
Chapter 17

Metrics, Connections, and Curvature
on Lie Groups

17.1 Left (resp. Right) Invariant Metrics

Since a Lie group G is a smooth manifold, we can endow
G with a Riemannian metric.

Among all the Riemannian metrics on a Lie groups, those
for which the left translations (or the right translations)
are isometries are of particular interest because they take
the group structure of G into account.

This chapter makes extensive use of results from a beau-
tiful paper of Milnor [39].
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Definition 17.1. A metric h�, �i on a Lie group G is
called left-invariant (resp. right-invariant) i↵

hu, vib = h(dLa)bu, (dLa)bviab

(resp. hu, vib = h(dRa)bu, (dRa)bviba),

for all a, b 2 G and all u, v 2 TbG.

A Riemannian metric that is both left and right-invariant
is called a bi-invariant metric.

In the sequel, the identity element of the Lie group, G,
will be denoted by e or 1.
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Proposition 17.1.There is a bijective correspondence
between left-invariant (resp. right invariant) metrics
on a Lie group G, and inner products on the Lie al-
gebra g of G.

If h�, �i be an inner product on g, and set

hu, vig = h(dLg�1)gu, (dLg�1)gvi,

for all u, v 2 TgG and all g 2 G. It is fairly easy to check
that the above induces a left-invariant metric on G.

If G has a left-invariant (resp. right-invariant) metric,
since left-invariant (resp. right-invariant) translations are
isometries and act transitively on G, the space G is called
a homogeneous Riemannian manifold .

Proposition 17.2. Every Lie group G equipped with
a left-invariant (resp. right-invariant) metric is com-
plete.
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17.2 Bi-Invariant Metrics

Recall that the adjoint representation Ad: G ! GL(g) of
the Lie group G is the map defined such that Ada : g ! g

is the linear isomorphism given by

Ada = d(AdA)e = d(Ra�1 � La)e, for every a 2 G.

Clearly,

Ada = (dRa�1)a � (dLa)e.

Here is the first of four criteria for the existence of a bi-
invariant metric on a Lie group.
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Proposition 17.3.There is a bijective correspondence
between bi-invariant metrics on a Lie group G and
Ad-invariant inner products on the Lie algebra g of
G, namely inner products h�, �i on g such that Ada

is an isometry of g for all a 2 G; more explicitly, Ad-
invariant inner inner products satisfy the condition

hAdau,Adavi = hu, vi,

for all a 2 G and all u, v 2 g.

Proposition 17.3 shows that if a Lie group G possesses
a bi-invariant metric, then every linear map Ada is an
orthogonal transformation of g.

It follows that Ad(G) is a subgroup of the orthogonal
group of g, and so its closure Ad(G) is compact.

It turns out that this condition is also su�cient!



772 CHAPTER 17. METRICS, CONNECTIONS, AND CURVATURE ON LIE GROUPS

To prove the above fact, we make use of an “averaging
trick” used in representation theory.

Recall that a representation of a Lie groupG is a (smooth)
homomorphism ⇢ : G ! GL(V ), where V is some finite-
dimensional vector space.

For any g 2 G and any u 2 V , we often write g · u for
⇢(g)(u).

We say that an inner-product h�, �i on V isG-invariant
i↵

hg · u, g · vi = hu, vi, for all g 2 G and all u, v 2 V .

If G is compact, then the “averaging trick,” also called
“Weyl’s unitarian trick,” yields the following important
result:
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Theorem 17.4. If G is a compact Lie group, then
for every representation ⇢ : G ! GL(V ), there is a
G-invariant inner product on V .

Using Theorem 17.4, we can prove the following result
giving a criterion for the existence of a G-invariant in-
ner product for any representation of a Lie group G (see
Sternberg [51], Chapter 5, Theorem 5.2).

Theorem 17.5. Let ⇢ : G ! GL(V ) be a (finite-dim.)
representation of a Lie group G. There is a G-invariant
inner product on V i↵ ⇢(G) is compact. In particu-
lar, if G is compact, then there is a G-invariant inner
product on V .
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Applying Theorem 17.5 to the adjoint representation
Ad: G ! GL(g), we get our second criterion for the
existence of a bi-invariant metric on a Lie group.

Proposition 17.6. Given any Lie group G, an inner
product h�, �i on g induces a bi-invariant metric on
G i↵ Ad(G) is compact. In particular, every compact
Lie group has a bi-invariant metric.

Proposition 17.6 can be used to prove that certain Lie
groups do not have a bi-invariant metric.

For example, Arsigny, Pennec and Ayache use Proposi-
tion 17.6 to give a short and elegant proof of the fact
that SE(n) does not have any bi-invariant metric for all
n � 2.
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Recall the adjoint representation of the Lie algebra g,

ad : g ! gl(g),

given by ad = dAd1. Here is our third criterion for the ex-
istence of a bi-invariant metric on a connected Lie group.

Proposition 17.7. If G is a connected Lie group, an
inner product h�, �i on g induces a bi-invariant met-
ric on G i↵ the linear map ad(u) : g ! g is skew-
adjoint for all u 2 g, which means that

had(u)(v), wi = �hv, ad(u)(w)i, for all u, v, w 2 g,

or equivalently that

h[x, y], zi = hx, [y, z]i, for all x, y, z 2 g.
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It will be convenient to say that an inner product on g is
bi-invariant i↵ every ad(u) is skew-adjoint.

The following variant of Proposition 17.7 will also be
needed. This is a special case of Lemma 3 in O’Neill
[44] (Chapter 11).

Proposition 17.8. If G is Lie group equipped with an
inner product h�, �i on g that induces a bi-invariant
metric on G, then ad(X) : gL ! g

L is skew-adjoint for
all left-invariant vector fields X 2 g

L, which means
that

had(X)(Y ), Zi = �hY, ad(X)(Z)i,
for all X, Y, Z 2 g

L,

or equivalently that

h[Y, X ], Zi = hY, [X, Z]i, for all X, Y, Z 2 g

L.
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If G is a connected Lie group, then the existence of a
bi-invariant metric on G places a heavy restriction on its
group structure, as shown by the following result from
Milnor’s paper [39] (Lemma 7.5):

Theorem 17.9.A connected Lie group G admits a bi-
invariant metric i↵ it is isomorphic to the cartesian
product of a compact group and a vector space (Rm,
for some m � 0).

A proof of Theorem 17.9 can be found in Milnor [39]
(Lemma 7.4 and Lemma 7.5).

The proof uses the universal covering group and it is a
bit involved. We will outline the structure of the proof,
because it is really quite beautiful.
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In a first step, it is shown that if G has a bi-invariant met-
ric, then its Lie algebra g can be written as an orthogonal
coproduct

g = g1 � · · · � gk,

where each gi is either a simple ideal or a one-dimensional
abelian ideal; that is, gi

⇠= R.
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17.3 Simple and Semisimple Lie Algebras and
Lie Groups

In this section, we introduce semisimple Lie algebras.

They play a major role in the structure theory of Lie
groups, but we only scratch the surface.

Definition 17.2. A subset h of a Lie algebra g is a Lie
subalgebra i↵ it is a subspace of g (as a vector space) and
if it is closed under the bracket operation on g.

A subalgebra h of g is abelian i↵ [x, y] = 0 for all x, y 2 h.

An ideal in g is a Lie subalgebra h such that

[h, g] 2 h, for all h 2 h and all g 2 g.
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The center Z(g) of a Lie algebra g is the set of all el-
ements u 2 g such that [u, v] = 0 for all v 2 g, or
equivalently, such that ad(u) = 0.

A Lie algebra g is simple i↵ it is non-abelian and if it has
no ideal other than (0) and g.

A Lie algebra g is semisimple i↵ it has no abelian ideal
other than (0).

A Lie group is simple (resp. semisimple) i↵ its Lie alge-
bra is simple (resp. semisimple).

Clearly, the trivial subalgebras (0) and g itself are ideals,
and the center of a Lie algebra is an abelian ideal.

It follows that the center Z(g) of a semisimple Lie algebra
must be the trivial ideal (0).
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Given two subsets a and b of a Lie algebra g, we let [a, b]
be the subspace of g consisting of all linear combinations
[a, b], with a 2 a and b 2 b.

If a and b are ideals in g, then a + b, a \ b, and [a, b],
are also ideals (for [a, b], use the Jacobi identity).

In particular, [g, g] is an ideal in g called the commutator
ideal of g.

The commutator ideal [g, g] is also denoted by D1
g (or

Dg).

If g is a simple Lie agebra, then [g, g] = g.
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The derived series (or commutator series) (Dk
g) of g

is defined as follows:

D0
g = g

Dk+1
g = [Dk

g, Dk
g], k � 0.

We have a decreasing sequence

g = D0
g ◆ D1

g ◆ D2
g ◆ · · · .

We say that g is solvable i↵ Dk
g = (0) for some k � 0.

If g is abelian, then [g, g] = 0, so g is solvable.

Observe that a nonzero solvable Lie algebra has a nonzero
abelian ideal, namely, the last nonzero Dj

g.
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As a consequence, a Lie algebra is semisimple i↵ it has
no nonzero solvable ideal.

It can be shown that every Lie algebra g has a largest
solvable ideal r, called the radical of g.

The radical of g is also denoted rad g.

Then a Lie algebra is semisimple i↵ rad g = (0).

The lower central series (Ck
g) of g is defined as follows:

C0
g = g

Ck+1
g = [g, Ck

g], k � 0.

We have a decreasing sequence

g = C0
g ◆ C1

g ◆ C2
g ◆ · · · .
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We say that g is nilpotent i↵ Ck
g = (0) for some k � 0.

By induction, it is easy to show that

Dk
g ✓ Ck

g k � 0.

Consequently, every nilpotent Lie algebra is solvable.

Note that, by definition, simple and semisimple Lie alge-
bras are non-abelian, and a simple algebra is a semisimple
algebra.

It turns out that a Lie algebra g is semisimple i↵ it can
be expressed as a direct sum of ideals gi, with each gi

a simple algebra (see Knapp [29], Chapter I, Theorem
1.54).

As a conseqence, if g is semisimple, then we also have
[g, g] = g.
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If we drop the requirement that a simple Lie algebra be
non-abelian, thereby allowing one dimensional Lie alge-
bras to be simple, we run into the trouble that a simple
Lie algebra is no longer semisimple, and the above theo-
rem fails for this stupid reason.

Thus, it seems technically advantageous to require that
simple Lie algebras be non-abelian.

Nevertheless, in certain situations, it is desirable to drop
the requirement that a simple Lie algebra be non-abelian
and this is what Milnor does in his paper because it is
more convenient for one of his proofs. This is a minor
point but it could be confusing for uninitiated readers.
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Proposition 17.10. Let g be a Lie algebra with an
inner product such that the linear map ad(u) is skew-
adjoint for every u 2 g. Then, the orthogonal comple-
ment a? of any ideal a is itself an ideal. Consequently,
g can be expressed as an orthogonal direct sum

g = g1 � · · · � gk,

where each gi is either a simple ideal or a one-dimen-
sional abelian ideal (gi

⇠= R).

We now investigate connections and curvature on Lie
groups with a left-invariant metric.
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17.4 Connections and Curvature of Left-Invariant
Metrics on Lie Groups

If G is a Lie group equipped with a left-invariant metric,
then it is possible to express the Levi-Civita connection
and the sectional curvature in terms of quantities defined
over the Lie algebra of G, at least for left-invariant vector
fields.

When the metric is bi-invariant, much nicer formulae can
be obtained.

If h�, �i is a left-invariant metric on G, then for any two
left-invariant vector fields X, Y , we can show that the
function g 7! hX, Y ig is constant.

Therefore, for any vector field Z,

Z(hX, Y i) = 0.

If we go back to the Koszul formula (Proposition 12.8)
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2hrXY, Zi = X(hY, Zi) + Y (hX, Zi) � Z(hX, Y i)
� hY, [X, Z]i � hX, [Y, Z]i � hZ, [Y, X ]i,

we deduce that for all left-invariant vector fields X, Y, Z,
we have

2hrXY, Zi = �hY, [X, Z]i � hX, [Y, Z]i � hZ, [Y, X ]i,

which can be rewritten as

2hrXY, Zi = h[X, Y ], Zi � h[Y, Z], Xi + h[Z, X ], Y i.
(†)

The above yields the formula

rXY =
1

2
([X, Y ] � ad(X)⇤Y � ad(Y )⇤X) , X, Y 2 g

L,

where ad(X)⇤ denotes the adjoint of ad(X), where adX
is defined just after Proposition 9.7.
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Following Milnor, if we pick an orthonormal basis (e1, . . .,
en) w.r.t. our inner product on g, and if we define the
constants ↵ijk by

↵ijk = h[ei, ej], eki,
we see that

(reie
L
j )(1) =

1

2

X

k

(↵ijk � ↵jki + ↵kij)ek. (⇤)

Now, for orthonormal vectors u, v, the sectional curvature
is given by

K(u, v) = hR(u, v)u, vi,

with

R(u, v) = r[u,v] � rurv + rvru.

If we plug the expressions from equation (⇤) into the def-
initions we obtain the following proposition from Milnor
[39] (Lemma 1.1):
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Proposition 17.11. Given a Lie group G equipped
with a left-invariant metric, for any orthonormal ba-
sis (e1, . . . , en) of g, and with the structure constants
↵ijk = h[ei, ej], eki, the sectional curvature K(e1, e2) is
given by

K(e1, e2) =
X

k

1

2
(↵12k(�↵12k + ↵2k1 + ↵k12)

� 1

4
(↵12k � ↵2k1 + ↵k12)(↵12k + ↵2k1 � ↵k12)

� ↵k11↵k22).

Although the above formula is not too useful in general,
in some cases of interest, a great deal of cancellation takes
place so that a more useful formula can be obtained.

An example of this situation is provided by the next
proposition (Milnor [39], Lemma 1.2).
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Proposition 17.12. Given a Lie group G equipped
with a left-invariant metric, for any u 2 g, if the
linear map ad(u) is self-adjoint, then

K(u, v) � 0 for all v 2 g,

where equality holds i↵ u is orthogonal to [v, g] =
{[v, x] | x 2 g}.

Proposition 17.13. Given a Lie group G equipped
with a left-invariant metric, for any u in the center
Z(g) of g,

K(u, v) � 0 for all v 2 g.

Recall that the Ricci curvature Ric(u, v) is the trace of
the linear map y 7! R(u, y)v.
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With respect to any orthonormal basis (e1, . . . , en) of g,
we have

Ric(u, v) =
nX

j=1

hR(u, ej)v, eji =
nX

j=1

R(u, ej, v, ej).

The Ricci curvature is a symmetric form, so it is com-
pletely determined by the quadratic form

r(u) = Ric(u, u) =
nX

j=1

R(u, ej, u, ej).

When u is a unit vector, r(u) is called theRicci curvature
in the direction u.
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If we pick an orthonormal basis such that e1 = u, then

r(e1) =
nX

i=2

K(e1, ei).

For computational purposes it may be more convenient
to introduce the Ricci transformation br, defined by

br(x) =
nX

i=1

R(ei, x)ei.

The Ricci transformation is self-adjoint, and it is also the
unique map so that

r(x) = hbr(x), xi, for all x 2 g.

The eigenvalues of br are called the principal Ricci cur-
vatures .
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Proposition 17.14. Given a Lie group G equipped
with a left-invariant metric, if the linear map ad(u) is
skew-adjoint, then r(u) � 0, where equality holds i↵ u
is orthogonal to the commutator ideal [g, g].

In particular, if u is in the center of g, then r(u) � 0.

As a corollary of Proposition 17.14, we have the following
result which is used in the proof of Theorem 17.9:

Proposition 17.15. If G is a connected Lie group
equipped with a bi-invariant metric and if the Lie al-
gebra of G is simple, then there is a constant c > 0
so that r(u) � c for all unit vector u 2 TgG and for
all g 2 G.
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By Myers’ Theorem (Theorem 14.23), the Lie group G is
compact and has a finite fundamental group.

The following interesting theorem is proved in Milnor
(Milnor [39], Theorem 2.2):

Theorem 17.16. A connected Lie group G admits a
left-invariant metric with r(u) > 0 for all unit vectors
u 2 g (all Ricci curvatures are strictly positive) i↵ G
is compact and has a finite fundamental group.

The following criterion for obtaining a direction of nega-
tive curvature is also proved in Milnor (Milnor [39], Lemma
2.3):
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Proposition 17.17. Given a Lie group G equipped
with a left-invariant metric, if u is orthogonal to the
commutator ideal [g, g], then r(u)  0, where equality
holds i↵ ad(u) is self-adjoint.

When G possesses a bi-invariant metric, much nicer for-
mulae are obtained.

First of all, since by Proposition 17.8,

h[Y, Z], Xi = hY, [Z, X ]i,

the last two terms in equation (†), namely

2hrXY, Zi = h[X, Y ], Zi � h[Y, Z], Xi + h[Z, X ], Y i,

cancel out, and we get

rXY =
1

2
[X, Y ], for all X, Y 2 g

L.
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Proposition 17.18. For any Lie group G equipped
with a bi-invariant metric, the following properties
hold:

(a) The connection rXY is given by

rXY =
1

2
[X, Y ], for all X, Y 2 g

L.

(b) The curvature tensor R(u, v) is given by

R(u, v) =
1

4
ad[u, v], for all u, v 2 g,

or equivalently,

R(u, v)w =
1

4
[[u, v], w], for all u, v, w 2 g.

(c) The sectional curvature K(u, v) is given by

K(u, v) =
1

4
h[u, v], [u, v]i,

for all pairs of orthonormal vectors u, v 2 g.
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(d) The Ricci curvature Ric(u, v) is given by

Ric(u, v) = �1

4
B(u, v), for all u, v 2 g,

where B is the Killing form, with

B(u, v) = tr(ad(u) � ad(v)), for all u, v 2 g.

Consequently, K(u, v) � 0, with equality i↵ [u, v] = 0
and r(u) � 0, with equality i↵ u belongs to the center
of g.

Remark: Proposition 17.18 shows that if a Lie group
admits a bi-invariant metric, then its Killing form is neg-
ative semi-definite.

What are the geodesics in a Lie group equipped with a
bi-invariant metric?
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The answer is simple: they are the integral curves of left-
invariant vector fields.

Proposition 17.19. For any Lie group G equipped
with a bi-invariant metric, we have:

(1) The inversion map ◆ : g 7! g�1 is an isometry.

(2) For every a 2 G, if Ia denotes the map given by

Ia(b) = ab�1a, for all a, b 2 G,

then Ia is an isometry fixing a which reverses
geodesics; that is, for every geodesic � through a,
we have

Ia(�)(t) = �(�t).

(3) The geodesics through e are the integral curves t 7!
exp(tu), where u 2 g; that is, the one-parameter
groups. Consequently, the Lie group exponential
map exp : g ! G coincides with the Riemannian
exponential map (at e) from TeG to G, where G is
viewed as a Riemannian manifold.
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Remarks:

(1) As Rg = ◆ � Lg�1 � ◆, we deduce that if G has a
left-invariant metric, then this metric is also right-
invariant i↵ ◆ is an isometry.

(2) Property (2) of Proposition 17.19 says that a Lie group
with a bi-invariant metric is a symmetric space , an
important class of Riemannian spaces invented and
studied extensively by Elie Cartan. Symmetric spaces
are briefly discussed in Section 18.4.

(3) The proof of 17.19 (3) given in O’Neill [44] (Chap-
ter 11, equivalence of (5) and (6) in Proposition 9)
appears to be missing the “hard direction,” namely,
that a geodesic is a one-parameter group.
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Many more interesting results about left-invariant metrics
on Lie groups can be found in Milnor’s paper [39].

We conclude this section by stating the following propo-
sition (Milnor [39], Lemma 7.6):

Proposition 17.20. If G is any compact, simple, Lie
group, then the bi-invariant metric is unique up to
a constant. Such a metric necessarily has constant
Ricci curvature.



802 CHAPTER 17. METRICS, CONNECTIONS, AND CURVATURE ON LIE GROUPS

17.5 The Killing Form

The Killing form showed the tip of its nose in Proposition
17.18.

It is an important concept and, in this section, we estab-
lish some of its main properties.

Definition 17.3. For any Lie algebra g over the field K
(where K = R or K = C), the Killing form B of g is
the symmetric K-bilinear form B : g ⇥ g ! C given by

B(u, v) = tr(ad(u) � ad(v)), for all u, v 2 g.

If g is the Lie algebra of a Lie group G, we also refer to
B as the Killing form of G.
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Remark: According to the experts (see Knapp [29], page
754) theKilling form as above, was not defined by Killing,
and is closer to a variant due to Elie Cartan.

On the other hand, the notion of “Cartan matrix” is due
to Wilhelm Killing!

For example, consider the group SU(2). Its Lie algebra
su(2) is the three-dimensional Lie algebra consisting of
all skew-Hermitian 2 ⇥ 2 matrices with zero trace; that
is, matrices of the form

✓
ai b + ic

�b + ic �ai

◆
, a, b, c 2 R.

By picking a suitable basis of su(2), it can be shown that

B(X, Y ) = 4tr(XY ).
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Now, if we consider the group U(2), its Lie algebra u(2)
is the four-dimensional Lie algebra consisting of all skew-
Hermitian 2 ⇥ 2 matrices; that is, matrices of the form

✓
ai b + ic

�b + ic id

◆
, a, b, c, d 2 R,

This time, it can be shown that

B(X, Y ) = 4tr(XY ) � 2tr(X)tr(Y ).

For SO(3), we know that so(3) = su(2), and we get

B(X, Y ) = tr(XY ).



17.5. THE KILLING FORM 805

Actually, it can be shown that

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY ) � 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n � 2)tr(XY ).

Recall that a homomorphism of Lie algebras ' : g ! h is
a linear map that preserves brackets; that is,

'([u, v]) = ['(u), '(v)].
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Proposition 17.21. The Killing form B of a Lie al-
gebra g has the following properties:

(1) It is a symmetric bilinear form invariant under all
automorphisms of g. In particular, if g is the Lie
algebra of a Lie group G, then B is Adg-invariant,
for all g 2 G.

(2) The linear map ad(u) is skew-adjoint w.r.t B for
all u 2 g; that is,

B(ad(u)(v), w) = �B(v, ad(u)(w)),

for all u, v, w 2 g,

or equivalently,

B([u, v], w) = B(u, [v, w]), for all u, v, w 2 g.

Remarkably, the Killing form yields a simple criterion
due to Elie Cartan for testing whether a Lie algebra is
semisimple.
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Theorem 17.22. (Cartan’s Criterion for Semisim-
plicity) A lie algebra g is semisimple i↵ its Killing
form B is non-degenerate.

As far as we know, all the known proofs of Cartan’s cri-
terion are quite involved.

A fairly easy going proof can be found in Knapp [29]
(Chapter 1, Theorem 1.45).

A more concise proof is given in Serre [50] (Chapter VI,
Theorem 2.1). As a corollary of Theorem 17.22, we get:

Proposition 17.23. If G is a semisimple Lie group,
then the center of its Lie algebra is trivial; that is,
Z(g) = (0).
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Since a Lie group with trivial Lie algebra is discrete, this
implies that the center of a simple Lie group is discrete
(because the Lie algebra of the center of a Lie group is
the center of its Lie algebra. Prove it!).

We can also characterize which Lie groups have a Killing
form which is negative definite.

Theorem 17.24. A connected Lie group is compact
and semisimple i↵ its Killing form is negative definite.

Remark: A compact semisimple Lie group equipped
with �B as a metric is an Einstein manifold, since Ric is
proportional to the metric (see Definition 14.5).
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Using Theorem 17.24, since the Killing forms for U(n),
SU(n) and S)(n) are given by

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY ) � 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n � 2)tr(XY ),

we see that SU(n) is compact and semisimple for n �
2, SO(n) is compact and semisimple for n � 3, and
SL(n,R) is noncompact and semisimple for n � 2.

However,U(n), even though it is compact, is not semisim-
ple.

Another way to determine whether a Lie algebra is semisim-
ple is to consider reductive Lie algebras.
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We give a quick exposition without proofs. Details can
be found in Knapp [29] (Chapter I, Sections, 7, 8).

Definition 17.4. A Lie algebra g is reductive i↵ for
every ideal a in g, there is some ideal b in g such that g
is the direct sum

g = a � b.

The following result is proved in Knapp [29] (Chapter I,
Corollary 1.56).

Proposition 17.25. If g is a reductive Lie algebra,
then

g = [g, g] � Z(g),

with [g, g] semisimple and Z(g) abelian.

Consequently, if g is reductive, then it is semisimple i↵
its center Z(g) is trivial.
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For Lie algebras of matrices, a simple condition implies
that a Lie algera is reductive.

The following result is proved in Knapp [29] (Chapter I,
Proposition 1.59).

Proposition 17.26. If g is a real Lie algebra of ma-
trices over R or C, and if g is closed under conjugate
transpose (that is, if A 2 g, then A⇤ 2 g), then g is
reductive.

The familiar Lie algebras gl(n,R), sl(n,R), gl(n,C),
sl(n,C), so(n), so(n,C), u(n), su(n), so(p, q), u(p, q),
su(p, q) are all closed under conjugate transpose.

Among those, by computing their center, we find that
sl(n,R) and sl(n,C) are semisimple for n � 2, so(n),
so(n,C) are semisimple for n � 3, su(n) is semisimple
for n � 2, so(p, q) is semisimple for p + q � 3, and
su(p, q) is semisimple for p + q � 2.
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Semisimple Lie algebras and semisimple Lie groups have
been investigated extensively, starting with the complete
classification of the complex semisimple Lie algebras by
Killing (1888) and corrected by Elie Cartan in his thesis
(1894).

One should read the Notes, especially on Chapter II, at
the end of Knapp’s book [29] for a fascinating account of
the history of the theory of semisimple Lie algebras.

The theories and the body of results that emerged from
these investigations play a very important role, not only
in mathematics, but also in physics, and constitute one
of the most beautiful chapters of mathematics.
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17.6 Left-Invariant Connections and Cartan
Connections

Unfortunately, if a Lie group G does not admit a bi-
invariant metric, under the Levi-Civita connection,
geodesics are generally not given by the exponential map
exp : g ! G.

If we are willing to consider connections not induced by
a metric, then it turns out that there is a fairly natural
connection for which the geodesics coincide with integral
curves of left-invariant vector fields.

These connections are called Cartan connections.

Such connections are torsion-free (symmetric), but the
price that we pay is that in general they are not compat-
ible with the chosen metric.
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As a consequence, even though geodesics exist for all t 2
R, it is generally false that any two points can connected
by a geodesic.

This has to do with the failure of the exponential to be
surjective.

This section is heavily inspired by Postnikov [46] (Chap-
ter 6, Sections 3–6); see also Kobayashi and Nomizu [30]
(Chapter X, Section 2).

Recall that a vector field X on a Lie group G is left-
invariant if the following diagram commutes for all a 2 G:

TG
d(La)// TG

G
La

//

X
OO

G
X
OO
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In this section, we use freely the fact that there is a bi-
jection between the Lie algebra g and the Lie algebra g

L

of left-invariant vector fields on G.

For every X 2 g, we denote by XL 2 g

L the unique
left-invariant vector field such that XL

1 = X .

Definition 17.5. A connection r on a Lie group G is
left-invariant if for any two left-invariant vector fields
XL, Y L with X, Y 2 g, the vector field rXLY L is also
left-invariant.

By analogy with left-invariant metrics, there is a version
of Proposition 17.1 stating that there is a one-to-one cor-
respondence between left-invariant connections and bilin-
ear forms ↵ : g ⇥ g ! g.
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Proposition 17.27.There is a one-to-one correspon-
dence between left-invariant connections on G and bi-
linear forms on g.

Given a left-invariant connection r on G, we get the map
↵ : g ⇥ g ! g given by

↵(X, Y ) = (rXLY L)1, X, Y 2 g.

We can also show that every bilinear map ↵ : g ⇥ g ! g

defines a unique left-invariant connection (we use a basis
of g).

Let us find out when the connection r associated with a
bilinear form ↵ on g is torsion-free (symmetric).
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Now, every bilinear form ↵ can be written as the sum of
a symmetric bilinear form

↵H(X, Y ) =
↵(X, Y ) + ↵(Y, X)

2

and a skew-symmetric bilinear form

↵S(X, Y ) =
↵(X, Y ) � ↵(Y, X)

2
.

It can be shown that the connection induced by ↵ is sym-
metric i↵

↵S(X, Y ) =
1

2
[X, Y ], for all X, Y 2 g.
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Let us now investigate the conditions under which the
geodesic curves coincide with the integral curves of left-
invariant vector fields.

Proposition 17.28. The left-invariant connection r
induced by a bilinear form ↵ on g has the property
that, for every X 2 g, the curve t 7! etX is a geodesic
i↵ ↵ is skew-symmetric.

A left-invariant connection satisfying the property that
for every X 2 g, the curve t 7! etX is a geodesic, is
called a Cartan connection .
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In view of the fact that the connection induced by ↵ is
symmetric i↵

↵S(X, Y ) =
1

2
[X, Y ], for all X, Y 2 g,

we have the following fact:

Proposition 17.29.Given any Lie group G, there is
a unique symmetric Cartan connection r given by

rXLY L =
1

2
[X, Y ]L, for all X, Y 2 g.

Then, the same calculation that we used in the case of a
bi-invariant metric on a Lie group shows that the curva-
ture tensor is given by

R(X, Y )Z =
1

4
[[X, Y ], Z], for all X, Y, Z 2 g.
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It is easy to check that for any X 2 g and any point
a 2 G, the unique geodesic �a,X such that �a,X(0) = a
and �0

a,X(0) = X , is given by

�a,X(t) = etd(Ra�1)aXa;

that is,

�a,X = Ra � �d(Ra�1)aX,

where �d(Ra�1)aX(t) = etd(Ra�1)aX .

Remark: Observe that the bilinear forms given by

↵(X, Y ) = �[X, Y ] for some � 2 R

are skew-symmetric, and thus induce Cartan connections.
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Easy computations show that the torsion is given by

T (X, Y ) = (2� � 1)[X, Y ],

and the curvature by

R(X, Y )Z = �(� � 1)[[X, Y ], Z].

It follows that for � = 0 and � = 1, we get connections
where the curvature vanishes.

However, these connections have torsion. Again, we see
that � = 1/2 is the only value for which the Cartan
connection is symmetric.

In the case of a bi-invariant metric, the Levi-Civita con-
nection coincides with the Cartan connection.
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