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Chapter 1

Spherical Harmonics and Linear
Representations of Lie Groups

1.1 Introduction, Spherical Harmonics on the Circle

In this chapter, we discuss spherical harmonics and take a glimpse at the linear representa-
tion of Lie groups. Spherical harmonics on the sphere, S2, have interesting applications in
computer graphics and computer vision so this material is not only important for theoretical
reasons but also for practical reasons.

Joseph Fourier (1768-1830) invented Fourier series in order to solve the heat equation
[12]. Using Fourier series, every square-integrable periodic function, f , (of period 2π) can
be expressed uniquely as the sum of a power series of the form

f(θ) = a0 +
∞∑
k=1

(ak cos kθ + bk cos kθ),

where the Fourier coefficients , ak, bk, of f are given by the formulae

a0 =
1

2π

∫ π

−π
f(θ) dθ, ak =

1

π

∫ π

−π
f(θ) cos kθ dθ, bk =

1

π

∫ π

−π
f(θ) sin kθ dθ,

for k ≥ 1. The reader will find the above formulae in Fourier’s famous book [12] in Chapter
III, Section 233, page 256, essentially using the notation that we use nowdays.

This remarkable discovery has many theoretical and practical applications in physics,
signal processing, engineering, etc. We can describe Fourier series in a more conceptual
manner if we introduce the following inner product on square-integrable functions:

〈f, g〉 =

∫ π

−π
f(θ)g(θ) dθ,

5



6 CHAPTER 1. SPHERICAL HARMONICS

which we will also denote by

〈f, g〉 =

∫
S1

f(θ)g(θ) dθ,

where S1 denotes the unit circle. After all, periodic functions of (period 2π) can be viewed
as functions on the circle. With this inner product, the space L2(S1) is a complete normed
vector space, that is, a Hilbert space. Furthermore, if we define the subspaces, Hk(S

1),
of L2(S1), so that H0(S

1) (= R) is the set of constant functions and Hk(S
1) is the two-

dimensional space spanned by the functions cos kθ and sin kθ, then it turns out that we have
a Hilbert sum decomposition

L2(S1) =
∞⊕
k=0

Hk(S
1)

into pairwise orthogonal subspaces, where
⋃∞
k=0Hk(S

1) is dense in L2(S1). The functions
cos kθ and sin kθ are also orthogonal in Hk(S

1).

Now, it turns out that the spaces, Hk(S
1), arise naturally when we look for homoge-

neous solutions of the Laplace equation, ∆f = 0, in R2 (Pierre-Simon Laplace, 1749-1827).
Roughly speaking, a homogeneous function in R2 is a function that can be expressed in polar
coordinates, (r, θ), as

f(r, θ) = rkg(θ).

Recall that the Laplacian on R2 expressed in cartesian coordinates, (x, y), is given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
,

where f : R2 → R is a function which is at least of class C2. In polar coordinates, (r, θ),
where (x, y) = (r cos θ, r sin θ) and r > 0, the Laplacian is given by

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
.

If we restrict f to the unit circle, S1, then the Laplacian on S1 is given by

∆s1f =
∂2f

∂θ2
.

It turns out that the space Hk(S
1) is the eigenspace of ∆S1 for the eigenvalue −k2.

To show this, we consider another question, namely, what are the harmonic functions on
R2, that is, the functions, f , that are solutions of the Laplace equation,

∆f = 0.

Our ancestors had the idea that the above equation can be solved by separation of variables .
This means that we write f(r, θ) = F (r)g(θ) , where F (r) and g(θ) are independent functions.
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To make things easier, let us assume that F (r) = rk, for some integer k ≥ 0, which means that
we assume that f is a homogeneous function of degree k. Recall that a function, f : R2 → R,
is homogeneous of degree k iff

f(tx, ty) = tkf(x, y) for all t > 0.

Now, using the Laplacian in polar coordinates, we get

∆f =
1

r

∂

∂r

(
r
∂(rkg(θ))

∂r

)
+

1

r2
∂2(rkg(θ))

∂θ2

=
1

r

∂

∂r

(
krkg

)
+ rk−2

∂2g

∂θ2

= rk−2k2g + rk−2
∂2g

∂θ2

= rk−2(k2g + ∆S1g).

Thus, we deduce that
∆f = 0 iff ∆S1g = −k2g,

that is, g is an eigenfunction of ∆S1 for the eigenvalue −k2. But, the above equation is
equivalent to the second-order differential equation

d2g

dθ2
+ k2g = 0,

whose general solution is given by

g(θ) = an cos kθ + bn sin kθ.

In summary, we found that the integers, 0,−1,−4,−9, . . . ,−k2, . . . are eigenvalues of ∆S1

and that the functions cos kθ and sin kθ are eigenfunctions for the eigenvalue −k2, with
k ≥ 0. So, it looks like the dimension of the eigenspace corresponding to the eigenvalue −k2
is 1 when k = 0 and 2 when k ≥ 1.

It can indeed be shown that ∆S1 has no other eigenvalues and that the dimensions claimed
for the eigenspaces are correct. Observe that if we go back to our homogeneous harmonic
functions, f(r, θ) = rkg(θ), we see that this space is spanned by the functions

uk = rk cos kθ, vk = rk sin kθ.

Now, (x+ iy)k = rk(cos kθ+ i sin kθ), and since <(x+ iy)k and =(x+ iy)k are homogeneous
polynomials, we see that uk and vk are homogeneous polynomials called harmonic polyno-
mials . For example, here is a list of a basis for the harmonic polynomials (in two variables)
of degree k = 0, 1, 2, 3, 4:

k = 0 1

k = 1 x, y

k = 2 x2 − y2, xy
k = 3 x3 − 3xy2, 3x2y − y3

k = 4 x4 − 6x2y2 + y4, x3y − xy3.
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Therefore, the eigenfunctions of the Laplacian on S1 are the restrictions of the harmonic
polynomials on R2 to S1 and we have a Hilbert sum decomposition, L2(S1) =

⊕∞
k=0Hk(S

1).
It turns out that this phenomenon generalizes to the sphere Sn ⊆ Rn+1 for all n ≥ 1.

Let us take a look at next case, n = 2.

1.2 Spherical Harmonics on the 2-Sphere

The material of section is very classical and can be found in many places, for example
Andrews, Askey and Roy [1] (Chapter 9), Sansone [25] (Chapter III), Hochstadt [17] (Chapter
6) and Lebedev [21] (Chapter ). We recommend the exposition in Lebedev [21] because we
find it particularly clear and uncluttered. We have also borrowed heavily from some lecture
notes by Hermann Gluck for a course he offered in 1997-1998.

Our goal is to find the homogeneous solutions of the Laplace equation, ∆f = 0, in R3,
and to show that they correspond to spaces, Hk(S

2), of eigenfunctions of the Laplacian, ∆S2 ,
on the 2-sphere,

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Then, the spaces Hk(S
2) will give us a Hilbert sum decomposition of the Hilbert space,

L2(S2), of square-integrable functions on S2. This is the generalization of Fourier series to
the 2-sphere and the functions in the spaces Hk(S

2) are called spherical harmonics .

The Laplacian in R3 is of course given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

If we use spherical coordinates

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ,

in R3, where 0 ≤ θ < π, 0 ≤ ϕ < 2π and r > 0 (recall that ϕ is the so-called azimuthal angle
in the xy-plane originating at the x-axis and θ is the so-called polar angle from the z-axis,
angle defined in the plane obtained by rotating the xz-plane around the z-axis by the angle
ϕ), then the Laplacian in spherical coordinates is given by

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2
∆S2f,

where

∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2
,
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is the Laplacian on the sphere, S2 (for example, see Lebedev [21], Chapter 8 or Section 1.3,
where we derive this formula). Let us look for homogeneous harmonic functions,
f(r, θ, ϕ) = rkg(θ, ϕ), on R3, that is, solutions of the Laplace equation

∆f = 0.

We get

∆f =
1

r2
∂

∂r

(
r2
∂(rkg)

∂r

)
+

1

r2
∆S2(rkg)

=
1

r2
∂

∂r

(
krk+1g

)
+ rk−2∆S2g

= rk−2k(k + 1)g + rk−2∆S2g

= rk−2(k(k + 1)g + ∆S2g).

Therefore,
∆f = 0 iff ∆S2g = −k(k + 1)g,

that is, g is an eigenfunction of ∆S2 for the eigenvalue −k(k + 1).

We can look for solutions of the above equation using the separation of variables method.
If we let g(θ, ϕ) = Θ(θ)Φ(ϕ), then we get the equation

Φ

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

Θ

sin2 θ

∂2Φ

∂ϕ2
= −k(k + 1)ΘΦ,

that is, dividing by ΘΦ and multiplying by sin2 θ,

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ k(k + 1) sin2 θ = − 1

Φ

∂2Φ

∂ϕ2
.

Since Θ and Φ are independent functions, the above is possible only if both sides are equal
to a constant, say µ. This leads to two equations

∂2Φ

∂ϕ2
+ µΦ = 0

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ k(k + 1) sin2 θ − µ = 0.

However, we want Φ to be a periodic in ϕ since we are considering functions on the sphere,
so µ be must of the form µ = m2, for some non-negative integer, m. Then, we know that
the space of solutions of the equation

∂2Φ

∂ϕ2
+m2Φ = 0
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is two-dimensional and is spanned by the two functions

Φ(ϕ) = cosmϕ, Φ(ϕ) = sinmϕ.

We still have to solve the equation

sin θ
∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ (k(k + 1) sin2 θ −m2)Θ = 0,

which is equivalent to

sin2 θΘ′′ + sin θ cos θΘ′ + (k(k + 1) sin2 θ −m2)Θ = 0.

a variant of Legendre’s equation. For this, we use the change of variable, t = cos θ, and we
consider the function, u, given by u(cos θ) = Θ(θ) (recall that 0 ≤ θ < π), so we get the
second-order differential equation

(1− t2)u′′ − 2tu′ +

(
k(k + 1)− m2

1− t2

)
u = 0

sometimes called the general Legendre equation (Adrien-Marie Legendre, 1752-1833). The
trick to solve this equation is to make the substitution

u(t) = (1− t2)
m
2 v(t),

see Lebedev [21], Chapter 7, Section 7.12. Then, we get

(1− t2)v′′ − 2(m+ 1)tv′ + (k(k + 1)−m(m+ 1))v = 0.

When m = 0, we get the Legendre equation:

(1− t2)v′′ − 2tv′ + k(k + 1)v = 0,

see Lebedev [21], Chapter 7, Section 7.3. This equation has two fundamental solution, Pk(t)
and Qk(t), called the Legendre functions of the first and second kinds . The Pk(t) are actually
polynomials and the Qk(t) are given by power series that diverge for t = 1, so we only keep
the Legendre polynomials , Pk(t). The Legendre polynomials can be defined in various ways.
One definition is in terms of Rodrigues’ formula:

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n,

see Lebedev [21], Chapter 4, Section 4.2. In this version of the Legendre polynomials they
are normalized so that Pn(1) = 1. There is also the following recurrence relation:

P0 = 1

P1 = t

(n+ 1)Pn+1 = (2n+ 1)tPn − nPn−1 n ≥ 1,
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see Lebedev [21], Chapter 4, Section 4.3. For example, the first six Legendre polynomials
are:

1

t

1

2
(3t2 − 1)

1

2
(5t3 − 3t)

1

8
(35t4 − 30t2 + 3)

1

8
(63t5 − 70t3 + 15t).

Let us now return to our differential equation

(1− t2)v′′ − 2(m+ 1)tv′ + (k(k + 1)−m(m+ 1))v = 0. (∗)

Observe that if we differentiate with respect to t, we get the equation

(1− t2)v′′′ − 2(m+ 2)tv′′ + (k(k + 1)− (m+ 1)(m+ 2))v′ = 0.

This shows that if v is a solution of our equation (∗) for given k and m, then v′ is a solution
of the same equation for k and m+ 1. Thus, if Pk(t) solves (∗) for given k and m = 0, then
P ′k(t) solves (∗) for the same k and m = 1, P ′′k (t) solves (∗) for the same k and m = 2, and
in general, dm/dtm(Pk(t)) solves (∗) for k and m. Therefore, our original equation,

(1− t2)u′′ − 2tu′ +

(
k(k + 1)− m2

1− t2

)
u = 0 (†)

has the solution

u(t) = (1− t2)
m
2
dm

dtm
(Pk(t)).

The function u(t) is traditionally denoted Pm
k (t) and called an associated Legendre function,

see Lebedev [21], Chapter 7, Section 7.12. The index k is often called the band index .
Obviously, Pm

k (t) ≡ 0 if m > k and P 0
k (t) = Pk(t), the Legendre polynomial of degree k.

An associated Legendre function is not a polynomial in general and because of the factor
(1− t2)m2 it is only defined on the closed interval [−1, 1].

� Certain authors add the factor (−1)m in front of the expression for the associated Leg-
endre function Pm

k (t), as in Lebedev [21], Chapter 7, Section 7.12, see also footnote 29
on page 193. This seems to be common practice in the quantum mechanics literature where
it is called the Condon Shortley phase factor .
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The associated Legendre functions satisfy various recurrence relations that allows us to
compute them. For example, for fixed m ≥ 0, we have (see Lebedev [21], Chapter 7, Section
7.12) the recurrence

(k −m+ 1)Pm
k+1(t) = (2k + 1)tPm

k (t)− (k +m)Pm
k−1(t), k ≥ 1

and for fixed k ≥ 2 we have

Pm+2
k (t) =

2(m+ 1)t

(t2 − 1)
1
2

Pm+1
k (t) + (k −m)(k +m+ 1)Pm

k (t), 0 ≤ m ≤ k − 2

which can also be used to compute Pm
k starting from

P 0
k (t) = Pk(t)

P 1
k (t) =

kt

(t2 − 1)
1
2

Pk(t)−
k

(t2 − 1)
1
2

Pk−1(t).

Observe that the recurrence relation for m fixed yields the following equation for k = m
(as Pm

m−1 = 0):

Pm
m+1(t) = (2m+ 1)tPm

m (t).

It it also easy to see that

Pm
m (t) =

(2m)!

2mm!
(1− t2)

m
2 .

Observe that
(2m)!

2mm!
= (2m− 1)(2m− 3) · · · 5 · 3 · 1,

an expression that is sometimes denoted (2m− 1)!! and called the double factorial .

� Beware that some papers in computer graphics adopt the definition of associated Legen-
dre functions with the scale factor (−1)m added so this factor is present in these papers,

for example, Green [14].

The equation above allows us to “lift” Pm
m to the higher band m + 1. The computer

graphics community (see Green [14]) uses the following three rules to compute Pm
k (t) where

0 ≤ m ≤ k:

(1) Compute

Pm
m (t) =

(2m)!

2mm!
(1− t2)

m
2 .

If m = k, stop. Otherwise do step 2 once:

(2) Compute Pm
m+1(t) = (2m+ 1)tPm

m (t). If k = m+ 1, stop. Otherwise, iterate step 3:
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(3) Starting from i = m+ 1, compute

(i−m+ 1)Pm
i+1(t) = (2i+ 1)tPm

i (t)− (i+m)Pm
i−1(t)

until i+ 1 = k.

If we recall that equation (†) was obtained from the equation

sin2 θΘ′′ + sin θ cos θΘ′ + (k(k + 1) sin2 θ −m2)Θ = 0

using the substitution u(cos θ) = Θ(θ), we see that

Θ(θ) = Pm
k (cos θ)

is a solution of the above equation. Putting everything together, as f(r, θ, ϕ) = rkΘ(θ)Φ(ϕ),
we proved that the homogeneous functions,

f(r, θ, ϕ) = rk cosmϕPm
k (cos θ), f(r, θ, ϕ) = rk sinmϕPm

k (cos θ),

are solutions of the Laplacian, ∆, in R3, and that the functions

cosmϕPm
k (cos θ), sinmϕPm

k (cos θ),

are eigenfunctions of the Laplacian, ∆S2 , on the sphere for the eigenvalue −k(k + 1). For k
fixed, as 0 ≤ m ≤ k, we get 2k + 1 linearly independent functions.

The notation for the above functions varies quite a bit essentially because of the choice
of normalization factors used in various fields (such as physics, seismology, geodesy, spectral
analysis, magnetics, quantum mechanics etc.). We will adopt the notation yml , where l is a
nonnegative integer but m is allowed to be negative, with −l ≤ m ≤ l. Thus, we set

yml (θ, ϕ) =

N0
l Pl(cos θ) if m = 0√
2Nm

l cosmϕPm
l (cos θ) if m > 0√

2Nm
l sin(−mϕ)P−ml (cos θ) if m < 0

for l = 0, 1, 2, . . ., and where the Nm
l are scaling factors. In physics and computer graphics,

Nm
l is chosen to be

Nm
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
.

The functions yml are called the real spherical harmonics of degree l and order m. The index
l is called the band index .

The functions, yml , have some very nice properties but to explain these we need to recall
the Hilbert space structure of the space, L2(S2), of square-integrable functions on the sphere.
Recall that we have an inner product on L2(S2) given by

〈f, g〉 =

∫
S2

fgΩ2 =

∫ 2π

0

∫ π

0

f(θ, ϕ)g(θ, ϕ) sin θdθdϕ,
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where f, g ∈ L2(S2) and where Ω2 is the volume form on S2 (induced by the metric on
R3). With this inner product, L2(S2) is a complete normed vector space using the norm,
‖f‖ =

√
〈f, f〉, associated with this inner product, that is, L2(S2) is a Hilbert space. Now,

it can be shown that the Laplacian, ∆S2 , on the sphere is a self-adjoint linear operator with
respect to this inner product. As the functions, ym1

l1
and ym2

l2
with l1 6= l2 are eigenfunctions

corresponding to distinct eigenvalues (−l1(l1 + 1) and −l2(l2 + 1)), they are orthogonal, that
is,

〈ym1
l1
, ym2
l2
〉 = 0, if l1 6= l2.

It is also not hard to show that for a fixed l,

〈ym1
l , ym2

l 〉 = δm1,m2 ,

that is, the functions yml with −l ≤ m ≤ l form an orthonormal system and we denote
by Hl(S

2) the (2l + 1)-dimensional space spanned by these functions. It turns out that
the functions yml form a basis of the eigenspace, El, of ∆S2 associated with the eigenvalue
−l(l+ 1) so that El = Hl(S

2) and that ∆S2 has no other eigenvalues. More is true. It turns
out that L2(S2) is the orthogonal Hilbert sum of the eigenspaces, Hl(S

2). This means that
the Hl(S

2) are

(1) mutually orthogonal

(2) closed, and

(3) The space L2(S2) is the Hilbert sum,
⊕∞

l=0Hl(S
2), which means that for every function,

f ∈ L2(S2), there is a unique sequence of spherical harmonics, fj ∈ Hl(S
2), so that

f =
∞∑
l=0

fl,

that is, the sequence
∑l

j=0 fj, converges to f (in the norm on L2(S2)). Observe that
each fl is a unique linear combination, fl =

∑
ml
aml l y

ml
l .

Therefore, (3) gives us a Fourier decomposition on the sphere generalizing the familiar
Fourier decomposition on the circle. Furthermore, the Fourier coefficients , amll, can be
computed using the fact that the yml form an orthonormal Hilbert basis:

aml l = 〈f, ymll 〉.

We also have the corresponding homogeneous harmonic functions, Hm
l (r, θ, ϕ), on R3

given by
Hm
l (r, θ, ϕ) = rlyml (θ, ϕ).

If one starts computing explicity the Hm
l for small values of l and m, one finds that it is

always possible to express these functions in terms of the cartesian coordinates x, y, z as
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homogeneous polynomials ! This remarkable fact holds in general: The eigenfunctions of
the Laplacian, ∆S2 , and thus, the spherical harmonics, are the restrictions of homogeneous
harmonic polynomials in R3. Here is a list of bases of the homogeneous harmonic polynomials
of degree k in three variables up to k = 4 (thanks to Herman Gluck):

k = 0 1

k = 1 x, y, z

k = 2 x2 − y2, x2 − z2, xy, xz, yz
k = 3 x3 − 3xy2, 3x2y − y3, x3 − 3xz2, 3x2z − z3,

y3 − 3yz2, 3y2z − z3, xyz
k = 4 x4 − 6x2y2 + y4, x4 − 6x2z2 + z4, y4 − 6y2z2 + z4,

x3y − xy3, x3z − xz3, y3z − yz3,
3x2yz − yz3, 3xy2z − xz3, 3xyz2 − x3y.

Subsequent sections will be devoted to a proof of the important facts stated earlier.

1.3 The Laplace-Beltrami Operator

In order to define rigorously the Laplacian on the sphere, Sn ⊆ Rn+1, and establish its
relationship with the Laplacian on Rn+1, we need the definition of the Laplacian on a Rie-
mannian manifold, (M, g), the Laplace-Beltrami operator , as defined in Section ?? (Eugenio
Beltrami, 1835-1900). In that section, the Laplace-Beltrami operator is defined as an opera-
tor on differential forms but a more direct definition can be given for the Laplacian-Beltrami
operator on functions (using the covariant derivative, see the paragraph preceding Proposi-
tion ??). For the benefit of the reader who may not have read Section ??, we present this
definition of the divergence again.

Recall that a Riemannian metric, g, on a manifold, M , is a smooth family of inner
products, g = (gp), where gp is an inner product on the tangent space, TpM , for every
p ∈ M . The inner product, gp, on TpM , establishes a canonical duality between TpM
and T ∗pM , namely, we have the isomorphism, [ : TpM → T ∗pM , defined such that for every

u ∈ TpM , the linear form, u[ ∈ T ∗pM , is given by

u[(v) = gp(u, v), v ∈ TpM.

The inverse isomorphism, ] : T ∗pM → TpM , is defined such that for every ω ∈ T ∗pM , the
vector, ω], is the unique vector in TpM so that

gp(ω
], v) = ω(v), v ∈ TpM.

The isomorphisms [ and ] induce isomorphisms between vector fields, X ∈ X(M), and one-
forms, ω ∈ A1(M). In particular, for every smooth function, f ∈ C∞(M), the vector field
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corresponding to the one-form, df , is the gradient , grad f , of f . The gradient of f is uniquely
determined by the condition

gp((grad f)p, v) = dfp(v), v ∈ TpM, p ∈M.

If ∇X is the covariant derivative associated with the Levi-Civita connection induced by the
metric, g, then the divergence of a vector field, X ∈ X(M), is the function, divX : M → R,
defined so that

(divX)(p) = tr(Y (p) 7→ (∇YX)p),

namely, for every p, (divX)(p) is the trace of the linear map, Y (p) 7→ (∇YX)p. Then, the
Laplace-Beltrami operator , for short, Laplacian, is the linear operator,
∆: C∞(M)→ C∞(M), given by

∆f = div grad f.

Observe that the definition just given differs from the definition given in Section ?? by
a negative sign. We adopted this sign convention to conform with most of the literature on
spherical harmonics (where the negative sign is omitted). A consequence of this choice is
that the eigenvalues of the Laplacian are negative.

For more details on the Laplace-Beltrami operator, we refer the reader to Chapter ?? or
to Gallot, Hulin and Lafontaine [13] (Chapter 4) or O’Neill [23] (Chapter 3), Postnikov [24]
(Chapter 13), Helgason [16] (Chapter 2) or Warner [29] (Chapters 4 and 6).

All this being rather abstact, it is useful to know how grad f , divX and ∆f are expressed
in a chart. If (U,ϕ) is a chart of M , with p ∈M and if, as usual,((

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

)
denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix, (gij)p, with

(gij)p = gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

The matrix (gij)p is symmetric, positive definite and its inverse is denoted (gij)p. We also
let |g|p = det(gij)p. For simplicity of notation we often omit the subscript p. Then, it can be
shown that for every function, f ∈ C∞(M), in local coordinates given by the chart (U,ϕ),
we have

grad f =
∑
ij

gij
∂f

∂xj

∂

∂xi
,

where, as usual
∂f

∂xj
(p) =

(
∂

∂xj

)
p

f =
∂(f ◦ ϕ−1)

∂uj
(ϕ(p))
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and (u1, . . . , un) are the coordinate functions in Rn. There are formulae for divX and ∆f
involving the Christoffel symbols but the following formulae will be more convenient for our
purposes: For every vector field, X ∈ X(M), expressed in local coordinates as

X =
n∑
i=1

Xi
∂

∂xi

we have

divX =
1√
|g|

n∑
i=1

∂

∂xi

(√
|g|Xi

)
and for every function, f ∈ C∞(M), the Laplacian, ∆f , is given by

∆f =
1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
.

The above formula is proved in Proposition ??, assuming M is orientable. A different
derivation is given in Postnikov [24] (Chapter 13, Section 5).

One should check that for M = Rn with its standard coordinates, the Laplacian is given
by the familiar formula

∆f =
∂2f

∂x21
+ · · ·+ ∂2f

∂x2n
.

Remark: A different sign convention is also used in defining the divergence, namely,

divX = − 1√
|g|

n∑
i=1

∂

∂xi

(√
|g|Xi

)
.

With this convention, which is the one used in Section ??, the Laplacian also has a negative
sign. This has the advantage that the eigenvalues of the Laplacian are nonnegative.

As an application, let us derive the formula for the Laplacian in spherical coordinates,

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

We have

∂

∂r
= sin θ cosϕ

∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
= r̂

∂

∂θ
= r

(
cos θ cosϕ

∂

∂x
+ cos θ sinϕ

∂

∂y
− sin θ

∂

∂z

)
= rθ̂

∂

∂ϕ
= r

(
− sin θ sinϕ

∂

∂x
+ sin θ cosϕ

∂

∂y

)
= rϕ̂.



18 CHAPTER 1. SPHERICAL HARMONICS

Observe that r̂, θ̂ and ϕ̂ are pairwise orthogonal. Therefore, the matrix (gij) is given by

(gij) =

1 0 0
0 r2 0
0 0 r2 sin2 θ


and |g| = r4 sin2 θ. The inverse of (gij) is

(gij) =

1 0 0
0 r−2 0
0 0 r−2 sin−2 θ

 .

We will let the reader finish the computation to verify that we get

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

Since (θ, ϕ) are coordinates on the sphere S2 via

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ,

we see that in these coordinates, the metric, (g̃ij), on S2 is given by the matrix

(g̃ij) =

(
1 0
0 sin2 θ

)
,

that |g̃| = sin2 θ, and that the inverse of (g̃ij) is

(g̃ij) =

(
1 0
0 sin−2 θ

)
.

It follows immediately that

∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2
,

so we have verified that

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2
∆S2f.

Let us now generalize the above formula to the Laplacian, ∆, on Rn+1 and the Laplacian,
∆Sn , on Sn, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1}.
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Following Morimoto [22] (Chapter 2, Section 2), let us use “polar coordinates”. The map
from R+ × Sn to Rn+1 − {0} given by

(r, σ) 7→ rσ

is clearly a diffeomorphism. Thus, for any system of coordinates, (u1, . . . , un), on Sn, the
tuple (u1, . . . , un, r) is a system of coordinates on Rn+1 − {0} called polar coordinates . Let
us establish the relationship between the Laplacian, ∆, on Rn+1 − {0} in polar coordinates
and the Laplacian, ∆Sn , on Sn in local coordinates (u1, . . . , un).

Proposition 1.1 If ∆ is the Laplacian on Rn+1 − {0} in polar coordinates (u1, . . . , un, r)
and ∆Sn is the Laplacian on the sphere, Sn, in local coordinates (u1, . . . , un), then

∆f =
1

rn
∂

∂r

(
rn
∂f

∂r

)
+

1

r2
∆Snf.

Proof . Let us compute the (n+1)×(n+1) matrix, G = (gij), expressing the metric on Rn+1

is polar coordinates and the n × n matrix, G̃ = (g̃ij), expressing the metric on Sn. Recall
that if σ ∈ Sn, then σ · σ = 1 and so,

∂σ

∂ui
· σ = 0,

as
∂σ

∂ui
· σ =

1

2

∂(σ · σ)

∂ui
= 0.

If x = rσ with σ ∈ Sn, we have

∂x

∂ui
= r

∂σ

∂ui
, 1 ≤ i ≤ n,

and
∂x

∂r
= σ.

It follows that

gij =
∂x

∂ui
· ∂x
∂uj

= r2
∂σ

∂ui
· ∂σ
∂uj

= r2g̃ij

gin+1 =
∂x

∂ui
· ∂x
∂r

= r
∂σ

∂ui
· σ = 0

gn+1n+1 =
∂x

∂r
· ∂x
∂r

= σ · σ = 1.

Consequently, we get

G =

(
r2G̃ 0

0 1

)
,
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|g| = r2n|g̃| and

G−1 =

(
r−2G̃−1 0

0 1

)
.

Using the above equations and

∆f =
1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
,

we get

∆f =
1

rn
√
|g̃|

n∑
i,j=1

∂

∂xi

(
rn
√
|g̃| 1

r2
g̃ij

∂f

∂xj

)
+

1

rn
√
|g̃|

∂

∂r

(
rn
√
|g̃| ∂f

∂r

)

=
1

r2
√
|g̃|

n∑
i,j=1

∂

∂xi

(√
|g̃| g̃ij ∂f

∂xj

)
+

1

rn
∂

∂r

(
rn
∂f

∂r

)
=

1

r2
∆Snf +

1

rn
∂

∂r

(
rn
∂f

∂r

)
,

as claimed.

It is also possible to express ∆Sn in terms of ∆Sn−1 . If en+1 = (0, . . . , 0, 1) ∈ Rn+1, then
we can view Sn−1 as the intersection of Sn with the hyperplane, xn+1 = 0, that is, as the set

Sn−1 = {σ ∈ Sn | σ · en+1 = 0}.

If (u1, . . . , un−1) are local coordinates on Sn−1, then (u1, . . . , un−1, θ) are local coordinates
on Sn, by setting

σ = sin θ σ̃ + cos θ en+1,

with σ̃ ∈ Sn−1 and 0 ≤ θ < π. Using these local coordinate systems, it is a good exercise to
find the relationship between ∆Sn and ∆Sn−1 , namely

∆Snf =
1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
∆Sn−1f.

A fundamental property of the divergence is known as Green’s Formula. There are
actually two Greens’ Formulae but we will only need the version for an orientable manifold
without boundary given in Proposition ??. Recall that Green’s Formula states that if M is a
compact, orientable, Riemannian manifold without boundary, then, for every smooth vector
field, X ∈ X(M), we have ∫

M

(divX) ΩM = 0,

where ΩM is the volume form on M induced by the metric.



1.3. THE LAPLACE-BELTRAMI OPERATOR 21

If M is a compact, orientable Riemannian manifold, then for any two smooth functions,
f, h ∈ C∞(M), we define 〈f, h〉 by

〈f, h〉 =

∫
M

fhΩM .

Then, it is not hard to show that 〈−,−〉 is an inner product on C∞(M).

An important property of the Laplacian on a compact, orientable Riemannian manifold
is that it is a self-adjoint operator. This fact has already been proved in the more general
case of an inner product on differential forms in Proposition ?? but it might be instructive
to give another proof in the special case of functions using Green’s Formula.

For this, we prove the following properties: For any two functions, f, h ∈ C∞(M), and
any vector field, X ∈ C∞(M), we have:

div(fX) = fdivX +X(f) = fdivX + g(grad f,X)

grad f (h) = g(grad f, gradh) = gradh (f).

Using these identities, we obtain the following important special case of Proposition ??:

Proposition 1.2 Let M be a compact, orientable, Riemannian manifold without boundary.
The Laplacian on M is self-adjoint, that is, for any two functions, f, h ∈ C∞(M), we have

〈∆f, h〉 = 〈f,∆h〉

or equivalently ∫
M

f∆hΩM =

∫
M

h∆f ΩM .

Proof . By the two identities before Proposition 1.2,

f∆h = fdiv gradh = div(fgradh)− g(grad f, gradh)

and
h∆f = hdiv grad f = div(hgrad f)− g(gradh, grad f),

so we get
f∆h− h∆f = div(fgradh− hgrad f).

By Green’s Formula,∫
M

(f∆h− h∆f)ΩM =

∫
M

div(fgradh− hgrad f)ΩM = 0,

which proves that ∆ is self-adjoint.

The importance of Proposition 1.2 lies in the fact that as 〈−,−〉 is an inner product on
C∞(M), the eigenspaces of ∆ for distinct eigenvalues are pairwise orthogonal. We will make
heavy use of this property in the next section on harmonic polynomials.
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1.4 Harmonic Polynomials, Spherical Harmonics and

L2(Sn)

Harmonic homogeneous polynomials and their restrictions to Sn, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1},

turn out to play a crucial role in understanding the structure of the eigenspaces of the Lapla-
cian on Sn (with n ≥ 1). The results in this section appear in one form or another in Stein
and Weiss [26] (Chapter 4), Morimoto [22] (Chapter 2), Helgason [16] (Introduction, Section
3), Dieudonné [6] (Chapter 7), Axler, Bourdon and Ramey [2] (Chapter 5) and Vilenkin
[28] (Chapter IX). Some of these sources assume a fair amount of mathematical background
and consequently, uninitiated readers will probably find the exposition rather condensed,
especially Helgason. We tried hard to make our presentation more “user-friendly”.

Definition 1.1 Let Pk(n+ 1) (resp. PC
k (n+ 1)) denote the space of homogeneous polyno-

mials of degree k in n+ 1 variables with real coefficients (resp. complex coefficients) and let
Pk(Sn) (resp. PC

k (Sn)) denote the restrictions of homogeneous polynomials in Pk(n+ 1) to
Sn (resp. the restrictions of homogeneous polynomials in PC

k (n + 1) to Sn). Let Hk(n + 1)
(resp. HC

k (n+ 1)) denote the space of (real) harmonic polynomials (resp. complex harmonic
polynomials), with

Hk(n+ 1) = {P ∈ Pk(n+ 1) | ∆P = 0}

and
HC
k (n+ 1) = {P ∈ PC

k (n+ 1) | ∆P = 0}.

Harmonic polynomials are sometimes called solid harmonics . Finally, Let Hk(S
n) (resp.

HC
k (Sn)) denote the space of (real) spherical harmonics (resp. complex spherical harmonics)

be the set of restrictions of harmonic polynomials in Hk(n + 1) to Sn (resp. restrictions of
harmonic polynomials in HC

k (n+ 1) to Sn).

A function, f : Rn → R (resp. f : Rn → C), is homogeneous of degree k iff

f(tx) = tkf(x), for all x ∈ Rn and t > 0.

The restriction map, ρ : Hk(n + 1) → Hk(S
n), is a surjective linear map. In fact, it is a

bijection. Indeed, if P ∈ Hk(n+ 1), observe that

P (x) = ‖x‖k P
(

x

‖x‖

)
, with

x

‖x‖
∈ Sn,

for all x 6= 0. Consequently, if P � Sn = Q � Sn, that is, P (σ) = Q(σ) for all σ ∈ Sn, then

P (x) = ‖x‖k P
(

x

‖x‖

)
= ‖x‖kQ

(
x

‖x‖

)
= Q(x)
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for all x 6= 0, which implies P = Q (as P and Q are polynomials). Therefore, we have a
linear isomorphism between Hk(n+ 1) and Hk(S

n) (and between HC
k (n+ 1) and HC

k (Sn)).

It will be convenient to introduce some notation to deal with homogeneous polynomials.
Given n ≥ 1 variables, x1, . . . , xn, and any n-tuple of nonnegative integers, α = (α1, . . . , αn),
let |α| = α1+ · · ·+αn, let xα = xα1

1 · · · xαnn and let α! = α1! · · ·αn!. Then, every homogeneous
polynomial, P , of degree k in the variables x1, . . . , xn can be written uniquely as

P =
∑
|α|=k

cαx
α,

with cα ∈ R or cα ∈ C. It is well known that Pk(n) is a (real) vector space of dimension

dk =

(
n+ k − 1

k

)
and PC

k (n) is a complex vector space of the same dimension, dk.

We can define an Hermitian inner product on PC
k (n) whose restriction to Pk(n) is an

inner product by viewing a homogeneous polynomial as a differential operator as follows:
For every P =

∑
|α|=k cαx

α ∈ PC
k (n), let

∂(P ) =
∑
|α|=k

cα
∂k

∂xα1
1 · · · ∂xαnn

.

Then, for any two polynomials, P,Q ∈ PC
k (n), let

〈P,Q〉 = ∂(P )Q.

A simple computation shows that〈∑
|α|=k

aαx
α,
∑
|α|=k

bαx
α

〉
=
∑
|α|=k

α! aαbα.

Therefore, 〈P,Q〉 is indeed an inner product. Also observe that

∂(x21 + · · ·+ x2n) =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
= ∆.

Another useful property of our inner product is this:

〈P,QR〉 = 〈∂(Q)P,R〉.
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Indeed.

〈P,QR〉 = 〈QR,P 〉
= ∂(QR)P

= ∂(Q)(∂(R)P )

= ∂(R)(∂(Q)P )

= 〈R, ∂(Q)P 〉
= 〈∂(Q)P,R〉.

In particular,

〈(x21 + · · ·+ x2n)P,Q〉 = 〈P, ∂(x21 + · · ·+ x2n)Q〉 = 〈P,∆Q〉.

Let us write ‖x‖2 for x21 + · · ·+ x2n. Using our inner product, we can prove the following
important theorem:

Theorem 1.3 The map, ∆: Pk(n) → Pk−2(n), is surjective for all n, k ≥ 2 (and simi-
larly for ∆: PC

k (n) → PC
k−2(n)). Furthermore, we have the following orthogonal direct sum

decompositions:

Pk(n) = Hk(n)⊕ ‖x‖2Hk−2(n)⊕ · · · ⊕ ‖x‖2jHk−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]H[k/2](n)

and

PC
k (n) = HC

k (n)⊕ ‖x‖2HC
k−2(n)⊕ · · · ⊕ ‖x‖2jHC

k−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]HC
[k/2](n),

with the understanding that only the first term occurs on the right-hand side when k < 2.

Proof . If the map ∆: PC
k (n) → PC

k−2(n) is not surjective, then some nonzero polynomial,
Q ∈ PC

k−2(n), is orthogonal to the image of ∆. In particular, Q must be orthogonal to ∆P

with P = ‖x‖2Q ∈ PC
k (n). So, using a fact established earlier,

0 = 〈Q,∆P 〉 = 〈‖x‖2Q,P 〉 = 〈P, P 〉,

which implies that P = ‖x‖2Q = 0 and thus, Q = 0, a contradiction. The same proof is
valid in the real case.

We claim that we have an orthogonal direct sum decomposition,

PC
k (n) = HC

k (n)⊕ ‖x‖2PC
k−2(n),

and similarly in the real case, with the understanding that the second term is missing if
k < 2. If k = 0, 1, then PC

k (n) = HC
k (n) so this case is trivial. Assume k ≥ 2. Since

Ker ∆ = HC
k (n) and ∆ is surjective, dim(PC

k (n)) = dim(HC
k (n)) + dim(PC

k−2(n)), so it is
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sufficient to prove that HC
k (n) is orthogonal to ‖x‖2PC

k−2(n). Now, if H ∈ HC
k (n) and

P = ‖x‖2Q ∈ ‖x‖2PC
k−2(n), we have

〈‖x‖2Q,H〉 = 〈Q,∆H〉 = 0,

so HC
k (n) and ‖x‖2PC

k−2(n) are indeed orthogonal. Using induction, we immediately get the
orthogonal direct sum decomposition

PC
k (n) = HC

k (n)⊕ ‖x‖2HC
k−2(n)⊕ · · · ⊕ ‖x‖2jHC

k−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]HC
[k/2](n)

and the corresponding real version.

Remark: Theorem 1.3 also holds for n = 1.

Theorem 1.3 has some important corollaries. Since every polynomial in n + 1 variables
is the sum of homogeneous polynomials, we get:

Corollary 1.4 The restriction to Sn of every polynomial (resp. complex polynomial) in
n + 1 ≥ 2 variables is a sum of restrictions to Sn of harmonic polynomials (resp. complex
harmonic polynomials).

We can also derive a formula for the dimension of Hk(n) (and HC
k (n)).

Corollary 1.5 The dimension, ak,n, of the space of harmonic polynomials, Hk(n), is given
by the formula

ak,n =

(
n+ k − 1

k

)
−
(
n+ k − 3

k − 2

)
if n, k ≥ 2, with a0,n = 1 and a1,n = n, and similarly for HC

k (n). As Hk(n+ 1) is isomorphic
to Hk(S

n) (and HC
k (n+ 1) is isomorphic to HC

k (Sn)) we have

dim(HC
k (Sn)) = dim(Hk(S

n)) = ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
.

Proof . The cases k = 0 and k = 1 are trivial since in this case Hk(n) = Pk(n). For k ≥ 2,
the result follows from the direct sum decomposition

Pk(n) = Hk(n)⊕ ‖x‖2Pk−2(n)

proved earlier. The proof is identical in the complex case.

Observe that when n = 2, we get ak,2 = 2 for k ≥ 1 and when n = 3, we get ak,3 = 2k+ 1
for all k ≥ 0, which we already knew from Section 1.2. The formula even applies for n = 1
and yields ak,1 = 0 for k ≥ 2.
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Remark: It is easy to show that

ak,n+1 =

(
n+ k − 1

n− 1

)
+

(
n+ k − 2

n− 1

)
for k ≥ 2, see Morimoto [22] (Chapter 2, Theorem 2.4) or Dieudonné [6] (Chapter 7, formula
99), where a different proof technique is used.

Let L2(Sn) be the space of (real) square-integrable functions on the sphere, Sn. We have
an inner product on L2(Sn) given by

〈f, g〉 =

∫
Sn
fgΩn,

where f, g ∈ L2(Sn) and where Ωn is the volume form on Sn (induced by the metric on
Rn+1). With this inner product, L2(Sn) is a complete normed vector space using the norm,
‖f‖ = ‖f‖2 =

√
〈f, f〉, associated with this inner product, that is, L2(Sn) is a Hilbert space.

In the case of complex-valued functions, we use the Hermitian inner product

〈f, g〉 =

∫
Sn
f gΩn

and we get the complex Hilbert space, L2
C(Sn). We also denote by C(Sn) the space of

continuous (real) functions on Sn with the L∞ norm, that is,

‖f‖∞ = sup{|f(x)|}x∈Sn

and by CC(Sn) the space of continuous complex-valued functions on Sn also with the L∞

norm. Recall that C(Sn) is dense in L2(Sn) (and CC(Sn) is dense in L2
C(Sn)). The following

proposition shows why the spherical harmonics play an important role:

Proposition 1.6 The set of all finite linear combinations of elements in
⋃∞
k=0Hk(S

n) (resp.⋃∞
k=0HC

k (Sn)) is

(i) dense in C(Sn) (resp. in CC(Sn)) with respect to the L∞-norm;

(ii) dense in L2(Sn) (resp. dense in L2
C(Sn)).

Proof . (i) As Sn is compact, by the Stone-Weierstrass approximation theorem (Lang [20],
Chapter III, Corollary 1.3), if g is continuous on Sn, then it can be approximated uniformly
by polynomials, Pj, restricted to Sn. By Corollary 1.4, the restriction of each Pj to Sn is a
linear combination of elements in

⋃∞
k=0Hk(S

n).

(ii) We use the fact that C(Sn) is dense in L2(Sn). Given f ∈ L2(Sn), for every ε > 0,
we can choose a continuous function, g, so that ‖f − g‖2 < ε/2. By (i), we can find a linear
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combination, h, of elements in
⋃∞
k=0Hk(S

n) so that ‖g − h‖∞ < ε/(2
√

vol(Sn)), where
vol(Sn) is the volume of Sn (really, area). Thus, we get

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2 < ε/2 +
√

vol(Sn) ‖g − h‖∞ < ε/2 + ε/2 = ε,

which proves (ii). The proof in the complex case is identical.

We need one more proposition before showing that the spaces Hk(S
n) constitute an

orthogonal Hilbert space decomposition of L2(Sn).

Proposition 1.7 For every harmonic polynomial, P ∈ Hk(n + 1) (resp. P ∈ HC
k (n + 1)),

the restriction, H ∈ Hk(S
n) (resp. H ∈ HC

k (Sn)), of P to Sn is an eigenfunction of ∆Sn for
the eigenvalue −k(n+ k − 1).

Proof . We have
P (rσ) = rkH(σ), r > 0, σ ∈ Sn,

and by Proposition 1.1, for any f ∈ C∞(Rn+1), we have

∆f =
1

rn
∂

∂r

(
rn
∂f

∂r

)
+

1

r2
∆Snf.

Consequently,

∆P = ∆(rkH) =
1

rn
∂

∂r

(
rn
∂(rkH)

∂r

)
+

1

r2
∆Sn(rkH)

=
1

rn
∂

∂r

(
krn+k−1H

)
+ rk−2∆SnH

=
1

rn
k(n+ k − 1)rn+k−2H + rk−2∆SnH

= rk−2(k(n+ k − 1)H + ∆SnH).

Thus,
∆P = 0 iff ∆SnH = −k(n+ k − 1)H,

as claimed.

From Proposition 1.7, we deduce that the space Hk(S
n) is a subspace of the eigenspace,

Ek, of ∆Sn , associated with the eigenvalue −k(n + k − 1) (and similarly for HC
k (Sn)). Re-

markably, Ek = Hk(S
n) but it will take more work to prove this.

What we can deduce immediately is that Hk(S
n) and Hl(S

n) are pairwise orthogonal
whenever k 6= l. This is because, by Proposition 1.2, the Laplacian is self-adjoint and thus,
any two eigenspaces, Ek and El are pairwise orthogonal whenever k 6= l and as Hk(S

n) ⊆ Ek
and Hl(S

n) ⊆ El, our claim is indeed true. Furthermore, by Proposition 1.5, each Hk(S
n) is

finite-dimensional and thus, closed. Finally, we know from Proposition 1.6 that
⋃∞
k=0Hk(S

n)
is dense in L2(Sn). But then, we can apply a standard result from Hilbert space theory (for
example, see Lang [20], Chapter V, Proposition 1.9) to deduce the following important result:



28 CHAPTER 1. SPHERICAL HARMONICS

Theorem 1.8 The family of spaces, Hk(S
n) (resp. HC

k (Sn)) yields a Hilbert space direct
sum decomposition

L2(Sn) =
∞⊕
k=0

Hk(S
n) (resp. L2

C(Sn) =
∞⊕
k=0

HC
k (Sn)),

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
(resp. f ∈ L2

C(Sn)) is the sum of a converging series

f =
∞∑
k=0

fk,

in the L2-norm, where the fk ∈ Hk(S
n) (resp. fk ∈ HC

k (Sn)) are uniquely determined
functions. Furthermore, given any orthonormal basis, (Y 1

k , . . . , Y
ak,n+1

k ), of Hk(S
n), we have

fk =

ak,n+1∑
mk=1

ck,mkY
mk
k , with ck,mk = 〈f, Y mk

k 〉.

The coefficients ck,mk are “generalized” Fourier coefficients with respect to the Hilbert
basis {Y mk

k | 1 ≤ mk ≤ ak,n+1, k ≥ 0}. We can finally prove the main theorem of this section.

Theorem 1.9

(1) The eigenspaces (resp. complex eigenspaces) of the Laplacian, ∆Sn, on Sn are the
spaces of spherical harmonics,

Ek = Hk(S
n) (resp. Ek = HC

k (Sn))

and Ek corresponds to the eigenvalue −k(n+ k − 1).

(2) We have the Hilbert space direct sum decompositions

L2(Sn) =
∞⊕
k=0

Ek (resp. L2
C(Sn) =

∞⊕
k=0

Ek).

(3) The complex polynomials of the form (c1x1 + · · ·+ cn+1xn+1)
k, with c21 + · · ·+ c2n+1 = 0,

span the space HC
k (n+ 1), for k ≥ 1.

Proof . We follow essentially the proof in Helgason [16] (Introduction, Theorem 3.1). In (1)
and (2) we only deal with the real case, the proof in the complex case being identical.

(1) We already know that the integers −k(n + k − 1) are eigenvalues of ∆Sn and that
Hk(S

n) ⊆ Ek. We will prove that ∆Sn has no other eigenvalues and no other eigenvectors
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using the Hilbert basis, {Y mk
k | 1 ≤ mk ≤ ak,n+1, k ≥ 0}, given by Theorem 1.8. Let λ be

any eigenvalue of ∆Sn and let f ∈ L2(Sn) be any eigenfunction associated with λ so that

∆f = λ f.

We have a unique series expansion

f =
∞∑
k=0

ak,n+1∑
mk=1

ck,mkY
mk
k ,

with ck,mk = 〈f, Y mk
k 〉. Now, as ∆Sn is self-adjoint and ∆Y mk

k = −k(n + k − 1)Y mk
k , the

Fourier coefficients, dk,mk , of ∆f are given by

dk,mk = 〈∆f, Y mk
k 〉 = 〈f,∆Y mk

k 〉 = −k(n+ k − 1)〈f, Y mk
k 〉 = −k(n+ k − 1)ck,mk .

On the other hand, as ∆f = λ f , the Fourier coefficients of ∆f are given by

dk,mk = λck,mk .

By uniqueness of the Fourier expansion, we must have

λck,mk = −k(n+ k − 1)ck,mk for all k ≥ 0.

Since f 6= 0, there some k such that ck,mk 6= 0 and we must have

λ = −k(n+ k − 1)

for any such k. However, the function k 7→ −k(n+k−1) reaches its maximum for k = −n−1
2

and as n ≥ 1, it is strictly decreasing for k ≥ 0, which implies that k is unique and that

cj,mj = 0 for all j 6= k.

Therefore, f ∈ Hk(S
n) and the eigenvalues of ∆Sn are exactly the integers −k(n+ k− 1) so

Ek = Hk(S
n), as claimed.

Since we just proved that Ek = Hk(S
n), (2) follows immediately from the Hilbert decom-

position given by Theorem 1.8.

(3) If H = (c1x1 + · · ·+ cn+1xn+1)
k, with c21 + · · ·+ c2n+1 = 0, then for k ≤ 1 is is obvious

that ∆H = 0 and for k ≥ 2 we have

∆H = k(k − 1)(c21 + · · ·+ c2n+1)(c1x1 + · · ·+ cn+1xn+1)
k−2 = 0,

so H ∈ HC
k (n+ 1). A simple computation shows that for every Q ∈ PC

k (n+ 1), if
c = (c1, . . . , cn+1), then we have

∂(Q)(c1x1 + · · ·+ cn+1xn+1)
m = m(m− 1) · · · (m− k + 1)Q(c)(c1x1 + · · ·+ cn+1xn+1)

m−k,
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for all m ≥ k ≥ 1.

Assume that HC
k (n+ 1) is not spanned by the complex polynomials of the form (c1x1 +

· · ·+cn+1xn+1)
k, with c21+ · · ·+c2n+1 = 0, for k ≥ 1. Then, some Q ∈ HC

k (n+1) is orthogonal
to all polynomials of the form H = (c1x1 + · · ·+ cn+1xn+1)

k, with c21 + · · ·+ c2n+1 = 0. Recall
that

〈P, ∂(Q)H〉 = 〈QP,H〉

and apply this equation to P = Q(c), H and Q. Since

∂(Q)H = ∂(Q)(c1x1 + · · ·+ cn+1xn+1)
k = k!Q(c),

as Q is orthogonal to H, we get

k!〈Q(c), Q(c)〉 = 〈Q(c), k!Q(c)〉 = 〈Q(c), ∂(Q)H〉 = 〈QQ(c), H〉 = Q(c)〈Q,H〉 = 0,

which implies Q(c) = 0. Consequently, Q(x1, . . . , xn+1) vanishes on the complex algebraic
variety,

{(x1, . . . , xn+1) ∈ Cn+1 | x21 + · · ·+ x2n+1 = 0}.

By the Hilbert Nullstellensatz , some power, Qm, belongs to the ideal, (x21 + · · · + x2n+1),
generated by x21+· · ·+x2n+1. Now, if n ≥ 2, it is well-known that the polynomial x21+· · ·+x2n+1

is irreducible so the ideal (x21 + · · · + x2n+1) is a prime ideal and thus, Q is divisible by
x21+ · · ·+x2n+1. However, we know from the proof of Theorem 1.3 that we have an orthogonal
direct sum

PC
k (n+ 1) = HC

k (n+ 1)⊕ ‖x‖2PC
k−2(n+ 1).

Since Q ∈ HC
k (n+ 1) and Q is divisible by x21 + · · ·+ x2n+1 , we must have Q = 0. Therefore,

if n ≥ 2, we proved (3). However, when n = 1, we know from Section 1.1 that the complex
harmonic homogeneous polynomials in two variables, P (x, y), are spanned by the real and
imaginary parts, Uk, Vk of the polynomial (x + iy)k = Uk + iVk. Since (x− iy)k = Uk − iVk
we see that

Uk =
1

2

(
(x+ iy)k + (x− iy)k

)
, Vk =

1

2i

(
(x+ iy)k − (x− iy)k

)
,

and as 1 + i2 = 1 + (−i)2 = 0, the space HC
k (R2) is spanned by (x+ iy)k and (x− iy)k (for

k ≥ 1), so (3) holds for n = 1 as well.

As an illustration of part (3) of Theorem 1.9, the polynomials (x1 + i cos θx2 + i sin θx3)
k

are harmonic. Of course, the real and imaginary part of a complex harmonic polynomial
(c1x1 + · · ·+ cn+1xn+1)

k are real harmonic polynomials.

In the next section, we try to show how spherical harmonics fit into the broader framework
of linear respresentations of (Lie) groups.
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1.5 Spherical Functions and Linear Representations of

Lie Groups; A Glimpse

In this section, we indicate briefly how Theorem 1.9 (except part (3)) can be viewed as a
special case of a famous theorem known as the Peter-Weyl Theorem about unitary represen-
tations of compact Lie groups (Herman, Klauss, Hugo Weyl, 1885-1955). First, we review
the notion of a linear representation of a group. A good and easy-going introduction to
representations of Lie groups can be found in Hall [15]. We begin with finite-dimensional
representations.

Definition 1.2 Given a Lie group, G, and a vector space, V , of dimension n, a linear
representation of G of dimension (or degree n) is a group homomorphism, U : G→ GL(V ),
such that the map, g 7→ U(g)(u), is continuous for every u ∈ V and where GL(V ) denotes
the group of invertible linear maps from V to itself. The space, V , called the representation
space may be a real or a complex vector space. If V has a Hermitian (resp Euclidean) inner
product, 〈−,−〉, we say that U : G→ GL(V ) is a unitary representation iff

〈U(g)(u), U(g)(v)〉 = 〈u, v〉, for all g ∈ G and all u, v ∈ V.

Thus, a linear representation of G is a map, U : G→ GL(V ), satisfying the properties:

U(gh) = U(g)U(h)

U(g−1) = U(g)−1

U(1) = I.

For simplicity of language, we usually abbreviate linear representation as representa-
tion. The representation space, V , is also called a G-module since the representation,
U : G → GL(V ), is equivalent to the left action, · : G × V → V , with g · v = U(g)(v).
The representation such that U(g) = I for all g ∈ G is called the trivial representation.

As an example, we describe a class of representations of SL(2,C), the group of complex
matrices with determinant +1, (

a b
c d

)
, ad− bc = 1.

Recall that PC
k (2) denotes the vector space of complex homogeneous polynomials of degree

k in two variables, (z1, z2). For every matrix, A ∈ SL(2,C), with

A =

(
a b
c d

)
for every homogeneous polynomial, Q ∈ PC

k (2), we define Uk(A)(Q(z1, z2)) by

Uk(A)(Q(z1, z2)) = Q(dz1 − bz2,−cz1 + az2).
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If we think of the homogeneous polynomial, Q(z1, z2), as a function, Q
(
z1
z2

)
, of the vector(

z1
z2

)
, then

Uk(A)

(
Q

(
z1
z2

))
= QA−1

(
z1
z2

)
= Q

(
d −b
−c a

)(
z1
z2

)
.

The expression above makes it clear that

Uk(AB) = Uk(A)Uk(B)

for any two matrices, A,B ∈ SL(2,C), so Uk is indeed a representation of SL(2,C) into
PC
k (2). It can be shown that the representations, Uk, are irreducible and that every repre-

sentation of SL(2,C) is equivalent to one of the Uk’s (see Bröcker and tom Dieck [4], Chapter
2, Section 5). The representations, Uk, are also representations of SU(2). Again, they are
irreducible representations of SU(2) and they constitute all of them (up to equivalence).
The reader should consult Hall [15] for more examples of representations of Lie groups.

One might wonder why we considered SL(2,C) rather than SL(2,R). This is because it
can be shown that SL(2,R) has no nontrivial unitary (finite-dimensional) representations!
For more on representations of SL(2,R), see Dieudonné [6] (Chapter 14).

Given any basis, (e1, . . . , en), of V , each U(g) is represented by an n× n matrix,
U(g) = (Uij(g)). We may think of the scalar functions, g 7→ Uij(g), as special functions on
G. As explained in Dieudonné [6] (see also Vilenkin [28]), essentially all special functions
(Legendre polynomials, ultraspherical polynomials, Bessel functions, etc.) arise in this way
by choosing some suitable G and V . There is a natural and useful notion of equivalence of
representations:

Definition 1.3 Given any two representations, U1 : G → GL(V1) and U2 : G → GL(V2), a
G-map (or morphism of representations), ϕ : U1 → U2, is a linear map, ϕ : V1 → V2, so that
the following diagram commutes for every g ∈ G:

V1
U1(g) //

ϕ

��

V1

ϕ

��
V2

U2(g) // V2.

The space of all G-maps between two representations as above is denoted HomG(U1, U2).
Two representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff ϕ : V1 → V2
is an invertible linear map (which implies that dimV1 = dimV2). In terms of matrices, the
representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff there is some
invertible n× n matrix, P , so that

U2(g) = PU1(g)P−1, g ∈ G.
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If W ⊆ V is a subspace of V , then in some cases, a representation U : G→ GL(V ) yields
a representation U : G → GL(W ). This is interesting because under certain conditions on
G (e.g., G compact) every representation may be decomposed into a “sum” of so-called
irreducible representations and thus, the study of all representations of G boils down to the
study of irreducible representations of G (for instance, see Knapp [19] (Chapter 4, Corollary
4.7) or Bröcker and tom Dieck [4] (Chapter 2, Proposition 1.9).

Definition 1.4 Let U : G→ GL(V ) be a representation of G. If W ⊆ V is a subspace of V ,
then we say that W is invariant (or stable) under U iff U(g)(w) ∈ W , for all g ∈ G and all
w ∈ W . If W is invariant under U , then we have a homomorphism, U : G→ GL(W ), called
a subrepresentation of G. A representation, U : G → GL(V ), with V 6= (0) is irreducible
iff it only has the two subrepresentations, U : G → GL(W ), corresponding to W = (0) or
W = V .

An easy but crucial lemma about irreducible representations is “Schur’s Lemma”.

Lemma 1.10 (Schur’s Lemma) Let U1 : G→ GL(V ) and U2 : G→ GL(W ) be any two real
or complex representations of a group, G. If U1 and U2 are irreducible, then the following
properties hold:

(i) Every G-map, ϕ : U1 → U2, is either the zero map or an isomorphism.

(ii) If U1 is a complex representation, then every G-map, ϕ : U1 → U1, is of the form,
ϕ = λid, for some λ ∈ C.

Proof . (i) Observe that the kernel, Ker ϕ ⊆ V , of ϕ is invariant under U1. Indeed, for every
v ∈ Ker ϕ and every g ∈ G, we have

ϕ(U1(g)(v)) = U2(g)(ϕ(v)) = U2(g)(0) = 0,

so U1(g)(v) ∈ Ker ϕ. Thus, U1 : G → GL(Ker ϕ) is a subrepresentation of U1 and as U1 is
irreducible, either Ker ϕ = (0) or Ker ϕ = V . In the second case, ϕ = 0. If Ker ϕ = (0),
then ϕ is injective. However, ϕ(V ) ⊆ W is invariant under U2 since for every v ∈ V and
every g ∈ G,

U2(g)(ϕ(v)) = ϕ(U1(g)(v)) ∈ ϕ(V ),

and as ϕ(V ) 6= (0) (as V 6= (0) since U1 is irreducible) and U2 is irreducible, we must have
ϕ(V ) = W , that is, ϕ is an isomorphism.

(ii) Since V is a complex vector space, the linear map, ϕ, has some eigenvalue, λ ∈ C.
Let Eλ ⊆ V be the eigenspace associated with λ. The subspace Eλ is invariant under U1

since for every u ∈ Eλ and every g ∈ G, we have

ϕ(U1(g)(u)) = U1(g)(ϕ(u)) = U1(g)(λu) = λU1(g)(u),



34 CHAPTER 1. SPHERICAL HARMONICS

so U1 : G→ GL(Eλ) is a subrepresentation of U1 and as U1 is irreducible and Eλ 6= (0), we
must have Eλ = V .

An interesting corollary of Schur’s Lemma is that every complex irreducible represent-
taion of a commutative group is one-dimensional.

Let us now restrict our attention to compact Lie groups. If G is a compact Lie group,
then it is known that it has a left and right-invariant volume form, ωG, so we can define the
integral of a (real or complex) continuous function, f , defined on G by∫

G

f =

∫
G

f ωG,

also denoted
∫
G
f dµG or simply

∫
G
f(t) dt, with ωG normalized so that

∫
G
ωG = 1. (See

Section ??, or Knapp [19], Chapter 8, or Warner [29], Chapters 4 and 6.) Because G is
compact, the Haar measure, µG, induced by ωG is both left and right-invariant (G is a
unimodular group) and our integral has the following invariance properties:∫

G

f(t) dt =

∫
G

f(st) dt =

∫
G

f(tu) dt =

∫
G

f(t−1) dt,

for all s, u ∈ G (see Section ??).

Since G is a compact Lie group, we can use an “averaging trick” to show that every (finite-
dimensional) representation is equivalent to a unitary representation (see Bröcker and tom
Dieck [4] (Chapter 2, Theorem 1.7) or Knapp [19] (Chapter 4, Proposition 4.6).

If we define the Hermitian inner product,

〈f, g〉 =

∫
G

f g ωG,

then, with this inner product, the space of square-integrable functions, L2
C(G), is a Hilbert

space. We can also define the convolution, f ∗ g, of two functions, f, g ∈ L2
C(G), by

(f ∗ g)(x) =

∫
G

f(xt−1)g(t)dt =

∫
G

f(t)g(t−1x)dt

In general, f ∗ g 6= g ∗ f unless G is commutative. With the convolution product, L2
C(G)

becomes an associative algebra (non-commutative in general).

This leads us to consider unitary representations of G into the infinite-dimensional vector
space, L2

C(G). The definition is the same as in Definition 1.2, except that GL(L2
C(G)) is the

group of automorphisms (unitary operators), Aut(L2
C(G)), of the Hilbert space, L2

C(G) and

〈U(g)(u), U(g)(v)〉 = 〈u, v〉

with respect to the inner product on L2
C(G). Also, in the definition of an irreducible repre-

sentation, U : G → V , we require that the only closed subrepresentations, U : G → W , of
the representation, U : G→ V , correspond to W = (0) or W = V .
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The Peter Weyl Theorem gives a decomposition of L2
C(G) as a Hilbert sum of spaces that

correspond to irreducible unitary representations of G. We present a version of the Peter
Weyl Theorem found in Dieudonné [6] (Chapters 3-8) and Dieudonné [7] (Chapter XXI,
Sections 1-4), which contains complete proofs. Other versions can be found in Bröcker and
tom Dieck [4] (Chapter 3), Knapp [19] (Chapter 4) or Duistermaat and Kolk [10] (Chapter
4). A good preparation for these fairly advanced books is Deitmar [5].

Theorem 1.11 (Peter-Weyl (1927)) Given a compact Lie group, G, there is a decomposi-
tion of L2

C(G) as a Hilbert sum,

L2
C(G) =

⊕
ρ

aρ,

of countably many two-sided ideals, aρ, where each aρ is isomorphic to a finite-dimensional
algebra of nρ × nρ complex matrices. More precisely, there is a basis of aρ consisting of

smooth pairwise orthogonal functions, m
(ρ)
ij , satisfying various properties, including

〈m(ρ)
ij ,m

(ρ)
ij 〉 = nρ,

and if we form the matrix, Mρ(g) = ( 1
nρ
m

(ρ)
ij (g)), then the map, g 7→Mρ(g) is an irreducible

unitary representation of G in the vector space Cnρ. Furthermore, every irreducible
representation of G is equivalent to some Mρ, so the set of indices, ρ, corresponds to the set
of equivalence classes of irreducible unitary representations of G. The function, uρ, given by

uρ(g) =

nρ∑
j=1

m
(ρ)
jj (g) = nρtr(Mρ(g))

is the unit of the algebra aρ and the orthogonal projection of L2
C(G) onto aρ is the map

f 7→ uρ ∗ f,

that is, convolution with uρ.

Remark: The function, χρ = 1
nρ
uρ = tr(Mρ), is the character of G associated with the

representation of G into Mρ. The functions, χρ, form an orthogonal system. Beware that
they are not homomorphisms of G into C unless G is commutative. The characters of G are
the key to the definition of the Fourier transform on a (compact) group, G.

A complete proof of Theorem 1.11 is given in Dieudonné [7], Chapter XXI, Section 2,
but see also Sections 3 and 4.

There is more to the Peter Weyl Theorem: It gives a description of all unitary represen-
tations of G into a separable Hilbert space (see Dieudonné [7], Chapter XXI, Section 4). If
V : G→ Aut(E) is such a representation, then for every ρ as above, the map

x 7→ V (uρ)(x) =

∫
G

(V (s)(x))uρ(s) ds
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is an orthogonal projection of E onto a closed subspace, Eρ. Then, E is the Hilbert sum,
E =

⊕
ρEρ, of those Eρ such that Eρ 6= (0) and each such Eρ is itself a (countable) Hilbert

sum of closed spaces invariant under V . The subrepresentations of V corresponding to these
subspaces of Eρ are all equivalent to Mρ = Mρ and hence, irreducible. This is why every
(unitary) representation of G is equivalent to some representation of the form Mρ.

An interesting special case is the case of the so-called regular representation of G in
L2
C(G) itself. The (left) regular representation, R, of G in L2

C(G) is defined by

(Rs(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2
C(G), s, t ∈ G.

It turns out that we also get the same Hilbert sum,

L2
C(G) =

⊕
ρ

aρ,

but this time, the aρ generally do not correspond to irreducible subrepresentations. However,

aρ splits into nρ left ideals, b
(ρ)
j , where b

(ρ)
j corresponds to the jth columm of Mρ and all the

subrepresentations of G in b
(ρ)
j are equivalent to Mρ and thus, are irreducible (see Dieudonné

[6], Chapter 3).

Finally, assume that besides the compact Lie group, G, we also have a closed subgroup, K,
of G. Then, we know that M = G/K is a manifold called a homogeneous space and G acts on
M on the left. For example, if G = SO(n+1) and K = SO(n), then Sn = SO(n+1)/SO(n)
(for instance, see Warner [29], Chapter 3). The subspace of L2

C(G) consisting of the functions
f ∈ L2

C(G) that are right-invariant under the action of K, that is, such that

f(su) = f(s) for all s ∈ G and all u ∈ K

form a closed subspace of L2
C(G) denoted L2

C(G/K). For example, if G = SO(n + 1) and
K = SO(n), then L2

C(G/K) = L2
C(Sn).

It turns out that L2
C(G/K) is invariant under the regular representation, R, of G in

L2
C(G), so we get a subrepresentation (of the regular representation) of G in L2

C(G/K).
Again, the Peter-Weyl gives us a Hilbert sum decomposition of L2

C(G/K) of the form

L2
C(G/K) =

⊕
ρ

Lρ = L2
C(G/K) ∩ aρ,

for the same ρ’s as before. However, these subrepresentations of R in Lρ are not necessarily
irreducible. What happens is that there is some dρ with 0 ≤ dρ ≤ nρ so that if dρ ≥ 1,
then Lσ is the direct sum of the first dρ columns of Mρ (see Dieudonné [6], Chapter 6 and
Dieudonné [8], Chapter XXII, Sections 4-5).

We can also consider the subspace of L2
C(G) consisting of the functions, f ∈ L2

C(G), that
are left-invariant under the action of K, that is, such that

f(ts) = f(s) for all s ∈ G and all t ∈ K.



1.5. SPHERICAL FUNCTIONS AND REPRESENTATIONS OF LIE GROUPS 37

This is a closed subspace of L2
C(G) denoted L2

C(K\G). Then, we get a Hilbert sum decom-
position of L2

C(K\G) of the form

L2
C(K\G) =

⊕
ρ

L′ρ = L2
C(K\G) ∩ aρ,

and for the same dρ as before, L′σ is the direct sum of the first dρ rows of Mρ. We can also
consider

L2
C(K\G/K) = L2

C(G/K) ∩ L2
C(K\G)

= {f ∈ L2
C(G) | f(tsu) = f(s)} for all s ∈ G and all t, u ∈ K.

From our previous discussion, we see that we have a Hilbert sum decomposition

L2
C(K\G/K) =

⊕
ρ

Lρ ∩ L′ρ

and each Lρ ∩ L′ρ for which dρ ≥ 1 is a matrix algebra of dimension d2ρ. As a consequence,
the algebra L2

C(K\G/K) is commutative iff dρ ≤ 1 for all ρ.

If the algebra L2
C(K\G/K) is commutative (for the convolution product), we say that

(G,K) is a Gelfand pair (see Dieudonné [6], Chapter 8 and Dieudonné [8], Chapter XXII,
Sections 6-7). In this case, the Lρ in the Hilbert sum decomposition of L2

C(G/K) are nontriv-
ial of dimension nρ iff dρ = 1 and the subrepresentation, U, (of the regular representation)
of G into Lρ is irreducible and equivalent to Mρ. The space Lρ is generated by the functions,

m
(ρ)
1,1, . . . ,m

(ρ)
nρ,1, but the function

ωρ(s) =
1

nρ
m

(ρ)
1,1(s)

plays a special role. This function called a zonal spherical function has some interesting
properties. First, ωρ(e) = 1 (where e is the identity element of the group, G) and

ωρ(ust) = ωρ(s) for all s ∈ G and all u, t ∈ K.

In addition, ωρ is of positive type. A function, f : G→ C, is of positive type iff

n∑
j,k=1

f(s−1j sk)zjzk ≥ 0,

for every finite set, {s1, . . . , sn}, of elements of G and every finite tuple, (z1, . . . , zn) ∈ Cn.
Because the subrepresentation of G into Lρ is irreducible, the function ωρ generates Lρ under
left translation. This means the following: If we recall that for any function, f , on G,

λs(f)(t) = f(s−1t), s, t ∈ G,



38 CHAPTER 1. SPHERICAL HARMONICS

then, Lρ is generated by the functions λs(ωρ), as s varies in G. The function ωρ also satisfies
the following property:

ωρ(s) = 〈U(s)(ωρ), ωρ〉.

The set of zonal spherical functions on G/K is denoted S(G/K). It is a countable set.

The notion of Gelfand pair also applies to locally-compact unimodular groups that are
not necessary compact but we will not discuss this notion here. Curious readers may consult
Dieudonné [6] (Chapters 8 and 9) and Dieudonné [8] (Chapter XXII, Sections 6-9).

It turns out that G = SO(n + 1) and K = SO(n) form a Gelfand pair (see Dieudonné
[6], Chapters 7-8 and Dieudonné [9], Chapter XXIII, Section 38). In this particular case,
ρ = k is any nonnegative integer and Lρ = Ek, the eigenspace of the Laplacian on Sn

corresponding to the eigenvalue −k(n + k − 1). Therefore, the regular representation of
SO(n) into Ek = HC

k (Sn) is irreducible. This can be proved more directly, for example,
see Helgason [16] (Introduction, Theorem 3.1) or Bröcker and tom Dieck [4] (Chapter 2,
Proposition 5.10).

The zonal spherical harmonics, ωk, can be expressed in terms of the ultraspherical poly-
nomials (also called Gegenbauer polynomials), P

(n−1)/2
k (up to a constant factor), see Stein

and Weiss [26] (Chapter 4), Morimoto [22] (Chapter 2) and Dieudonné [6] (Chapter 7). For

n = 2, P
1
2
k is just the ordinary Legendre polynomial (up to a constant factor). We will say

more about the zonal spherical harmonics and the ultraspherical polynomials in the next
two sections.

The material in this section belongs to the overlapping areas of representation theory and
noncommutative harmonic analysis . These are deep and vast areas. Besides the references
cited earlier, for noncommutative harmonic analysis, the reader may consult Folland [11] or
Taylor [27], but they may find the pace rather rapid. Another great survey on both topics
is Kirillov [18], although it is not geared for the beginner.

1.6 Reproducing Kernel, Zonal Spherical Functions

and Gegenbauer Polynomials

We now return to Sn and its spherical harmonics. The previous section suggested that
zonal spherical functions play a special role. In this section, we describe the zonal spherical
functions on Sn and show that they essentially come from certain polynomials generalizing
the Legendre polyomials known as the Gegenbauer Polynomials . Most proof will be omitted.
We refer the reader to Stein and Weiss [26] (Chapter 4) and Morimoto [22] (Chapter 2) for
a complete exposition with proofs.

Recall that the space of spherical harmonics,HC
k (Sn), is the image of the space of homoge-

neous harmonic poynomials, PC
k (n+ 1), under the restriction map. It is a finite-dimensional
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space of dimension

ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
,

if n ≥ 1 and k ≥ 2, with a0,n+1 = 1 and a1,n+1 = n + 1. Let (Y 1
k , . . . , Y

ak,n+1

k ) be any
orthonormal basis of HC

k (Sn) and define Fk(σ, τ) by

Fk(σ, τ) =

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ), σ, τ ∈ Sn.

The following proposition is easy to prove (see Morimoto [22], Chapter 2, Lemma 1.19 and
Lemma 2.20):

Proposition 1.12 The function Fk is independent of the choice of orthonormal basis. Fur-
thermore, for every orthogonal transformation, R ∈ O(n+ 1), we have

Fk(Rσ,Rτ) = Fk(σ, τ), σ, τ ∈ Sn.

Clearly, Fk is a symmetric function. Since we can pick an orthonormal basis of real
orthogonal functions for HC

k (Sn) (pick a basis of Hk(S
n)), Proposition 1.12 shows that Fk is

a real-valued function.

The function Fk satisfies the following property which justifies its name, the reproducing
kernel for HC

k (Sn):

Proposition 1.13 For every spherical harmonic, H ∈ HC
j (Sn), we have∫

Sn
H(τ)Fk(σ, τ) dτ = δj kH(σ), σ, τ ∈ Sn,

for all j, k ≥ 0.

Proof . When j 6= k, since HC
k (Sn) and HC

j (Sn) are orthogonal and since

Fk(σ, τ) =
∑ak,n+1

i=1 Y i
k (σ)Y i

k (τ), it is clear that the integral in Proposition 1.13 vanishes.
When j = k, we have∫

Sn
H(τ)Fk(σ, τ) dτ =

∫
Sn
H(τ)

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ) dτ

=

ak,n+1∑
i=1

Y i
k (σ)

∫
Sn
H(τ)Y i

k (τ) dτ

=

ak,n+1∑
i=1

Y i
k (σ) 〈H, Y i

k 〉

= H(σ),
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since (Y 1
k , . . . , Y

ak,n+1

k ) is an orthonormal basis.

In Stein and Weiss [26] (Chapter 4), the function Fk(σ, τ) is denoted by Z
(k)
σ (τ) and it is

called the zonal harmonic of degree k with pole σ.

The value, Fk(σ, τ), of the function Fk depends only on σ · τ , as stated in Proposition
1.15 which is proved in Morimoto [22] (Chapter 2, Lemma 2.23). The following proposition
also proved in Morimoto [22] (Chapter 2, Lemma 2.21) is needed to prove Proposition 1.15:

Proposition 1.14 For all σ, τ, σ′, τ ′ ∈ Sn, with n ≥ 1, the following two conditions are
equivalent:

(i) There is some orthogonal transformation, R ∈ O(n + 1), such that R(σ) = σ′ and
R(τ) = τ ′.

(ii) σ · τ = σ′ · τ ′.

Propositions 1.13 and 1.14 immediately yield

Proposition 1.15 For all σ, τ, σ′, τ ′ ∈ Sn, if σ · τ = σ′ · τ ′, then Fk(σ, τ) = Fk(σ
′, τ ′).

Consequently, there is some function, ϕ : R→ R, such that Fk(ω, τ) = ϕ(ω · τ).

We are now ready to define zonal functions. Remarkably, the function ϕ in Proposition
1.15 comes from a real polynomial. We need the following proposition which is of independent
interest:

Proposition 1.16 If P is any (complex) polynomial in n variables such that

P (R(x)) = P (x) for all rotations, R ∈ SO(n), and all x ∈ Rn,

then P is of the form

P (x) =
m∑
j=0

cj(x
2
1 + · · ·+ x2n)j,

for some c0, . . . , cm ∈ C.

Proof . Write P as the sum of its homogeneous pieces, P =
∑k

l=0Ql, where Ql is homoge-
neous of degree l. Then, for every ε > 0 and every rotation, R, we have

k∑
l=0

εlQl(x) = P (εx) = P (R(εx)) = P (εR(x)) =
k∑
l=0

εlQl(R(x)),

which implies that
Ql(R(x)) = Ql(x), l = 0, . . . , k.
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If we let Fl(x) = ‖x‖−lQl(x), then Fl is a homogeneous function of degree 0 and Fl is invariant
under all rotations. This is only possible if Fl is a constant function, thus Fl(x) = al for
all x ∈ Rn. But then, Ql(x) = al ‖x‖l. Since Ql is a polynomial, l must be even whenever
al 6= 0. It follows that

P (x) =
m∑
j=0

cj ‖x‖2j

with cj = a2j for j = 0, . . . ,m and where m is the largest integer ≤ k/2.

Proposition 1.16 implies that if a polynomial function on the sphere, Sn, in particular,
a spherical harmonic, is invariant under all rotations, then it is a constant. If we relax this
condition to invariance under all rotations leaving some given point, τ ∈ Sn, invariant, then
we obtain zonal harmonics.

The following theorem from Morimoto [22] (Chapter 2, Theorem 2.24) gives the relation-
ship between zonal harmonics and the Gegenbauer polynomials:

Theorem 1.17 Fix any τ ∈ Sn. For every constant, c ∈ C, there is a unique homogeneous
harmonic polynomial, Zτ

k ∈ HC
k (n+ 1), satisfying the following conditions:

(1) Zτ
k (τ) = c;

(2) For every rotation, R ∈ SO(n + 1), if Rτ = τ , then Zτ
k (R(x)) = Zτ

k (x), for all
x ∈ Rn+1.

Furthermore, we have

Zτ
k (x) = c ‖x‖k Pk,n

(
x

‖x‖
· τ
)
,

for some polynomial, Pk,n(t), of degree k.

Remark: The proof given in Morimoto [22] is essentially the same as the proof of Theorem
2.12 in Stein and Weiss [26] (Chapter 4) but Morimoto makes an implicit use of Proposition
1.16 above. Also, Morimoto states Theorem 1.17 only for c = 1 but the proof goes through
for any c ∈ C, including c = 0, and we will need this extra generality in the proof of the
Funk-Hecke formula.

Proof . Let en+1 = (0, . . . , 0, 1) ∈ Rn+1 and for any τ ∈ Sn, let Rτ be some rotation such
that Rτ (en+1) = τ . Assume Z ∈ HC

k (n + 1) satisfies conditions (1) and (2) and let Z ′ be
given by Z ′(x) = Z(Rτ (x)). As Rτ (en+1) = τ , we have Z ′(en+1) = Z(τ) = c. Furthermore,
for any rotation, S, such that S(en+1) = en+1, observe that

Rτ ◦ S ◦R−1τ (τ) = Rτ ◦ S(en+1) = Rτ (en+1) = τ,

and so, as Z satisfies property (2) for the rotation Rτ ◦ S ◦R−1τ , we get

Z ′(S(x)) = Z(Rτ ◦ S(x)) = Z(Rτ ◦ S ◦R−1τ ◦Rτ (x)) = Z(Rτ (x)) = Z ′(x),
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which proves that Z ′ is a harmonic polynomial satisfying properties (1) and (2) with respect
to en+1. Therefore, we may assume that τ = en+1.

Write

Z(x) =
k∑
j=0

xk−jn+1Pj(x1, . . . , xn),

where Pj(x1, . . . , xn) is a homogeneous polynomial of degree j. Since Z is invariant under

every rotation, R, fixing en+1 and since the monomials xk−jn+1 are clearly invariant under such
a rotation, we deduce that every Pj(x1, . . . , xn) is invariant under all rotations of Rn (clearly,
there is a one-two-one correspondence between the rotations of Rn+1 fixing en+1 and the
rotations of Rn). By Proposition 1.16, we conclude that

Pj(x1, . . . , xn) = cj(x
2
1 + · · ·+ x2n)

j
2 ,

which implies that Pj = 0 is j is odd. Thus, we can write

Z(x) =

[k/2]∑
i=0

cix
k−2i
n+1 (x21 + · · ·+ x2n)i

where [k/2] is the greatest integer, m, such that 2m ≤ k. If k < 2, then Z = c0, so c0 = c
and Z is uniquely determined. If k ≥ 2, we know that Z is a harmonic polynomial so we
assert that ∆Z = 0. A simple computation shows that

∆(x21 + · · ·+ x2n)i = 2i(n+ 2i− 2)(x21 + · · ·+ x2n)i−1

and

∆xk−2in+1 (x21 + · · ·+ x2n)i = (k − 2i)(k − 2i− 1)xk−2i−2n+1 (x21 + · · ·+ x2n)i

+ xk−2in+1 ∆(x21 + · · ·+ x2n)i

= (k − 2i)(k − 2i− 1)xk−2i−2n+1 (x21 + · · ·+ x2n)i

+ 2i(n+ 2i− 2)xk−2in+1 (x21 + · · ·+ x2n)i−1,

so we get

∆Z =

[k/2]−1∑
i=0

((k − 2i)(k − 2i− 1)ci + 2(i+ 1)(n+ 2i)ci+1)x
k−2i−2
n+1 (x21 + · · ·+ x2n)i.

Then, ∆Z = 0 yields the relations

2(i+ 1)(n+ 2i)ci+1 = −(k − 2i)(k − 2i− 1)ci, i = 0, . . . , [k/2]− 1,



1.6. REPRODUCING KERNEL AND ZONAL SPHERICAL FUNCTIONS 43

which shows that Z is uniquely determined up to the constant c0. Since we are requiring
Z(en+1) = c, we get c0 = c and Z is uniquely determined. Now, on Sn, we have
x21 + · · ·+ x2n+1 = 1, so if we let t = xn+1, for c0 = 1, we get a polynomial in one variable,

Pk,n(t) =

[k/2]∑
i=0

cit
k−2i(1− t2)i.

Thus, we proved that when Z(en+1) = c, we have

Z(x) = c ‖x‖k Pk,n
(
xn+1

‖x‖

)
= c ‖x‖k Pk,n

(
x

‖x‖
· en+1

)
.

When Z(τ) = c, we write Z = Z ′ ◦ R−1τ with Z ′ = Z ◦ Rτ and where Rτ is a rotation such
that Rτ (en+1) = τ . Then, as Z ′(en+1) = c, using the formula above for Z ′, we have

Z(x) = Z ′(R−1τ (x)) = c
∥∥R−1τ (x)

∥∥k Pk,n( R−1τ (x)

‖R−1τ (x)‖
· en+1

)
= c ‖x‖k Pk,n

(
x

‖x‖
·Rτ (en+1)

)
= c ‖x‖k Pk,n

(
x

‖x‖
· τ
)
,

since Rτ is an isometry.

The function, Zτ
k , is called a zonal function and its restriction to Sn is a zonal spher-

ical function. The polynomial, Pk,n, is called the Gegenbauer polynomial of degree k and
dimension n+ 1 or ultraspherical polynomial . By definition, Pk,n(1) = 1.

The proof of Theorem 1.17 shows that for k even, say k = 2m, the polynomial P2m,n is
of the form

P2m,n =
m∑
j=0

cm−jt
2j(1− t2)m−j

and for k odd, say k = 2m+ 1, the polynomial P2m+1,n is of the form

P2m+1,n =
m∑
j=0

cm−jt
2j+1(1− t2)m−j.

Consequently, Pk,n(−t) = (−1)kPk,n(t), for all k ≥ 0. The proof also shows that the “natural

basis” for these polynomials consists of the polynomials, ti(1−t2) k−i2 , with k−i even. Indeed,
with this basis, there are simple recurrence equations for computing the coefficients of Pk,n.

Remark: Morimoto [22] calls the polynomials, Pk,n, “Legendre polynomials”. For n = 2,
they are indeed the Legendre polynomials. Stein and Weiss denotes our (and Morimoto’s)

Pk,n by P
n−1
2

k (up to a constant factor) and Dieudonné [6] (Chapter 7) by Gk,n+1.
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When n = 2, using the notation of Section 1.2, the zonal functions on S2 are the spherical
harmonics, y0l , for which m = 0, that is (up to a constant factor),

y0l (θ, ϕ) =

√
(2l + 1)

4π
Pl(cos θ),

where Pl is the Legendre polynomial of degree l. For example, for l = 2, Pl(t) = 1
2
(3t2 − 1).

If we put Z(rkσ) = rkFk(σ, τ) for a fixed τ , then by the definition of Fk(σ, τ) it is clear that
Z is a homogeneous harmonic polynomial. The value Fk(τ, τ) does not depend of τ because
by transitivity of the action of SO(n+1) on Sn, for any other σ ∈ Sn, there is some rotation,
R, so that Rτ = σ and by Proposition 1.12, we have Fk(σ, σ) = Fk(Rτ,Rτ) = Fk(τ, τ). To
compute Fk(τ, τ), since

Fk(τ, τ) =

ak,n+1∑
i=1

∥∥Y i
k (τ)

∥∥2 ,
and since (Y 1

k , . . . , Y
ak,n+1

k ) is an orthonormal basis of HC
k (Sn), observe that

ak,n+1 =

ak,n+1∑
i=1

∫
Sn

∥∥Y i
k (τ)

∥∥2 dτ (1.1)

=

∫
Sn

(
ak,n+1∑
i=1

∥∥Y i
k (τ)

∥∥2) dτ (1.2)

=

∫
Sn
Fk(τ, τ) dτ = Fk(τ, τ) vol(Sn). (1.3)

Therefore,

Fk(τ, τ) =
ak,n+1

vol(Sn)
.

� Beware that Morimoto [22] uses the normalized measure on Sn, so the factor involving
vol(Sn) does not appear.

Remark: Recall that

vol(S2d) =
2d+1πd

1 · 3 · · · (2d− 1)
if d ≥ 1 and vol(S2d+1) =

2πd+1

d!
if d ≥ 0.

Now, if Rτ = τ , then Proposition 1.12 shows that

Z(R(rkσ)) = Z(rkR(σ)) = rkFk(Rσ, τ) = rkFk(Rσ,Rτ) = rkFk(σ, τ) = Z(rkσ).

Therefore, the function Zτ
k satisfies conditions (1) and (2) of Theorem 1.17 with c =

ak,n+1

vol(Sn)

and by uniqueness, we get

Fk(σ, τ) =
ak,n+1

vol(Sn)
Pk,n(σ · τ).

Consequently, we have obtained the so-called addition formula:
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Proposition 1.18 (Addition Formula) If (Y 1
k , . . . , Y

ak,n+1

k ) is any orthonormal basis of
HC
k (Sn), then

Pk,n(σ · τ) =
vol(Sn)

ak,n+1

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ).

Again, beware that Morimoto [22] does not have the factor vol(Sn).

For n = 1, we can write σ = (cos θ, sin θ) and τ = (cosϕ, sinϕ) and it is easy to see that
the addition formula reduces to

Pk,1(cos(θ − ϕ)) = cos kθ cos kϕ+ sin kθ sin kϕ = cos k(θ − ϕ),

the standard addition formula for trigonometric functions.

Proposition 1.18 implies that Pk,n has real coefficients. Furthermore Proposition 1.13 is
reformulated as

ak,n+1

vol(Sn)

∫
Sn
Pk,n(σ · τ)H(τ) dτ = δj kH(σ), (rk)

showing that the Gengenbauer polynomials are reproducing kernels. A neat application of
this formula is a formula for obtaining the kth spherical harmonic component of a function,
f ∈ L2

C(Sn).

Proposition 1.19 For every function, f ∈ L2
CC(Sn), if f =

∑∞
k=0 fk is the unique decom-

position of f over the Hilbert sum
⊕∞

k=0HC
k (Sk), then fk is given by

fk(σ) =
ak,n+1

vol(Sn)

∫
Sn
f(τ)Pk,n(σ · τ) dτ,

for all σ ∈ Sn.

Proof . If we recall that HC
k (Sk) and HC

j (Sk) are orthogonal for all j 6= k, using the formula
(rk), we have

ak,n+1

vol(Sn)

∫
Sn
f(τ)Pk,n(σ · τ) dτ =

ak,n+1

vol(Sn)

∫
Sn

∞∑
j=0

fj(τ)Pk,n(σ · τ) dτ

=
ak,n+1

vol(Sn)

∞∑
j=0

∫
Sn
fj(τ)Pk,n(σ · τ) dτ

=
ak,n+1

vol(Sn)

∫
Sn
fk(τ)Pk,n(σ · τ) dτ

= fk(σ),

as claimed.

We know from the previous section that the kth zonal function generates HC
k (Sn). Here

is an explicit way to prove this fact.
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Proposition 1.20 If H1, . . . , Hm ∈ HC
k (Sn) are linearly independent, then there are m

points, σ1, . . . , σm, on Sn, so that the m×m matrix, (Hj(σi)), is invertible.

Proof . We proceed by induction on m. The case m = 1 is trivial. For the induction step, we
may assume that we found m points, σ1, . . . , σm, on Sn, so that the m×m matrix, (Hj(σi)),
is invertible. Consider the function

σ 7→

∣∣∣∣∣∣∣∣∣
H1(σ) . . . Hm(σ) Hm+1(σ)
H1(σ1) . . . Hm(σ1) Hm+1(σ1)

...
. . .

...
...

H1(σm) . . . Hm(σm) Hm+1(σm).

∣∣∣∣∣∣∣∣∣
Since H1, . . . , Hm+1 are linearly independent, the above function does not vanish for all σ
since otherwise, by expanding this determinant with respect to the first row, we get a linear
dependence among the Hj’s where the coefficient of Hm+1 is nonzero. Therefore, we can find
σm+1 so that the (m+ 1)× (m+ 1) matrix, (Hj(σi)), is invertible.

We say that ak,n+1 points, σ1, . . . , σak,n+1
on Sn form a fundamental system iff the

ak,n+1 × ak,n+1 matrix, (Pn,k(σi · σj)), is invertible.

Theorem 1.21 The following properties hold:

(i) There is a fundamental system, σ1, . . . , σak,n+1
, for every k ≥ 1.

(ii) Every spherical harmonic, H ∈ HC
k (Sn), can be written as

H(σ) =

ak,n+1∑
j=1

cj Pk,n(σj · σ),

for some unique cj ∈ C.

Proof . (i) By the addition formula,

Pk,n(σi · σj) =
vol(Sn)

ak,n+1

ak,n+1∑
l=1

Y l
k(σi)Y l

k(σj)

for any orthonormal basis, (Y 1
k , . . . , Y

ak,n+1

k ). It follows that the matrix (Pk,n(σi · σj)) can be
written as

(Pk,n(σi · σj)) =
vol(Sn)

ak,n+1

Y Y ∗,

where Y = (Y l
k(σi)), and by Proposition 1.20, we can find σ1, . . . , σak,n+1

∈ Sn so that Y and
thus also Y ∗ are invertible and so, (Pn,k(σi · σj)) is invertible.
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(ii) Again, by the addition formula,

Pk,n(σ · σj) =
vol(Sn)

ak,n+1

ak,n+1∑
i=1

Y i
k (σ)Y i

k (σj).

However, as (Y 1
k , . . . , Y

ak,n+1

k ) is an orthonormal basis, (i) proved that the matrix Y ∗ is
invertible so the Y i

k (σ) can be expressed uniquely in terms of the Pk,n(σ · σj), as claimed.

A neat geometric characterization of the zonal spherical functions is given in Stein and
Weiss [26]. For this, we need to define the notion of a parallel on Sn. A parallel of Sn

orthogonal to a point τ ∈ Sn is the intersection of Sn with any (affine) hyperplane orthogonal
to the line through the center of Sn and τ . Clearly, any rotation, R, leaving τ fixed leaves
every parallel orthogonal to τ globally invariant and for any two points, σ1 and σ2, on such
a parallel there is a rotation leaving τ fixed that maps σ1 to σ2. Consequently, the zonal
function, Zτ

k , defined by τ is constant on the parallels orthogonal to τ . In fact, this property
characterizes zonal harmonics, up to a constant.

The theorem below is proved in Stein and Weiss [26] (Chapter 4, Theorem 2.12). The
proof uses Proposition 1.16 and it is very similar to the proof of Theorem 1.17 so, to save
space, it is omitted.

Theorem 1.22 Fix any point, τ ∈ Sn. A spherical harmonic, Y ∈ HC
k (Sn), is constant on

parallels orthogonal to τ iff Y = cZτ
k , for some constant, c ∈ C.

In the next section, we show how the Gegenbauer polynomials can actually be computed.

1.7 More on the Gegenbauer Polynomials

The Gegenbauer polynomials are characterized by a formula generalizing the Rodrigues
formula defining the Legendre polynomials (see Section 1.2). The expression(

k +
n− 2

2

)(
k − 1 +

n− 2

2

)
· · ·
(

1 +
n− 2

2

)
can be expressed in terms of the Γ function as

Γ
(
k + n

2

)
Γ
(
n
2

) .

Recall that the Γ function is a generalization of factorial that satisfies the equation

Γ(z + 1) = zΓ(z).
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For z = x+ iy with x > 0, Γ(z) is given by

Γ(z) =

∫ ∞
0

tz−1e−t dt,

where the integral converges absolutely. If n is an integer n ≥ 0, then Γ(n+ 1) = n!.

It is proved in Morimoto [22] (Chapter 2, Theorem 2.35) that

Proposition 1.23 The Gegenbauer polynomial, Pk,n, is given by Rodrigues’ formula:

Pk,n(t) =
(−1)k

2k
Γ
(
n
2

)
Γ
(
k + n

2

) 1

(1− t2)n−2
2

dk

dtk
(1− t2)k+

n−2
2 ,

with n ≥ 2.

The Gegenbauer polynomials satisfy the following orthogonality properties with respect
to the kernel (1− t2)n−2

2 (see Morimoto [22] (Chapter 2, Theorem 2.34):

Proposition 1.24 The Gegenbauer polynomial, Pk,n, have the following properties:∫ −1
−1

(Pk,n(t))2(1− t2)
n−2
2 dt =

vol(Sn)

ak,n+1vol(Sn−1)∫ −1
−1

Pk,n(t)Pl,n(t)(1− t2)
n−2
2 dt = 0, k 6= l.

The Gegenbauer polynomials satisfy a second-order differential equation generalizing the
Legendre equation from Section 1.2.

Proposition 1.25 The Gegenbauer polynomial, Pk,n, are solutions of the differential equa-
tion

(1− t2)P ′′k,n(t)− ntP ′k,n(t) + k(k + n− 1)Pk,n(t) = 0.

Proof . For a fixed τ , the function H given by H(σ) = Pk,n(σ · τ) = Pk,n(cos θ), belongs to
HC
k (Sn), so

∆SnH = −k(k + n− 1)H.

Recall from Section 1.3 that

∆Snf =
1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
∆Sn−1f,

in the local coordinates where

σ = sin θ σ̃ + cos θ en+1,
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with σ̃ ∈ Sn−1 and 0 ≤ θ < π. If we make the change of variable t = cos θ, then it is easy to
see that the above formula becomes

∆Snf = (1− t2)∂
2f

∂t2
− nt∂f

∂t
+

1

1− t2
∆Sn−1

(see Morimoto [22], Chapter 2, Theorem 2.9.) But, H being zonal, it only depends on θ,
that is, on t, so ∆Sn−1H = 0 and thus,

−k(k + n− 1)Pk,n(t) = ∆SnPk,n(t) = (1− t2)∂
2Pk,n
∂t2

− nt∂Pk,n
∂t

,

which yields our equation.

Note that for n = 2, the differential equation of Proposition 1.25 is the Legendre equation
from Section 1.2.

The Gegenbauer poynomials also appear as coefficients in some simple generating func-
tions. The following proposition is proved in Morimoto [22] (Chapter 2, Theorem 2.53 and
Theorem 2.55):

Proposition 1.26 For all r and t such that −1 < r < 1 and −1 ≤ t ≤ 1, for all n ≥ 1, we
have the following generating formula:

∞∑
k=0

ak,n+1 r
kPk,n(t) =

1− r2

(1− 2rt+ r2)
n+1
2

.

Furthermore, for all r and t such that 0 ≤ r < 1 and −1 ≤ t ≤ 1, if n = 1, then

∞∑
k=1

rk

k
Pk,1(t) = −1

2
log(1− 2rt+ r2)

and if n ≥ 2, then

∞∑
k=0

n− 1

2k + n− 1
ak,n+1 r

kPk,n(t) =
1

(1− 2rt+ r2)
n−1
2

.

In Stein and Weiss [26] (Chapter 4, Section 2), the polynomials, P λ
k (t), where λ > 0 are

defined using the following generating formula:

∞∑
k=0

rkP λ
k (t) =

1

(1− 2rt+ r2)λ
.

Each polynomial, P λ
k (t), has degree k and is called an ultraspherical polynomial of degree k

associated with λ. In view of Proposition 1.26, we see that

P
n−1
2

k (t) =
n− 1

2k + n− 1
ak,n+1 Pk,n(t),

as we mentionned ealier. There is also an integral formula for the Gegenbauer polynomials
known as Laplace representation, see Morimoto [22] (Chapter 2, Theorem 2.52).
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1.8 The Funk-Hecke Formula

The Funk-Hecke Formula (also known as Hecke-Funk Formula) basically allows one to per-
form a sort of convolution of a “kernel function” with a spherical function in a convenient
way. Given a measurable function, K, on [−1, 1] such that the integral∫ 1

−1
|K(t)|(1− t2)

n−2
2 dt

makes sense, given a function f ∈ L2
C(Sn), we can view the expression

K ? f(σ) =

∫
Sn
K(σ · τ)f(τ) dτ

as a sort of convolution of K and f . Actually, the use of the term convolution is really
unfortunate because in a “true” convolution, f ∗g, either the argument of f or the argument
of g should be multiplied by the inverse of the variable of integration, which means that
the integration should really be taking place over the group SO(n+ 1). We will come back
to this point later. For the time being, let us call the expression K ? f defined above a
pseudo-convolution. Now, if f is expressed in terms of spherical harmonics as

f =
∞∑
k=0

ak,n+1∑
mk=1

ck,mkY
mk
k ,

then the Funk-Hecke Formula states that

K ? Y mk
k (σ) = αkY

mk
k (σ),

for some fixed constant, αk, and so

K ? f =
∞∑
k=0

ak,n+1∑
mk=1

αkck,mkY
mk
k .

Thus, if the constants, αk are known, then it is “cheap” to compute the pseudo-convolution
K ? f .

This method was used in a ground-breaking paper by Basri and Jacobs [3] to compute
the reflectance function, r, from the lighting function, `, as a pseudo-convolution K ?` (over
S2) with the Lambertian kernel , K, given by

K(σ · τ) = max(σ · τ, 0).

Below, we give a proof of the Funk-Hecke formula due to Morimoto [22] (Chapter 2,
Theorem 2.39) but see also Andrews, Askey and Roy [1] (Chapter 9). This formula was first
published by Funk in 1916 and then by Hecke in 1918.
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Theorem 1.27 (Funk-Hecke Formula) Given any measurable function, K, on [−1, 1] such
that the integral ∫ 1

−1
|K(t)|(1− t2)

n−2
2 dt

makes sense, for every function, H ∈ HC
k (Sn), we have∫

Sn
K(σ · ξ)H(ξ) dξ =

(
vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt

)
H(σ).

Observe that when n = 2, the term (1 − t2)n−2
2 is missing and we are simply requiring that∫ 1

−1 |K(t)| dt makes sense.

Proof . We first prove the formula in the case where H is a zonal harmonic and then use the
fact that the Pk,n’s are reproducing kernels (formula (rk)).

For all σ, τ ∈ Sn define H by

H(σ) = Pk,n(σ · τ)

and F by

F (σ, τ) =

∫
Sn
K(σ · ξ)Pk,n(ξ · τ) dξ.

Since the volume form on the sphere is invariant under orientation-preserving isometries, for
every R ∈ SO(n+ 1), we have

F (Rσ,Rτ) = F (σ, τ).

On the other hand, for σ fixed, it is not hard to see that as a function in τ , the function
F (σ,−) is a spherical harmonic, because Pk,n satisfies a differential equation that implies
that ∆S2F (σ,−) = −k(k + n− 1)F (σ,−). Now, for every rotation, R, that fixes σ,

F (σ, τ) = F (Rσ,Rτ) = F (σ,Rτ),

which means that F (σ,−) satisfies condition (2) of Theorem 1.17. By Theorem 1.17, we get

F (σ, τ) = F (σ, σ)Pk,n(σ · τ).

If we use local coordinates on Sn where

σ =
√

1− t2 σ̃ + t en+1,

with σ̃ ∈ Sn−1 and −1 ≤ t ≤ 1, it is not hard to show that the volume form on Sn is given
by

dσSn = (1− t2)
n−2
2 dtdσSn−1 .
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Using this, we have

F (σ, σ) =

∫
Sn
K(σ · ξ)Pk,n(ξ · σ) dξ = vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt,

and thus,

F (σ, τ) =

(
vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt

)
Pk,n(σ · τ),

which is the Funk-Hecke formula when H(σ) = Pk,n(σ · τ).

Let us now consider any function, H ∈ HC
k (Sn). Recall that by the reproducing kernel

property (rk), we have

ak,n+1

vol(Sn)

∫
Sn
Pk,n(ξ · τ)H(τ) dτ = H(ξ).

Then, we can compute
∫
Sn
K(σ · ξ)H(ξ) dξ using Fubini’s Theorem and the Funk-Hecke

formula in the special case where H(σ) = Pk,n(σ · τ), as follows:∫
Sn
K(σ · ξ)H(ξ) dξ

=

∫
Sn
K(σ · ξ)

(
ak,n+1

vol(Sn)

∫
Sn
Pk,n(ξ · τ)H(τ) dτ

)
dξ

=
ak,n+1

vol(Sn)

∫
Sn
H(τ)

(∫
Sn
K(σ · ξ)Pk,n(ξ · τ) dξ

)
dτ

=
ak,n+1

vol(Sn)

∫
Sn
H(τ)

((
vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt

)
Pk,n(σ · τ)

)
dτ

=

(
vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt

)(
ak,n+1

vol(Sn)

∫
Sn
Pk,n(σ · τ)H(τ) dτ

)
=

(
vol(Sn−1)

∫ 1

−1
K(t)Pk,n(t)(1− t2)

n−2
2 dt

)
H(σ),

which proves the Funk-Hecke formula in general.

The Funk-Hecke formula can be used to derive an “addition theorem” for the ultraspher-
ical polynomials (Gegenbauer polynomials). We omit this topic and we refer the interested
reader to Andrews, Askey and Roy [1] (Chapter 9, Section 9.8).

Remark: Oddly, in their computation of K?`, Basri and Jacobs [3] first expand K in terms
of spherical harmonics as

K =
∞∑
n=0

knY
0
n ,



1.9. CONVOLUTION ON G/K, FOR A GELFAND PAIR (G,K) 53

and then use the Funk-Hecke formula to compute K ? Y m
n and they get (see page 222)

K ? Y m
n = αnY

m
n , with αn =

√
4π

2n+ 1
kn,

for some constant, kn, given on page 230 of their paper (see below). However, there is no
need to expand K as the Funk-Hecke formula yields directly

K ? Y m
n (σ) =

∫
S2

K(σ · ξ)Y m
n (ξ) dξ =

(∫ 1

−1
K(t)Pn(t) dt

)
Y m
n (σ),

where Pn(t) is the standard Legendre polynomial of degree n since we are in the case of S2.
By the definition of K (K(t) = max(t, 0)) and since vol(S1) = 2π, we get

K ? Y m
n =

(
2π

∫ 1

0

tPn(t) dt

)
Y m
n ,

which is equivalent to Basri and Jacobs’ formula (14) since their αn on page 222 is given by

αn =

√
4π

2n+ 1
kn,

but from page 230,

kn =
√

(2n+ 1)π

∫ 1

0

tPn(t) dt.

What remains to be done is to compute
∫ 1

0
tPn(t) dt, which is done by using the Rodrigues

Formula and integrating by parts (see Appendix A of Basri and Jacobs [3]).

1.9 Convolution on G/K, for a Gelfand Pair (G,K)



54 CHAPTER 1. SPHERICAL HARMONICS



Bibliography

[1] George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions. Cambridge
University Press, first edition, 2000.

[2] Sheldon Axler, Paul Bourdon, and Wade Ramey. Harmonic Function Theory. GTM
No. 137. Springer Verlag, second edition, 2001.

[3] Ronen Basri and David W. Jacobs. Lambertian reflectance and linear subspaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(2):228–233, 2003.

[4] T. Bröcker and T. tom Dieck. Representation of Compact Lie Groups. GTM, Vol. 98.
Springer Verlag, first edition, 1985.

[5] Anton Deitmar. A First Course in Harmonic Analysis. UTM. Springer Verlag, first
edition, 2002.
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[12] Joseph Fourier. Théorie Analytique de la Chaleur. Edition Jacques Gabay, first edition,
1822.

55



56 BIBLIOGRAPHY

[13] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer
Verlag, second edition, 1993.

[14] Robin Green. Spherical harmonic lighting: The gritty details. In Archives of the Game
Developers’ Conference, pages 1–47, 2003.

[15] Brian Hall. Lie Groups, Lie Algebras, and Representations. An Elementary Introduction.
GTM No. 222. Springer Verlag, first edition, 2003.

[16] Sigurdur Helgason. Groups and Geometric Analysis. Integral Geometry, Invariant Dif-
ferential Operators and Spherical Functions. MSM, Vol. 83. AMS, first edition, 2000.

[17] Harry Hochstadt. The Functions of Mathematical Physics. Dover, first edition, 1986.

[18] A.A. Kirillov (Ed.). Representation Theory and Noncommutative Harmonic Analysis.
Encyclopaedia of Mathematical Sciences, Vol. 22. Springer Verlag, first edition, 1994.

[19] Anthony W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics,
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