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INTRODUCTION

Geometric objects are often put together from simple pieces according to certain
combinatorial rules. As such, they can be described as complexes with their con-
stituent cells, which are usually polytopes and often simplices. Many constraints of
a combinatorial and topological nature govern the incidence structure of cell com-
plexes and are therefore relevant in the analysis of geometric objects. Since these
incidence structures are in most cases too complicated to be well understood, it is
worthwhile to focus on simpler invariants that still say something nontrivial about
their combinatorial structure. The invariants to be discussed in this chapter are
the f-vectors f = (f0; f1; . . .), where fi is the number of i-dimensional cells in the
complex.

The theory of f-vectors can be discussed at two levels: (1) the numerical rela-
tions satis�ed by the fi numbers, and (2) the algebraic, combinatorial, and topo-
logical facts and constructions that give rise to and explain these relations. This
chapter will summarize the main facts in the numerology of f-vectors (i.e., at level
1), with emphasis on cases of geometric interest.

The chapter is organized as follows. To begin with we treat simplicial com-
plexes, �rst the general case (Section 15.1), then complexes with various Betti
number constraints (Section 15.2), and �nally triangulations of spheres, polytope
boundaries, and manifolds (Section 15.3). Then we move on to non-simplicial
complexes, discussing �rst the general case (Section 15.4) and then polytopes and
spheres (Section 15.5).

15.1 SIMPLICIAL COMPLEXES

GLOSSARY

The convex hull of any set of j + 1 a�nely independent points in Rn is called a
j-simplex. See Chapter 13 for more about this de�nition, and for the notions
of faces and vertices of a simplex.

A geometric simplicial complex � is a �nite nonempty family of simplices in
Rn such that (i) � 2 � implies that � 2 � for every face � of �, and (ii) if �; � 2 �
and � \ � j= ; then � \ � is a face of both � and � .

An abstract simplicial complex � is a �nite nonempty family of subsets of
some ground set V (the vertex set) such that if A 2 � and B � A then
B 2 �. (Note that always ; 2 �.) The elements A 2 � are called faces.
De�ne the dimension of a face A and of � itself by dimA = jAj � 1; dim� =



2 Louis J. Billera and Anders Bj�orner

maxA2� dimA. By a d-complex we mean a d-dimensional complex.

With every geometric simplicial complex � we associate an abstract simplicial com-
plex by taking the family of vertex sets of its simplices. Conversely, every d-
dimensional abstract simplicial complex � can be realized in Rn for n � 2d+ 1
(and sometimes less) by some geometric simplicial complex. The latter is unique
up to homeomorphism, so it is correct to think of the realization map as a one-
to-one correspondence between abstract and geometric simplicial complexes. We
will therefore drop the adjectives \abstract" and \geometric" and speak only of
a simplicial complex.

For a simplicial complex �, let �i = fi-dimensional facesg and let fi = j�ij. The
integer sequence f(�) = (f0; f1; . . .) is called the f-vector of �. (The entry
f�1 = 1 is usually suppressed.) The subcomplex ��i =

S
j�i�

j is called the
i-skeleton of �.

A simplicial complex � is called pure if all maximal faces are of equal dimension. It
is called r-colorable if there exists a partition of the vertex set V = V1[ . . .[Vr
such that jA\Vij � 1 for all A 2 � and 1 � i � r. Equivalently, � is r-colorable
if and only if its 1-skeleton ��1 is r-colorable in the standard sense of graph
theory. An (r�1)-complex that is both pure and r-colorable is sometimes called
balanced.

For integers k; n � 1 there is a unique way of writing

n =

�
ak

k

�
+

�
ak�1

k � 1

�
+ . . . +

�
ai

i

�
so that ak > ak�1 > . . .> ai � i � 1. Then de�ne

@k(n) =

�
ak

k � 1

�
+

�
ak�1

k � 2

�
+ . . . +

�
ai

i� 1

�
;

and

@k(n) =

�
ak � 1

k � 1

�
+

�
ak�1 � 1

k � 2

�
+ . . . +

�
ai � 1

i� 1

�
:

Also let @k(0) = @k(0) = 0.

Let N1 denote the set of sequences (n0; n1; . . .) of nonnegative integers, and N
(1)

the subset of sequences such that nk = 0 for su�ciently large k. We call n 2 N(1)

a K-sequence if
@k+1(nk) � nk�1 for all k � 1:

We call n 2 N1 an M-sequence if

n0 = 1 and @k(nk) � nk�1 for all k � 2.

THE KRUSKAL-KATONA THEOREM AND SOME RELATIVES

The following basic result characterizes the f-vectors of simplicial complexes.

THEOREM 15.1.1 Kruskal-Katona Theorem

For f = (f0; f1; . . .) 2 N
(1)

the following are equivalent:
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(i) f is the f-vector of a simplicial complex;

(ii) f is a K-sequence.

A simplicial complex is connected if its 1-skeleton is connected in the sense of
graph theory.

THEOREM 15.1.2

For f 2 N(1)
the following are equivalent:

(i) f is the f-vector of a connected simplicial complex;

(ii) f is a K-sequence and @3(f2) � f1 � f0 + 1.

Theorem 15.1.1 has a generalization to colored complexes, whose statement
will require some additional de�nitions. Fix an integer r > 0. Then de�ne

�
n
k

�
r

as follows: partition f1; . . . ; ng into r subsets V1; . . . ; Vr as evenly as possible (so
every subset Vi will have b

n
r
c or bn

r
c + 1 elements), and let

�
n
k

�
r
be the number of

k-subsets F � f1; . . . ; ng such that jF \ Vij � 1 for 1 � i � r. For k � r every
positive integer n can be uniquely written

n =

�
ak

k

�
r

+

�
ak�1

k � 1

�
r�1

+ . . . +

�
ai

i

�
r�k+i

;

where ak > ak�1 > . . . > ai � i � 1. Then de�ne

@
(r)

k (n) =

�
ak

k � 1

�
r

+

�
ak�1

k � 2

�
r�1

+ . . . +

�
ai

i� 1

�
r�k+i

;

and let @
(r)

k (0) = 0.

THEOREM 15.1.3

For f = (f0; . . . ; fd�1), d � r, the following are equivalent:

(i) f is the f-vector of an r-colorable simplicial complex;

(ii) @
(r)

k+1(fk) � fk�1, for all 1 � k � d� 1.

Note that for r su�ciently large Theorem 15.1.3 specializes to Theorem 15.1.1.

MULTICOMPLEXES AND MACAULAY'S THEOREM

A multicomplex M is a nonempty collection of monomials in �nitely many vari-

ables such that ifm is inM then so is every divisor ofm. Let fi(M) be the number
of degree i monomials in M; f(M) = (f0; f1; . . .) is called the f-vector of M.

THEOREM 15.1.4 Macaulay's Theorem

For f 2 N1 the following are equivalent:

(i) f is the f-vector of a multicomplex;

(ii) f is an M -sequence;

(iii) fi = dimkRi, i � 0, for some �nitely generated commutative graded k-algebra

R = �i�0Ri such that R0
�= k (a �eld) and R1 generates R.
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A simplicial complex can be identi�ed with a multicomplex of squarefree mono-
mials. Hence, a K-sequence is (except for a shift in the indexing) an M -sequence:
If (f0; . . . ; fd�1) is a K-sequence then (1; f0; . . . ; fd�1) is an M -sequence. For this
reason (and others, see e.g. Theorem 15.2.2), properties ofM -sequences are relevant
also even if one is interested only in the special case of simplicial complexes.

A multicomplex is pure if all its maximal (under divisibility) monomials have
the same degree.

THEOREM 15.1.5

Let (f0; . . . ; fr) be the f-vector of a pure multicomplex, fr j= 0. Then fi � fj for all

i < j � r � i.

COMMENTS

Simplicial complexes (abstract and geometric) are treated in most books on al-
gebraic topology; see, e.g., [Mun84, Spa66]. The Kruskal-Katona theorem (inde-
pendently discovered by M.-P. Sch�utzenberger, J.B. Kruskal, G.O.H. Katona, L.H.
Harper, and B. Lindstr�om during the years 1959-1966) is discussed in many places
and several proofs have appeared; see, e.g., [And87, Zie95]. Theorems 15.1.2 and
15.1.3 are from [Bjo96] and [FFK88] respectively. A Kruskal-Katona type theorem
for simplicial complexes with vertex-transitive symmetry group appears in [FK96].

For Macaulay's theorem we refer to [And87, Sta96]. There is a common gener-
alization of Macaulay's theorem and the Kruskal-Katona theorem due to Clements
and Lindstr�om; see [And87]. Theorem 15.1.5 is from [Hib89].

15.2 BETTI NUMBER CONSTRAINTS

GLOSSARY

The Euler characteristic �(�) of a simplicial complex � with f-vector (f0; . . . ;

fd�1) is �(�) =
Pd�1

i=0 (�1)
ifi.

The h-vector (h0; . . . ; hd) of a (d�1)-dimensional simplicial complex is de�ned by

dX
i=0

hix
d�i =

dX
i=0

fi�1(x� 1)d�i:

The corresponding g-vector (g0; . . . ; gbd=2c) is de�ned by g0 = 1 and gi = hi �

hi�1, for i � 1.

The Betti number �i(�) is the dimension (as aQ-vector space) of the i-th reduced

simplicial homology group eHi(�;Q); see any textbook on algebraic topology (e.g.
[Mun84]) for the de�nition. We call (�0; . . . ; �dim�) the Betti sequence of �.

The link `k�(F ) of a face F is the subcomplex of � de�ned by `k�(F ) = fA 2

� j A \ F = ;; A [F 2 �g. Note that `k�(;) = �.

A simplicial complex � is acyclic if �i(�) = 0 for all i.
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A simplicial complex � is Cohen-Macaulay if �i(`k�(F )) = 0 for all F 2 � and
all i < dim`k�(F ).

A simplicial complex � is m-Leray if �i(`k�(F )) = 0 for all F 2 � and all i � m.

FIXED BETTI NUMBERS

The most basic relationship between f-vectors and Betti numbers is the Euler-
Poincar�e formula :

�(�) = f0 � f1 + f2 � . . . = 1 + �0 � �1 + �2 � . . .

This is in fact the only linear one in the following complete set of relations.

THEOREM 15.2.1

For f = (f0; f1; . . .) 2 N
(1)

and � = (�0; �1; . . .) 2 N
(1)

the following are equiva-

lent:

(i) f is the f-vector of some simplicial complex with Betti sequence �;

(ii) if �k�1 =
P

j�k(�1)
j�k(fj � �j), k � 0, then ��1 = 1 and @k+1(�k + �k) �

�k�1 for all k � 1.

By putting �i = 0 for all i one gets as a special case a characterization of the
f-vectors of acyclic simplicial complexes, viz.,

P
i�0 fi�1x

i = (1 + x)
P

i�0 f
0
i�1x

i,
where (f 00; f

0
1; . . .) is a K-sequence.

COHEN-MACAULAY COMPLEXES

Examples of Cohen-Macaulay complexes are triangulations of manifoldswhose Betti
numbers vanish below the top dimension, in particular triangulations of spheres and
balls. Other examples are matroid complexes (the independent sets of a matroid),
Tits buildings, and the order complexes (simplicial complex of totally ordered sub-
sets) of several classes of posets, e.g., semimodular lattices (including distributive
and geometric lattices). Shellable complexes (see Chapters 14 and 18) are Cohen-
Macaulay. Cohen-Macaulay complexes are always pure.

The de�nition of h-vector given in the glossary shows that the h-vector and the
f-vector of a complex mutually determine each other via the formulas:

hi =

iX
j=0

(�1)i�j
�
d� j

i � j

�
fj�1 ; fi�1 =

iX
j=0

�
d� j

i� j

�
hj ;

for 0 � i � d. Hence, we may state f-vector results in terms of h-vectors whenever
convenient.

THEOREM 15.2.2

For h = (h0; . . . ; hd) 2Z
d+1

the following are equivalent:

(i) h is the h-vector of a (d�1)-dimensional Cohen-Macaulay complex;

(ii) h is the h-vector of a (d�1)-dimensional shellable complex;

(iii) h is an M -sequence.
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Since there are a total of
�
n+k�1

k

�
monomials of degree k in n variables, and by

Theorems 15.1.4 and 15.2.2 the h-vector of a (d�1)-dimensional Cohen-Macaulay
complex counts certain monomials in h1 = f0�d variables, we derive the inequalities

0 � hi �

�
f0 � d+ i� 1

i

�
for the h-vectors of Cohen-Macaulay complexes. The lower bound can be improved
for complexes with �xed-point-free involutive symmetry.

THEOREM 15.2.3

Let h = (h0; . . . ; hd) be the h-vector of a Cohen-Macaulay complex admitting an

automorphism � of order 2, such that �(F ) 6= F for all F 2 � n f;g. Then

hi �

�
d

i

�
for 0 � i � d:

Consequently, fd�1 = h0 + . . . + hd � 2d.

Another condition on a Cohen-Macaulay complex that forces stricter conditions
on its h-vector is being r-colorable.

THEOREM 15.2.4

For h = (h0; . . . ; hd) 2Z
d+1

the following are equivalent:

(i) h is the h-vector of a (d�1)-dimensional and d-colorable Cohen-Macaulay

complex;

(ii) (h1; . . .hd) is the f-vector of a d-colorable simplicial complex.

Hence in this case the h-vector is not only an M -sequence, but the special kind
of K-sequence characterized in Theorem 15.1.3.

LERAY COMPLEXES

Examples of Leray complexes arise as follows. Let K = fK1; . . . ;Ktg be a family
of convex sets in Rm, and let �(K) = fA � f1; . . . ; tg j

T
i2AKi j= ;g. Then the

simplicial complex �(K) is m-Leray.
Fix m � 0, and let f = (f0; . . . ; fd�1) be the f-vector of a simplicial complex

�. De�ne

h�k =

(
fk for 0 � k � m � 1P
j�0

(�1)j
�
k+j�m

j

�
fk+j for k � m:

The sequence h� = (h�0; . . . ; h
�
d�1) is the h

�-vector of �. The two vectors f and
h� mutually determine each other.

THEOREM 15.2.5

For h� = (h�0; h
�
1; . . .) 2Z

(1)
the following are equivalent:

(i) h� is the h�-vector of an m-Leray complex;
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(ii) h� is the h�-vector of �(K) for some family K of convex sets in Rm;

(iii) 8<:
h�k � 0 for k � 0
@k+1(h

�
k) � h�k�1 for 1 � k � m� 1

@m(h
�
k) � h�k�1 � h�k for k � m.

COMMENTS

The Euler-Poincar�e formula (due to Poincar�e 1899) is proved in most books on al-
gebraic topology. Theorem 15.2.1 is from [BK88]. A good general source on Cohen-
Macaulay complexes is [Sta96]; Theorems 15.2.2, 15.2.3, and 15.2.4, as well as refer-
ences to the original sources, can be found there. A generalization of Theorem 15.2.2
to complexes whose k-skeleton is Cohen-Macaulay appears in [Bjo96]. There are
several additional results about h-vectors of Cohen-Macaulay complexes. For in-
stance, for complexes with nontrivial automorphism groups, see [Sta96, Section
III.8]; for matroid complexes, see [Sta96, Section III.3]; and for Cohen-Macaulay

complexes that are r-colorable for r < d, see the references mentioned in [Sta96,
Section III.4].

Cohen-Macaulay complexes are closely related to certain commutative rings
[Sta96], and via this connection such complexes have also been of use in the theory
of splines; see [Sta96, Section III.5] and also Chapter 45.

Theorem 15.2.5 was conjectured by Eckho� and proved by Kalai [Kal84, Kal86].

15.3 SIMPLICIAL POLYTOPES, SPHERES, AND MANIFOLDS

GLOSSARY

A triangulated d-ball is a simplicial complex � whose realization k�k is home-
omorphic to the ball fx 2 Rd j x21 + � � � + x2d � 1g. A triangulated (d {1)-
sphere is a simplicial complex whose realization is homeomorphic to the sphere
fx 2 Rd j x21 + � � � + x2d = 1g. Equivalently, it is the boundary of a triangu-
lated d-ball. Examples of triangulated (d�1)-spheres are given by the boundary
complexes of simplicial d-polytopes.

A pseudomanifold is a pure simplicial complex � such that

(i) each face of codimension 1 is contained in precisely two maximal faces; and

(ii) the dual graph (whose vertices are the maximal faces of � and whose edges

are the faces of codimension 1) is connected.

An Eulerian pseudomanifold is a pseudomanifold� such that � and the link of
each face has the Euler characteristic of a sphere of the corresponding dimension.

A pure (d�1)-dimensional simplicial complex � is a homology manifold if it is
connected and the link of each nonempty face has the Betti numbers of a sphere
of the same dimension. It is a homology sphere if, in addition, � itself has the
Betti numbers of a (d�1)-sphere. Examples of homology manifolds are given by
triangulations of compact connected topological manifolds, i.e., spaces that are
locally Euclidean.
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The cyclic d-polytope with n vertices Cd(n) is the convex hull of any n points
on the moment curve in Rd. (See Section 13.1.4.)

The following implications hold among these various classes, all of them strict:

polytope boundary ) sphere ) homology sphere )

Eulerian pseudomanifold ) pseudomanifold

homology sphere ) homology manifold ) pseudomanifold

homology sphere ) Cohen-Macaulay complex

PSEUDOMANIFOLDS

The following results give the basic lower and upper bounds on f-vectors of pseu-
domanifolds.

THEOREM 15.3.1 Lower Bound Theorem

For a (d�1)-dimensional pseudomanifold � with n vertices,

fk(�) �

��
d
k

�
n�

�
d+1
k+1

�
k for 1 � k � d� 2

(d� 1)n� (d� 2)(d+ 1) for k = d� 1:

THEOREM 15.3.2 Upper Bound Theorem

Let � be a (d�1)-dimensional homology manifold with n vertices, such that either

(i) d is even, or

(ii) d = 2k + 1 is odd, and either �(�) = 2 or �k � 2�k�1 + 2
Pk�3

i=0 �i :

Then fk(�) � fk(Cd(n)) for 1 � k � d� 1.

This upper bound theorem applies when the homology manifold is Eulerian
(irrespective of dimension); in particular, it applies to all simplicial polytopes and
spheres. By the geometric operation of \pulling vertices," one can extend this to
all convex polytopes.

THEOREM 15.3.3

If P is any convex d-polytope with n vertices, then f(P ) � f(Cd(n)).

The given lower and upper bounds are best possible within the class of simplicial
polytope boundaries. The lower bound is attained by the class of stacked polytopes
(de�ned in Chapter 18). To make the upper bound numerically explicit, we give
the formula for the f-vector of a cyclic polytope.

THEOREM 15.3.4

For d � 2 and 0 � k � d � 1, the number of k-faces of the cyclic polytope Cd(n)
with n vertices is

fk(Cd(n)) =
n� �(n � k � 2)

n� k � 1

bd=2cX
j=0

�
n� 1� j

k + 1� j

��
n� k � 1

2j � k � 1 + �

�
;
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where � = d� 2bd=2c. In particular,

fd�1(Cd(n)) =

�
n� bd+1

2
c

n� d

�
+

�
n� bd+2

2
c

n� d

�
:

POLYTOPES AND SPHERES

For boundaries of simplicial d-polytopes and, more generally, for Eulerian pseudo-
manifolds, we have the following basic relations.

THEOREM 15.3.5 Dehn-Sommerville Equations

For d-dimensional Eulerian pseudomanifolds,

hi = hd�i for all 0 � i � d:

These equations give a complete description of the linear span of all f-vectors of

d-polytopes (equivalently, (d�1)-spheres). (The a�ne span is de�ned by including
the relation h0 = 1.)

One consequence of the Dehn-Sommerville equations is the following relation
between the h-vector of a triangulated ball K and the g-vector of its boundary @K.

THEOREM 15.3.6

For a triangulated d-ball K and its boundary (d�1)-sphere @K,

gi(@K) = hi(K)� hd+1�i(K) for i � 1:

A complete characterization of the f-vectors of simplicial (and, by duality,
simple) convex polytopes is given in terms of the h-vector and g-vector.

THEOREM 15.3.7 g -Theorem

A nonnegative integer vector h = (h0; . . . ; hd) is the h-vector of a simplicial convex

polytope if and only if

(i) hi = hd�i, and

(ii) (g0; . . . ; gbd=2c) is an M -sequence.

One consequence of (ii) is that gi � 0. For centrally symmetric polytopes, we
get a better lower bound.

THEOREM 15.3.8

For centrally symmetric simplicial d-polytopes,

gi = hi � hi�1 �

�
d

i

�
�

�
d

i� 1

�
for i � bd=2c:

COMMENTS

The Lower Bound Theorem 15.3.1 is due to Kalai and Gromov in the generality
given here; see [Kal87] including the note added in proof. The k = d� 1 case had
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earlier been done by Klee and the case of polytope boundaries by Barnette. See
[Kal87] for a discussion of the history of this result.

The Upper Bound Theorem 15.3.2 is due to Novik [Nov95]. The case of poly-
topes (Theorem 15.3.3) was �rst proved by McMullen (see [MS71]), and extended
to spheres by Stanley (see [Sta96]). The computation of the f-vector of the cyclic
polytope can be found in [Gru67, Sections 4.7.3 and 9.6.1] or [MS71].

The Dehn-Sommerville equations for polytopes are classical; proofs can be
found in [Gru67, Sta86, Zie95]. The extension to Eulerian pseudomanifolds is due
to Klee [Kle64]; an equivariant version appears in [Bar92]. The g-theorem was con-
jectured by McMullen and proved by Billera, Lee, and Stanley [BL81, Sta80]. More
recently, another proof of the necessity of these conditions was given by McMullen
[McM93]. It is not known whether the second condition of Theorem 15.3.7 holds
for general triangulated spheres. The g-theorem has a convenient reformulation as
a one-to-one correspondence (via matrix multiplication) between f-vectors of sim-
plicial polytopes and M -sequences, see [Bjo87, Zie95]. Theorem 15.3.8 was proved
by Stanley [Sta87a].

The study of f-vectors of unbounded polyhedra can be approached by studying
the f-vectors of polytope pairs (P; F ), where P is a polytope and F is a maximal
face of P . See [BL93] for a summary of such results.

15.4 CELL COMPLEXES

GLOSSARY

Convex polytopes and faces of such are de�ned in Chapter 13.

A polyhedral complex � is a �nite collection of convex polytopes in Rn such that
(i) if � 2 � and � is a face of � then � 2 �, and (ii) if �; � 2 � and � \ � j= ;

then � \ � is a face of both. The space of � is k�k =
S
�2� �, a subspace

of Rn. Examples of polyhedral complexes are given by boundary complexes

@P of convex polytopes P (i.e., the collection of all proper faces). A geometric
simplicial complex (de�ned in Section 15.1) is a polyhedral complex all whose
cells are simplices. A cubical complex is a polyhedral complex all whose cells
are (combinatorially isomorphic to) cubes.

A regular cell complex � is a family of closed balls (homeomorphs of fx 2

Rj
�� jxj � 1g) in a Hausdor� space k�k such that (i) the interiors of the balls

partition k�k and (ii) the boundary of each ball in � is a union of other balls in
�. The members of � are called (closed) cells or faces. The dimension of a
cell is its topological dimension and dim� = max�2� dim�.

A regular cell complex has the intersection property if, whenever the intersec-
tion of two cells is nonempty, then this intersection is also a cell in the complex.
Polyhedral complexes are examples of regular cell complexes with the inter-
section property. Regular cell complexes with the intersection property can be
reconstructed up to homeomorphism from the corresponding \abstract" complex
consisting of the family of vertex sets of its cells.

For a regular cell complex �, let fi be the number of i-dimensional cells, and

let �i = dimQ eHi(k�k ;Q). The latter denotes i-dimensional reduced singular
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homology with rational coe�cients of the space k�k; see [Mun84, Spa66] for
explanations of this concept. Then we have the f-vector f = (f0; f1; . . .) and
the Betti sequence � = (�0; �1; . . .) of �. These de�nitions generalize those
previously given in the simplicial case.

BASIC f -VECTOR RELATIONS

Among the classes of complexes

� simplicial complexes

� polyhedral complexes

� regular cell complexes with the intersection property

� regular cell complexes

each is a subclass of its successor. Thus one may wonder how many of the relations
for f-vectors of simplicial complexes given in Sections 15.1{15.3 can be extended to
these broader classes of complexes. Also, what new phenomena (not visible in the
simplicial case) arise? Some answers will be given in this section and the following

one, but current knowledge is quite fragmentary. We begin here with the most
general relations.

THEOREM 15.4.1

(f0; . . . ; fd) is the f-vector of a d-dimensional regular cell complex if and only if

fd � 1 and fi � 2 for all 0 � i < d.

THEOREM 15.4.2

f is the f-vector of a regular cell complex with the intersection property if and only

if f is a K-sequence.

Let � = (�0; �1; . . .) 2 N
(1) be �xed, and for every sequence f = (f0; f1; . . .)

let
�k�1 =

X
j�k

(�1)j�k(fj � �j) for k � 0:

THEOREM 15.4.3

(f0; . . . ; fd) is the f-vector of a d-dimensional regular cell complex with Betti se-

quence � if and only if ��1 = 1 and �k � 1 for 0 � k < d.

THEOREM 15.4.4

For f 2 N(1)
the following are equivalent:

(i) f is the f-vector of a regular cell complex with the intersection property and

with Betti sequence �;

(ii) ��1 = 1 and @k+1(�k + �k) � �k�1 for all k � 1.

These results show that the f-vectors of regular cell complexes (with or without
Betti number constraints) are a lot more general than the f-vectors of simplicial
complexes, but that the two classes of f-vectors agree in the presence of the inter-
section property.
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COMMENTS

Regular cell complexes are known as regular CW complexes in the topological
literature [LW69]. The non-regular CW complexes o�er an even more general class
of cell complexes [LW69, Mun84, Spa66], but there is very little one can say about
f-vectors in that generality. See [BLS+93, Section 4.7] for a detailed discussion of
regular cell complexes from a combinatorial point of view.

For the results of this section see [BK88, BK91, BK89]. A characterization
of f-vectors of (cubical) subcomplexes of a cube can be found in [Lin71], and of
regular cell decompositions of spheres in [Bay88].

15.5 GENERAL POLYTOPES AND SPHERES

GLOSSARY

A 
ag of faces in a (polyhedral) (d�1)-complex � is a chain F1 ( F2 ( � � � ( Fk
in �. It is an S-
ag if

S = fdimF1; . . . ; dimFkg � f0; 1; . . . ; d� 1g:

If fS = fS(�) denotes the number of S-
ags in �, then the function S 7! fS ,
S � f0; 1; . . .; d� 1g, is called the 
ag f-vector of �.

If
hS =

X
T�S

(�1)jSj�jT jfT ;

then the function S 7! hS , S � f0; 1; . . . ; d� 1g, is called the 
ag h-vector.

For S � f0; . . . ; d� 1g and noncommuting symbols a and b, let uS = u0u1 � � �ud�1
be the ab-word de�ned by ui = a if i =2 S and ui = b otherwise. When � is
spherical (or, more generally, Eulerian), then the ab-polynomial

P
hSuS is also

a polynomial in c = a+ b and d = ab+ ba. (Note that the degree of c is 1 and
the degree of d is 2.) The resulting cd-polynomialX

hSuS =
X

�ww;

where the right-hand sum is over all cd-words w of degree d, is called the cd-
index of �. For 2- and 3-polytopes, the cd-index is c2 + (f0 � 2)d and c3 +

(f0 � 2)dc+ (f2 � 2)cd, respectively.

For any convex d-polytope P , we de�ne the toric h-vector and toric g-vector

recursively by h(P; x) =
Pd

i=0 hix
d�i and g(P; x) =

Pbd=2c

i=0 gix
i, where gi =

hi � hi�1 and the following relations hold:

(i) g(;; x) = h(;; x) = 1, and

(ii) h(P; x) =
P

G face ofP;G6=P g(G; x)(x� 1)d�1�dimG.

(Compare Chapter 14.4.2, where this toric h-vector is de�ned for any polyhedral
complex. In the notation given there, we have de�ned h and g for the complex
@P .) When P is simplicial, this de�nition coincides with that of the usual h-
vector, as de�ned in Section 15.2.

A rational polytope is one whose vertices all have rational coordinates.
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A cubical polytope is one that has a cubical boundary complex. For any cubical
(d�1)-complex with f-vector (f0; . . . ; fd�1), de�ne the cubical h-vector hc =
(hc0; . . . ; h

c
d) by

hci = (�1)i2d�1 +

iX
j=1

(�1)i�j2j�1fj�1

i�jX
k=0

�
d� j

k

�
for i = 0; . . . ; d:

The cubical g-vector gc = (gc0; . . . ; g
c
bd=2c

) is de�ned by gc0 = hc0 = 2d�1 and
gci = hci � hci�1 for i � 1.

An Eulerian polyhedral complex is one whose �rst barycentric subdivision is an
Eulerian pseudomanifold. Examples are boundary complexes of polytopes and
spherical polyhedral complexes, i.e., those whose underlying space is homeo-
morphic to a sphere.

A (central) hyperplane arrangement is a collection H of n linear hyperplanes in
Rd, given by normal vectors x1; . . . ; xn (see Section 6.1.3). The arrangement is
essential if the normals xi span R

d. The associated zonotope is the Minkowski
sum of the n line segments [�xi; xi], i.e., Z = f

P
�ixi j �1 � �i � 1g (see

Section 13.1.4).

LINEAR RELATIONS

We give the linear relations on the invariants de�ned above that are known to
hold for all boundary complexes of polytopes and, more generally, for all Eulerian
polyhedral complexes.

THEOREM 15.5.1

For (d�1)-dimensional Eulerian polyhedral complexes, the following relations al-

ways hold for the 
ag h, the toric h, and the 
ag f :

(i) hS = hf0;...;d�1grS for all S � f0; . . . ; d� 1g;

(ii) hi = hd�i for 0 � i � d; and

(iii)
Pk�1

j=i+1(�1)
j�i�1fS[fjg = (1 � (�1)k�i�1)fS whenever i; k 2 S [ f�1; dg

with i � k � 2 and S \ fi+ 1; . . . ; k � 1g = ;.

It is known that the relations in Theorem 15.5.1(iii), the generalized Dehn-

Sommerville equations, completely describe the linear span of all 
ag f-vectors
of Eulerian complexes, and so they imply those in (i). Since the toric h is known to
be a linear function of the 
ag f , they imply those in (ii) as well. The linear span of

ag f-vectors has dimension ed, where ed is the dth Fibonacci number (de�ned by
the recurrence ed = ed�1 + ed�2, e0 = e1 = 1). There are ed cd-words of degree d.
Furthermore, the coe�cients �w of the cd-index, considered as linear expressions
in the fS , form a linear basis for the span of 
ag f-vectors of d-polytopes. The
a�ne span of all 
ag f-vectors is de�ned by including the relation f; = 1.

For cubical polytopes and spheres, the cubical h-vector satis�es the analogue
of the Dehn-Sommerville equations.

THEOREM 15.5.2

For cubical d-polytopes and cubical (d�1)-spheres,

hci = hcd�i for all 0 � i � d:
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These give all linear relations satis�ed by f-vectors of cubical polytopes and
spheres. The cubical h-vector satis�es, as well, the equations of Theorem 15.3.6,
linking the h of a cubical ball to the g of its boundary sphere.

LINEAR INEQUALITIES

Some linear inequalities that hold for 
ag f-vectors of all polytope boundaries are
given in this section. The list is not thought to be complete, although there are no
conjectures for what the complete set might be.

For a Cohen-Macaulay polyhedral complex, i.e., one whose �rst barycentric
subdivision is a Cohen-Macaulay simplicial complex, the 
ag h is always nonnega-
tive.

THEOREM 15.5.3

For a Cohen-Macaulay polyhedral (d�1)-complex �,

hS(�) � 0 for all S � f0; . . . ; d� 1g:

For general convex polytopes, we also have nonnegativity of the cd-index.

THEOREM 15.5.4

For a convex d-polytope P , �w � 0 for all cd-words w of degree d.

For rational convex polytopes, it is known, further, that the toric h is unimodal.

THEOREM 15.5.5

For a rational convex d-polytope, gi � 0 for i � bd=2c.

Related to this is the following nonlinear inequality holding between the g-
vectors of a polytope P and any of its faces F . We denote by P=F the link of F
in P , i.e., the polytope whose lattice of faces is (isomorphic to) the interval [F; P ]
in the face lattice of P .

THEOREM 15.5.6

For a rational polytope P and any face F , we have the polynomial inequality

g(P; t)� g(F; t)g(P=F; t) � 0;

i.e., all coe�cients of this polynomial are nonnegative.

Finally, we have the following lower bound for the number of vertices of poly-
topes with no triangular faces (this includes the class of cubical polytopes).

THEOREM 15.5.7

A d-polytope with no triangular 2-face has at least 2d vertices.

HYPERPLANE ARRANGEMENTS AND ZONOTOPES

An essential hyperplane arrangementH de�nes a decomposition ofRd into polyhed-
ral cones (as in Section 6.1.3). This decomposition �H, a regular cell complex if in-
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tersected with the unit sphere, has a 
ag f-vector dual to that of its associated zono-
tope Z, in the sense that fS (�H) = fd�S(Z), where S = fi1; . . . ; ikg � f1; . . . ; dg
and d� S = fd� ik; . . . ; d� i1g.

THEOREM 15.5.8

The 
ag f-vector of an arrangement (or zonotope) depends only on the matroid

(linear dependency structure) of the underlying point con�guration fx1; . . . ; xng.

Although a fairly special subclass of polytopes, the zonotopes nonetheless are
varied enough to carry all the linear information carried by 
ag numbers of general
polytopes.

THEOREM 15.5.9

The 
ag f-vectors of zonotopes (and thus of hyperplane arrangements) satisfy the

generalized Dehn-Sommerville equations, and no other linear relations not implied

by these.

When it comes to linear inequalities, however, the di�erence between zonotopes
and general polytopes emerges. The following result has the most direct interpre-
tation when it is stated for arrangements, where it bounds the average number of
S = fi1; . . . ; ikg-
ags in an ik-face by the number of S-
ags in an ik-cube.

THEOREM 15.5.10

For a hyperplane arrangement H in Rd and S = fi1; . . . ; ikg � f1; . . . ; dg with

k � 2,
fS (�H)

fik (�H)
<

�
ik

i1; i2 � i1; . . . ; ik � ik�1

�
2ik�i1 :

There is a straightforward reformulation of Theorem 15.5.10 for zonotopes that
is easily seen not to be valid for all polytopes.

GENERAL 3- AND 4-POLYTOPES

We describe here the situation for 
ag f-vectors of 3- and 4-polytopes. The equa-
tions in Theorem 15.5.1(iii) reduce consideration to (f0; f2) when d = 3 and to

(f0; f1; f2; f02) when d = 4.

THEOREM 15.5.11

For 3-polytopes, the following is known about the vector (f0; f2).

(i) An integer vector (f0; f2) is the f-vector of a 3-polytope if and only if f0 �

2f2 � 4 and f2 � 2f0 � 4.

(ii) An integer vector (f0; f2) is the f-vector of a cubical 3-polytope if and only if

f2 = f0 � 2, f0 � 8, and f0 6= 9.

(iii) If (f0; f2) = (f0(Z); f2(Z)) for a 3-zonotope Z, then f0 and f1 are both even

integers, f0 � 2f2 � 4, and f2 � f0 � 2.

For 4-polytopes, much less is known.
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THEOREM 15.5.12

Flag f-vectors (f0; f1; f2; f02) of 4-polytopes satisfy the following inequalities.

(i) f02 � 3f2

(ii) f02 � 3f1

(iii) f02 + f1 + 10 � 3f2 + 4f0

(iv) 6f1 � 6f0 + f02

(v) f0 � 5

(vi) f0 + f2 � f1 + 5

(vii) 2(f02 � 3f2) �
�
f0
2

�
(viii) 2(f02 � 3f1) �

�
f2�f1+f0

2

�
(ix) f02 � 4f2 + 3f1 � 2f0 �

�
f0
2

�
(x) f02 + f2 � 2f1 � 2f0 �

�
f2�f1+f0

2

�
.

It is not known, for example, whether (i){(vi) give all linear inequalities holding
for 
ag f-vectors of 4-polytopes.

COMMENTS

It is thought that the best route to an eventual characterization of f-vectors of
general polytopes lies in an understanding of their 
ag f-vectors. The latter inherit
many of the algebraic properties of f-vectors of simplicial polytopes that led to their
characterization.

The relations in Theorem 15.5.1 hold more generally for the case of enumeration
of chains in Eulerian posets; see the article by Stanley in [BMS+94]. The relations
in Theorem 15.5.1(iii) are proved in [BB85]. An expression for the toric h in terms
of the 
ag f , as well as a discussion of the convolution product (originally due to
Kalai), can be found in the article by Bayer in [BMS+94]. The article by Kalai in
the same volume contains an extensive discussion of g-vectors for both simplicial
and general polytopes. The form of the cubical Dehn-Sommerville equations given
in Theorem 15.5.2 appeared in [Adi97].

Theorem 15.5.4 holds as well for certain shellable spheres (see [Sta96, Sec-
tion III.4]). Theorem 15.5.3 can also be found in [Sta96, Theorem III.4.4] (where
hS is denoted �(S)). Theorem 15.5.5 appears in [Sta87b]. Theorem 15.5.7 is due
to Blind and Blind [BB90]. There is a notion of convolution product of 
ag f

numbers that can be used to produce new linear inequalities from given ones; see
[BL93, Section 3.10].

Note that Theorem 15.5.6, due to Braden and MacPherson [BM96], gives a
connection between the g-vector of a polytope P and that of one of its faces. This
is an example of a \monotonicity theorem" related to face numbers. For similar the-
orems relating h-vectors of subcomplexes and subdivisions of a simplicial complex
�, see Sections III.9{10 of [Sta96] and the references given there.

For the fact that the 
ag f-vector of a zonotope or arrangement (or, more
generally, of an oriented matroid) depends only on the underlying matroid see

[BLS+93, Cor. 4.6.3]. That the only linear relations satis�ed by zonotopes are
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the generalized Dehn-Sommerville equations of Theorem 15.5.1(iii) is proved in
[BER96]. Theorem 15.5.10 is due to Varchenko for the case k = 2 (see [BLS+93,
Proposition 4.6.9]) and to Liu [Liu95, Theorem 4.8.2] in the form given here.

Theorem 15.5.11(i) can be found in [Gru67, Section 10.3]; 15.5.11(ii) appears
in dual form (for 4-valent 3-polytopes) in [Bar83]; 15.5.11(iii) can be derived using
the methods of [Gru67, Section 18.2] (see also [BER96]). Theorem 15.5.12 can be
found in [Bay87].

15.6 OPEN PROBLEMS

PROBLEM 15.6.1

Characterize the f-vectors of triangulations of the (d�1)-sphere. It has been con-

jectured that the conditions of the g-theorem provide the answer.

PROBLEM 15.6.2

Characterize the f-vectors of triangulations of the d-ball.

PROBLEM 15.6.3

Characterize the f-vectors of triangulations of the d-torus. It is known that f(2-torus)
= f(n; 3n; 2n) j n � 7g, but the question is open for d � 3.

PROBLEM 15.6.4

Characterize the f-vectors of d-polytopes. The answer is known for d � 3 (Theo-
rem 15.5.11(i)), but for d � 4 there is not even a conjectured answer.

PROBLEM 15.6.5 I. B�ar�any

Does there exist a constant cd > 0 such that fi � cd�minff0; fd�1g for all d-polytopes
and all i? Will cd = 1 do?

PROBLEM 15.6.6

Characterize the f-vectors of centrally symmetric d-polytopes. The question is open

in the simplicial as well as in the general case. Even an upper bound conjecture in

the simplicial and centrally symmetric case is missing.

PROBLEM 15.6.7 Conjecture of G. Kalai

The total number of faces (counting P but not ;) of a centrally symmetric convex

d-polytope P is � 3d. (Veri�ed in the simplicial case as a consequence of Theo-

rem 15.3.8.)

PROBLEM 15.6.8

The clique complex of a graph is the collection of vertex sets of all its cliques

(complete induced subgraphs). Characterize the f-vectors of clique complexes.
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PROBLEM 15.6.9 G. Kalai

Is the f-vector of an (r�1)-dimensional clique complex the f-vector of an r-colorable

complex?

PROBLEM 15.6.10 Conjecture of Charney and Davis [Sta96, p. 100]

Let (g0; . . . ; gk) be the g-vector of a clique complex homeomorphic to the sphere

S2k�1. Then gk � gk�1 + . . . + (�1)kg0 � 0.

PROBLEM 15.6.11 Conjecture of Stanley [Sta96, p. 102]

Every coe�cient �w of the cd-index of a sphere is nonnegative.

PROBLEM 15.6.12 Adin [Adi97] (The case i = 1 is implied by Theorem 15.5.7.)

The generalized lower bound conjecture for cubical d-polytopes and d-spheres: gci � 0
for i � bd=2c. This has been shown to be the best possible set of linear inequalities

for cubical d-spheres [BBC96]. More generally, characterize f-vectors of cubical

polytopes.

PROBLEM 15.6.13

Characterize the 
ag f-vectors of polytopes and of zonotopes. In particular, deter-

mine a complete set of linear inequalities holding for 
ag f-vectors of polytopes and

of zonotopes.

PROBLEM 15.6.14

Characterize (toric) h-vectors of general polytopes.

15.7 SOURCES AND RELATED MATERIAL

FURTHER READING

Surveys of f-vector theory are given in [BL93, Bjo87, BK89, KK95, Sta85]. Books
treating f-vectors (among other things) include [And87, BMS+94, Gru67, MS71,
Sta96, Zie95].

RELATED CHAPTERS

Chapter 6: Oriented matroids
Chapter 13: Basic properties of convex polytopes
Chapter 14: Subdivisions and triangulations of polytopes
Chapter 45: Splines and geometric modeling
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