− 4

n− 2

)
by letting Tn deonte the set of all triangulations of the n-gon, and let tn be the
size of Tn. Label the vertices of an n-gon counterclockwise by 1, ..., n. Define
a function f from Tn to Tn−1 by contracting the (1, n) edge. Show that f is
surjective, and show that tn is the sum over all trees in Tn of the degree of
vertex 1 in that tree.

Since this can be done at all vertices, whos that (n−1)tn = 2(2n−5)tn−1, from
which the conclusion follows.

4. Use one of the 5 ways of counting T , the number of triangulations of an n-gon
to find this crude upper bound for the total number of such triangulations:

T ≤ 22n−4.

[Thus without having to do the work of showing an exact formula for T as we
did in class, you can easily see a bound.]

5. Look at the handout for the flip-graph of a hexagon. (a) what edge is missing?
Draw it in. (b) The structure of this diagram suggests a division of the page
into 2-faces, edges, and vertices.

Consider any 2-face on your diagram, and determine what do all the triangula-
tions on that face have in common? So then, what property characterizes the
2-faces on your diagram? What property characterizes the 1-faces (edges) on
your diagram? [This is way cool when you see the pattern.]

6. Show that any triangulation of a 3-dimensional cube must have at least five
simplices. Hint: what can you say about the volume of any simplex with an
exterior face? [Recall that for a tetrahedron, volume = (1/3)(base)(height)]



Chapter 9

Minkowski’s Theorem

Consider a convex set in the plane, and ask: how many integral points are there?
This is another place where geometry and combinatorics intersect (literally).

9.1 Application: Seeing out of a Forest

You are at the center of a circular forest, 9 feet wide. Curiously, the trees are aligned
in a very regular pattern— in fact, this forest can be placed on a grid (measured in
feet) with you at the center in such a way that the center of the trees are at all the
grid points with integer coordinates in the circle (except where you are situated at
(0, 0)). Each tree has a circular trunk exactly 6 inches (1/2 foot) wide. Can you see
out of the forest?

9.2 Lattices

Definition 9.1. The integer lattice is the set Zd, and any point in Zd is called a
lattice point.

Theorem 9.2 (Minkowski). Let C in Rd be a set that is convex, bounded, and
symmetric about 0, such that vol(C) > 2d. Then C contains at least one non-zero
lattice point.

The boundedness condition is not really needed (see exercises).
There are many nice applications in number theory, and because of this, Minkowski’s

theorem is part of a body of results known as the geometry of numbers.
For instance, we can use Minkowski’s theorem to show how well an irrational can

be approximated by rationals:

Theorem 9.3. If α ∈ (0, 1), and N ∈ Z+, then there exists m, n ∈ Z such that
n ≤ N and |α− m

n
| < 1

nN
.
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Minkowski’s result can also be generalized to more general lattices. Let Λ =
Λ(z1, ..., zd) in Rd be the set of all integer linear combinations of a linearly independent
set {z1, ..., zd} of vectors in Rd. Let det(Λ) denote the determinant of the matrix Z
whose columns are the zi.

Theorem 9.4 (Minkowski’s theorem for general lattices). If Λ is a lattice in
Rd, and C in Rd is convex and symmetric about 0 such that vol(C) > 2d · det(Λ),
then there exists at least one point in C ∩ (Λ− 0).

This can also provide a geometric proof of:

Theorem 9.5. Every prime of the form 4k + 1 can be written as the sum of two
squares.

In fact, similar ideas will prove Lagrange’s theorem, that every natural number is
the sum of (at most) 4 squares! Can you find such a proof?

9.3 Exercises

1. Answer the question in the capsule. Can you see your way out of the forest
described in the capsule? Justify your answer.

2. Show that the boundedness condition in Minkowski’s theorem is not really
needed. Try to do this first without looking at my hints below (since maybe
you can find a simpler proof than mine). Then if you give up (or your proof is
too complicated), follow these steps:

(a) In the plane, show that any convex set with positive area contains a little triangle T of positive area.

(b) In the plane, show that any triangle T of positive area contains a little square C of positive area.

(c) In the plane, show that the convex hull of such a square C with any point at distance D from the square must have

area at least sD/2
√

2 where s is the sidelength of the square.

(d) Conclude that any unbounded convex set in the plane cannot have finite area, and use this to show that Minkowski’s
thoerem holds for unbounded sets in the plane.

(e) Then generalize your argument (a little hand-waving OK here) for Minkowski’s theorem in Rd.



Chapter 10

What are Ehrhart polynomials?

Many kinds of combinatorial problems can be expressed as the problem of count-
ing lattice points in certain polytopes. For instance, if you wish to enumerate the
number of 3 × 3 magic squares which have integer entries between 0 and 100, this
can be phrased as finding integer lattice points in R9 which satisfy the linear equal-
ities/inequalities arising from conditions on the row/column/diagonal sums and the
bounds on the entries. This is a polytope.

A lattice polytope is a polytope that is the convex hull of lattice points.
In the plane, there is a particularly nice formula that relates the number of lattice

points inside a lattice polygon to the area of the polygon. The polygon does not even
have to be convex.

Theorem 10.1 (Pick’s Theorem). Let Q be a lattice polygon in R2 (not necessarily
convex). Let ni be the number of lattice points interior to Q and let nb be the number
of lattice points on the boundary of Q. Then the area of Q is

ni +
1

2
nb − 1.

Pick’s theorem thus gives the area of Q just by counting lattice points! The proof
depends on Euler’s formula (V − E + F = 2 for a planar graph) and the following
lemma, whose proof is in the exercises.

Lemma 10.2. If a triangle T is a lattice triangle and has no other lattice points
inside, then the area of T is 1/2.

One may naturally wonder if there is any extension of Pick’s theorem to a 3-
polytope P? Well, there isn’t quite a Pick-like formula, because it is easy to construct
bad examples: arbitrarily large simplices with no interior lattice points, and the same
number of boundary lattice points. Thus the volume of a polytope P cannot be
simply given in terms of counting lattice points.

However, there is another possible direction in which to extend Pick’s theorem,
and that is to consider dilations of P . After all, even in the bad examples, it is still
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true that when you dilate P , the number of lattice points inside will be asympotically
proportional to the volume of P .

This leads to the notion of Ehrhart polynomials. If P is lattice, then mP for an
integer m is also a lattice polytope. Let

EP (m) = #(mP ∩ Zd)

which counts the number of lattice points inside mP as a function of the dilation factor
m. What kind of function is this? A theorem of Ehrhart says that, in fact, EP (m) is
polynomial of degree d. Do some simple planar examples to convince yourself this is
true.

What does this polynomial tell us about the original polytope?

Theorem 10.3 (Ehrhart, 1967). The function EP (m) is a polynomial in m of
degree d, with constant term 1 and leading coefficient equal to the volume of P .

The proof of Ehrhart’s theorem is deep and we shall not include a proof here. But
it has some interesting consequences, which we shall explain in lecture. A related
result is:

Theorem 10.4 (Ehrhart reciprocity). The number of interior lattice points in
mP is given by (−1)dEp(−m).

There are many things that are still not known about Ehrhart polynomials. For
instance, what do the other coefficients mean? There are interpretations for the
coeffients of md, md−1 and the constant term, but all the others are unknown.

Another interesting question is: where are the roots of Ep(m) and what do they
mean? Only recently has it been possible to compute Ehrhart polynomials efficiently,
and many of interesting conjectures of DeLoera et. al. were noted by doing computa-
tions in LattE and observing patterns. See the references for papers related to these
questions.

10.1 Exercises

1. Prove Lemma 10.2 in the following steps:

(a) If T has vertices p0, p1, p2, let v1 = p1 − p0 and v2 = p2 − p0. What must be
true about the entries of v1, v2 if T is a lattice triangle?

(b) Show that v1, v2 form the sides of a parallelogram that has no lattice points
inside it.

(c) Argue that this parallelogram tiles the plane and integer combinations of
v1, v2 must generate all lattice points.

(d) Let A be the matrix with columns v1, v2. Use part (c) to show that there
is some integer matrix Q such that AQ is the identity. What can you conclude
about the determinant of A and the area of T?



Chapter 11

Combinatorial Fixed Point
Theorems

11.1 Sperner’s Lemma

Consider any triangulation T of a d-simplex ∆d. Suppose that each vertex v of T
is labelled by a label `(v) chosen from L = {1, ..., d + 1}. For any simplex σ in T ,
let `(σ) be the set of labels of the vertices of σ. Call σ a full cell if all its labels are
distinct, i.e, `(σ) = L.

For any point v in the simplex, express v in barycentric coordinates v = (v1, ..., vd+1).
Let carr(v) = {k : vk > 0}. This set is called the carrier of v. Call a labelling ` a
Sperner-labelling if for each vertex v, `(v) ∈ carr(v).

Theorem 11.1 (Sperner’s Lemma). Any Sperner-labelled triangulation of a sim-
plex must contain an odd number of full cells.

One of the primary reasons that Sperner’s lemma is useful is that it is equivalent
to the Brouwer Fixed Point Theorem. Thus it may be viewed as a combinatorial
analogue. It is also equivalent to the following set intersection theorem of Knaster-
Kuratowski-Mazurkiewicz, known as the “KKM lemma”.

Theorem 11.2 (KKM lemma). Suppose that the d-simplex ∆d is covered by d + 1
closed sets C1, ..., Cd+1, such that for each point v in S, v ∈ Ci for some i ∈ carr(v).
Then the intersection of all the sets is nonempty: ∩d+1

i=1 Ci 6= ∅.

Compare this theorem to the statement of Helly’s theorem.
Sperner’s lemma has many proofs. See if you can find one for the case d = 2.

In fact, there is a constructive proof of Sperner’s lemma which yields a constructive
method for finding fixed points of continuous functions!

There are also many neat applications of Sperner’s lemma and the KKM theorem,
especially in economics. And there are applications to cake-cutting and other “fair
division” problems. We give a couple of examples from (Su, 1999).
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Sperner’s lemma can be used to prove the classical cake-cutting theorem, a con-
nection that was first noted by Forest Simmons.

And there are many variants, such as the Polytopal Sperner Lemma (DeLoera-
Peterson-Su 2002)and the KKM-Gale theorem.

11.2 Tucker’s lemma

Consider any symmetric triangulation T of the d-sphere Sd, i.e., if σ is a simplex in
T , then −σ is also in T . Suppose that each vertex v of T is labelled by a label `(v)
chosen from L = {±1, ...,±d}. For any edge e in T , let `(e) be the set of labels of the
endpoints of e. Call e a oppositely signed edge if its labels sum to zero.

A Tucker-labelling of a sphere is a labelling such that `(−v) = −`(v) for all vertices
v in T .

Theorem 11.3 (Tucker’s Lemma). Any Tucker-labelled triangulation a sphere
must contain an oppositely signed edge.

Tucker’s lemma is the combinatorial analogue of the Borsuk-Ulam theorem from
topology. In analogy with the Sperner/Brouwer relation, there is also a set-convering
analogue in this setting, called the Lusternik-Schnirelman-Borsuk theorem [LSB the-
orem]. Can you figure out what it should say about closed sets covering the sphere?

Tucker’s lemma also has an interesting application to cake-cutting.

11.3 Kneser colorings

Color the n-subsets of an (2n + k)-set. How many colors are needed to ensure that
no 2 disjoint n-sets have the same color? Kneser showed in 1955 that k + 2 colors
were sufficient, and conjectured that k + 2 were also necessary.

This combinatorial statement was proved in 1978 by Lovász using algebraic topol-
ogy(!). That same year, Bárány gave a simpler proof using the LSB theorem, and a
Gale theorem concering distribution of points on the sphere. In 2002, J. Greene (an
undergraduate) gave an even simpler proof that avoided the use of the Gale theorem.
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11.4 A combinatorial fixed point theorem for trees

Is there a combinatorial fixed point theorem for trees? Yes, and it can be used to
prove a fixed point and KKM type result for trees, too!

The following theorem is well known from standard arguments in topology.

Theorem 11.4. Let T be a tree. Every continuous f : T → T has a fixed point.

The following result is a recent result of Berger (2002).

Theorem 11.5 (Tree-KKM Lemma). . Suppose T is an n-leaf tree covered by n
closed sets C1, ..., Cn such that for all leaves i and j, (1) leaf i is contained in set Ci

and (2) [i, j] is contained in Ci ∪ Cj. Then all the sets Ci share a common point.

Here is a combinatorial version, developed by Niedermaier-Su (2004).

Theorem 11.6 (Combinatorial Tree-KKM Lemma). . Let T be an n-leaf tree
which is segmented (triangulated into segments) such that nodes of the tree are vertices
in the segmentation. Suppose that each vertex v has a non-empty set of labels L(v)
that are a subset of {1, ..., n}, such that for all leaves i and j,

(1) i ∈ L(leaf i), and
(2) if v ∈ [i, j] then L(v) contains either i or j (maybe both).
Then there is an edge (v1, v2) in the segmentation such that L(v1) ∪ L(v2) =

{1, ..., n}.

There are some cool applications of this theorem too.
What about other graphs?

11.5 Exercises

1. Prove the equivalence of Sperner’s lemma, the KKM lemma, and the Brouwer
Fixed Point Theorem

2. Show that Tucker’s lemma is equivalent to the Borsuk-Ulam theorem.
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An asterisk* denotes that the publication is available online at the ArXiv at
http://front.math.ucdavis.edu/, or (likely) on someone’s webpage (do a web
search in Google, for instance).

Combinatorial Convexity

Proof of colorful Caratheodory: [1].
Text on convexity: [2].
Matousek’s excellent book at the graduate level has a section on this: [3].

Helly’s theorem

A nice section on Helly’s theorem and applications: [4].
A new paper on a fractional Helly: [5].

Polytopes

A nice introduction is this chapter: [6]* in the book [7] which is a great overall
introduction.

Ziegler’s excellent book at the graduate level: [8].
Grübaum’s classic text: [9].
Coxeter’s classic text on regular polytopes: [10].
Kalai’s proof that simple polytopes determined by their graph: [11]*.
Interesting history, nice pictures: [12].
McMullen’s upper bound theorem: [13].

Triangulations

My paper on triangulations of cubes: [14]*
Upper bounds for triangulations of a planar point set: [15]*.
The space of triangulations is disconnected: [16]*.
The polytope of pointed pseudo-triangulations: [17]*.
Chamber complexes of polytopes: [18].
Riemmann hypothesis for triangulable manifolds: [19].

Combinatorial Fixed Point Theorems and Sperner’s Lemma

Cake-cutting and rent-division applications: [20]*.
A polytopal generalization: [21]*.
Another analogue: [22].
Computation and applications to economics: [23].
A different generalization of Sperner’s lemma: [24].
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Tucker’s lemma

The first constructive proof: [25]
Another constructive proof: [26]*.
Cake-cutting applications: [27]*.
Borsuk-Ulam implies Brouwer: [28]*.
Other papers on combinatorial fixed point theorems available at my webpage:

http://www.math.hmc.edu/ su/papers.html

Kneser colorings

Joshua Greene’s proof of the Kneser conjecture: [29].
Lovasz’s famous proof of the Kneser conjecture: [30].
A survey by Björner: [31]*.
A paper by Ziegler on generalized Kneser colorings: [32]*.

Trees

A combinatorial fixed point theorems for trees: my paper will be available at
http://www.math.hmc.edu/~su/papers.html later this summer.

The tree metric theorem: [33].
A biologist’s book on phylogenies: [34].
Geometry of the space of phylogenetic trees: [35]*.

Tropical Geometry

A nice introduction is a chapter in [36].
Also: [37]*.
Tropical convexity: [38]*.
Rank of a tropical matrix: [39]*.
Tropical halfspaces: [40]*.
See other papers on the ArXiv at

http://front.math.ucdavis.edu/.

Lattice point counting and Ehrhart polynomials

Ehrhart’s paper: [41].
Coefficients and roots of Ehrhart Polynomials: [42]*.
An application of counting lattice points: [43]*.
A new book by Beck and Robins: see the webpage of Matthias Beck later this

summer: http://math.sfsu.edu/beck/papers.html.
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Unsolved problems

Book with lots of unsolved problems: [44].
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[5] Imre Bárány and JǐŕıMatoušek. A fractional Helly theorem for convex lattice
sets. Adv. Math., 174(2):227–235, 2003.

[6] Martin Henk, Jürgen Richter-Gebert, and Günter M. Ziegler. Basic properties
of convex polytopes. In Handbook of discrete and computational geometry, CRC
Press Ser. Discrete Math. Appl., pages 243–270. CRC, Boca Raton, FL, 1997.

[7] Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of discrete and
computational geometry. CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, Boca Raton, FL, 1997.

[8] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1995.
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