
Numerical Algorithms (2005) 39: 349–378  Springer 2005

Algorithms for the matrix pth root ∗

Dario A. Bini a,∗∗, Nicholas J. Higham b,∗∗∗ and Beatrice Meini a

a Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127Pisa, Italy
E-mail: {bini;meini}@dm.unipi.it

b Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
E-mail: higham@ma.man.ac.uk

Received 10 August 2004; accepted 2 November 2004
Communicated by C. Brezinski

New theoretical results are presented about the principal matrix pth root. In particular, we
show that the pth root is related to the matrix sign function and to the Wiener–Hopf factor-
ization, and that it can be expressed as an integral over the unit circle. These results are used
in the design and analysis of several new algorithms for the numerical computation of the pth
root. We also analyze the convergence and numerical stability properties of Newton’s method
for the inverse pth root. Preliminary computational experiments are presented to compare the
methods.
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1. Introduction

Let A be a real or complex matrix of order n with no eigenvalues on R
− (the closed

negative real axis), and let p be a positive integer. Then there exists a unique matrix X

such that

1. Xp = A.

2. The eigenvalues of X lie in the segment {z: −π/p < arg(z) < π/p }.
We refer to X as the principal pth root of A and write X = A1/p. One application

of pth roots is in the computation of the matrix logarithm through the relation [10,19]

log A = p log A1/p,
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where p is chosen so that A1/p can be well approximated by a polynomial or rational
function. Related to the pth root is the matrix sector function sectp(A) = (Ap)−1/pA

[20], which arises in control theory. The matrix sector function with p = 2 is the matrix
sign function.

We briefly survey existing methods for computing pth roots. Hoskins and Walton
[18] consider the iteration

Xk+1 = 1

p

[
(p − 1)Xk + AX

1−p

k

]
, X0 = A, (1.1)

which is Newton’s method for Xp − A = 0 simplified using the commutativity relation
AXk = XkA. They concentrate on the case A symmetric positive definite, in which case
Xk converges to A1/p. However, for more general A the iteration does not generally
converge to A1/p, as explained by Smith [27]. Moreover, the iteration is numerically
unstable unless A is extremely well conditioned, even for symmetric positive definite A

[27, section 6].
Benner et al. [1] prove that if the columns of U = [U ∗

1 , . . . , U ∗
p]∗ ∈ C

pn×n span an
invariant subspace of

C =








0 I

0 I
. . .

. . .

. . . I

A 0








∈ C
pn×pn, (1.2)

that is, CU = UY for some nonsingular Y ∈ C
n×n, and U1 is nonsingular, then X =

U2U
−1
1 is a pth root of A. For an appropriate choice of subspace, X is the principal pth

root. This result reduces the pth root problem to that of computing an invariant subspace
of a matrix of order pn, for which many methods are available. Note that the matrix C

is a block companion matrix for the matrix polynomial λpI − A.
Shieh et al. [26] propose an algorithm for computing A1/p that consists of form-

ing the powers Xk = Gk[In 0 . . . 0]T and computing limk→∞ Xk(1 : n, : )Xk(n + 1 :
2n, : )−1, where G = C + I and C is the matrix (1.2). Thus they are essentially using
the result of Benner et al. and computing the invariant subspace by the power method.
This method clearly has linear convergence.

Tsay et al. [29] propose another method for pth roots, based on “generalized con-
tinued fractions” and with a certain block Toeplitz matrix playing a key role. However,
this method appears to require O(n5) flops and O(n3) storage, and, as admitted in [28],
it is numerically unstable!

Tsai et al. [28] derive iterations whose convergence rate is a parameter. Their
quadratically convergent iteration for the pth root is

Gk+1 = Gk

[(
2I + (p − 2)Gk

)(
I + (p − 1)Gk

)−1]p
, G0 = A,

Rk+1 = Rk

(
2I + (p − 2)Gk

)−1(
I + (p − 1)Gk

)
, R0 = I,
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for which they state Gk → I and Rk → A1/p. No convergence proofs are given in [28],
but a perturbation analysis in the style of [15] is performed to show that the iterations
are numerically stable.

The integral expression

A1/p = p sin(π/p)

π
A

∫ ∞

0

(
xpI + A

)−1
dx (1.3)

can be deduced from a standard identity in complex analysis, as noted in [2, exam-
ple V.1.10; 21, section 5.5.5]. Hasan et al. [13] propose approximating the integral by
Gaussian quadrature, though no details are given.

Finally, Smith [27] derives a Schur method that employs a recurrence for comput-
ing the pth root of a triangular matrix, and he proves that the algorithm is numerically
stable. This Schur method is the benchmark against which other methods should be
compared. A MATLAB implementation is available as function rootm in the Matrix
Computation Toolbox [14].

Here we present new theoretical results and new algorithms for the matrix pth root.
The paper is organized in two parts. Sections 2–6 mainly concern theoretical properties,
while sections 7–10 deal with algorithmic results.

In section 2 we represent A1/p in terms of the integral of an analytic function along
the unit circle in the complex plane and we show that A1/p can be approximated by
means of numerical integration at the Fourier points with an error that decreases as r2N ,
where N is the number of Fourier points and r < 1 is a positive number that depends
on p and A.

In section 3 we show that A1/p is a multiple of the (2, 1) block of the matrix sign
function sign(C) of the block companion matrix (1.2), where the multiplicative constant
is explicitly known.

In section 4 we show that the Wiener–Hopf factorization of the matrix Laurent
polynomial F(z) = z−p/2((1 + z)pA − (1 − z)pI ) exists and provides the principal pth
root of A. In this way, any algorithm for computing the Wiener–Hopf factorization can
be applied in order to compute A1/p. A key tool for showing this property is the Cayley
transform x → z = (1 − x)/(1 + x), which maps the imaginary axis into the unit circle
in the complex plane and which relates the factorization of the polynomial xpI −A with
respect to the imaginary axis to the factorization of F(z) with respect to the unit circle
(Wiener–Hopf factorization).

Another theoretical result, shown in section 5, relates A1/p with the central coef-
ficients H0, . . . , Hp/2−1 of the matrix Laurent series H(z) = H0 + ∑+∞

i=1 (zi + z−i )Hi

such that H(z)F (z) = I . More precisely, A1/p is expressed as linear combination of
H0, . . . , Hp/2−1 with known coefficients. In this way any algorithm for the computation
of H(z) provides a means for computing A1/p.

In section 6 we look at A1/p as the inverse of the fixed point of the function
(1/p)[(1 + p)X − Xp+1A] that is obtained by formally applying Newton’s iteration
to the equation X−p − A = 0. We derive sufficient conditions for convergence and
numerical stability of the iteration.
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Concerning the algorithmic part, in section 7 we present a new algorithm for invert-
ing a general np×np A-circulant matrix with n×n blocks in O(n3p log p+n2p log2 p)

operations; it relies on a polynomial interpretation of A-circulant matrices. This algo-
rithm can be used in the computation of A1/p by the matrix sign iteration described in
section 3, since when this iteration is applied to the block companion matrix C of (1.2)
it generates a sequence of A-circulant matrices.

In section 8 we present two algorithms for computing the central coefficients of the
inverse of the Laurent polynomial F(z). The first is based on the evaluation/interpolation
technique, while the second, which relies on Graeffe’s iteration, exploits the commuta-
tivity of the coefficients of F(z). Two algorithms for computing the Wiener–Hopf fac-
torization of F(z) are described in section 9. They rely on applying cyclic reduction, and
on inverting a matrix Laurent polynomial. Finally, in section 10 we report the results of
some preliminary numerical experiments.

Throughout this paper A ∈ C
n×n is assumed to have no eigenvalues on R

−, and X

denotes the principal pth root, A1/p. Also, i denotes the imaginary unit (i2 = −1) and
for any integer N , ωN = cos(2π/N) + i sin(2π/N) denotes an N th root of unity.

Except when analyzing the Newton iteration, we assume that p = 2q, where q ∈ N

is odd. This assumption guarantees that there are no pure imaginary pth roots of unity,
and that there are exactly q roots with positive real part and q roots with negative real
part. There is no loss of generality in this assumption. Indeed, if p is odd we may
compute the pth root of the matrix A by computing the 2pth root of A2; if p = 2q and
q is even, we may compute successive square roots of A until the condition p = 2q,
q odd, is satisfied.

2. Integral representation

In [13] the integral (1.3) is proposed for approximating the matrix pth root X of A

by means of Gaussian quadrature on the positive real axis. In this section, we obtain
from (1.3) a representation of X based on complex integration around the unit circle.

Define the matrix polynomial

�(z) = (1 + z)pA − (1 − z)pI =
p∑

j=0

zj

(
p

j

)
(
A + (−1)j+1I

)
(2.1)

and observe that �(z) is nonsingular for |z| = 1. In fact, z is a singular point of �(z),
i.e., det �(z) = 0, if and only if z �= −1 and µ = ((1 − z)/(1 + z))p is eigenvalue
of A. For |z| = 1, the ratio (1 − z)/(1 + z) is a pure imaginary number so that µ is real
negative, since p is even and not a multiple of 4. Therefore, since A has no real negative
eigenvalues, �(z) cannot be singular for |z| = 1. Another nice feature of the function
�(z) is that z �= 0 is a singular point of �(z) if and only if 1/z is singular point of �(z).
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These properties imply that the function �(z) and its inverse are analytic in the
annulus

A =
{
z ∈ C: ρ < |z| <

1

ρ

}
(2.2)

where ρ = max{|z|: det �(z) = 0, |z| < 1}. The analyticity of �(z)−1 allows con-
struction of an algorithm for approximating X, based on the following result.

Proposition 2.1. The principal pth root X of A can be represented as

X = p sin(π/p)

iπ
A

∫

|z|=1
(1 + z)p−2�(z)−1 dz. (2.3)

Moreover, we have

X = 2p sin(π/p)

N
A

N−1∑

i=0

(
A −

(
1 − ωi

N

1 + ωi
N

)p

I

)−1
ωi

N

(1 + ωi
N)2

+ O
(
r2N

)
, (2.4)

where ρ < r < 1.

Proof. Since p is even, we may rewrite (1.3) as

X = p sin(π/p)

2π
A

∫ +∞

−∞

(
xpI + A

)−1
dx. (2.5)

Since p is even and not a multiple of 4, we have ip = −1. Therefore, making the
substitution x = i(1 − z)/(1 + z) yields (2.3). Since the integrand is analytic in the
annulus (2.2), the Euler–Maclaurin formula [11, p. 137] gives (2.4). �

Formula (2.4) provides a tool for approximating X by numerical integration on
the unit circle, and the approximation error decreases exponentially with the number of
integration points N . Observe that the speed of convergence is related to the thickness
of the annulus A.

Algorithm 2.1 (pth root through numerical integration at the roots of unity).
INPUT: The integers p, n and the matrix A ∈ C

n×n; an algorithm sqrt for computing
the principal matrix square root; an integer N0 > 0 and a tolerance ε > 0.
OUTPUT: An approximation to the principal pth root X of A.
COMPUTATION:

1. If p is odd set p = 2p and A = A2; if p is a multiple of 4 then repeat p = p/2,
A = sqrt(A), until p/2 is odd.

2. Set N = N0.
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3. Compute

XN = 2p sin(π/p)

N
A

N−1∑

i=0

(
A −

(
1 − ωi

N

1 + ωi
N

)p

I

)−1
ωi

N

(1 + ωi
N)2

.

4. If ‖A − X
p

N‖ > ε set N = 2N and repeat from step 3. Otherwise output the approxi-
mation XN to X.

3. Reduction to matrix sign computation

We now explore a connection between the principal pth root and the matrix sign
function. Consider the matrix

C =








0 I

0 I
. . .

. . .

. . . I

A 0








∈ C
pn×pn. (3.1)

The result of Benner et al. [1] stated in section 1 shows how to recover a pth root of A

from an n-dimensional invariant subspace of C. For p = 2, the matrix sign of C provides
an explicit expression for the principal square root of A [16]:

sign

([
0 I

A 0

])
=

[
0 A−1/2

A1/2 0

]
. (3.2)

Here, using the structural properties of C, we generalize this relation to the case p � 2,
for p even and not a multiple of 4.

The following result is a straightforward extension to block matrices of a well
known result concerning α-circulant matrices [7, theorem 5.1].

Proposition 3.1. Let � = (ω
ij
p )i,j=0:p−1, let X = A1/p and define the block diagonal

matrix D = diag(I, X, X2, . . . , Xp−1). Then

C = 1

p
D(� ⊗ I )S

(
� ⊗ I

)
D−1

where S = diag(X, ωpX, ω2
pX, . . . , ω

p−1
p X) and ⊗ denotes the Kronecker product.

An immediate consequence of this proposition is that

sign(C) = 1

p
D(� ⊗ I )sign(S)

(
� ⊗ I

)
D−1, (3.3)

where

sign(S) = diag
(
sign(X), sign(ωpX), . . . , sign

(
ωp−1

p X
))

.
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We observe that if X is the principal pth root of A, then, for any integer j , ω
j
pX

is a pth root of A whose eigenvalues are the eigenvalues of X multiplied by ω
j
p. Since

multiplication by ω
j
p corresponds to rotation through an angle 2πj/p, and since the

eigenvalues of X lie in the sector {ρeiθ : −π/p < θ < π/p }, we deduce that the
eigenvalues of ω

j
pX lie in the sector {ρeiθ : −π/p + 2πj/p < θ < π/p + 2πj/p}.

In this way, ω
j
pX has eigenvalues with positive real part for j = −�q/2	 : �q/2	, and

eigenvalues with negative real part for j = �q/2	 + 1 : �q/2	 + q.
Therefore, if p = 2q where q is an odd integer then, we deduce that ωi

pX has eigen-
values with positive real parts for i = −�q/2	 : �q/2	, and eigenvalues with negative real
parts for i = �q/2	+1 : �q/2	+q. Hence sign(ωi

pX) = −I for i = �q/2	+1 : �q/2	+q

and sign(ωi
pX) = I for i = 1 : �q/2	 and for i = �q/2	 + q + 1 : p − 1. Therefore,

from (3.3) we deduce the following result.

Proposition 3.2. If p = 2q where q is odd, then the first block column of the matrix
sign(C) is given by

V = 1

p









γ0I

γ1X

γ2X
2

...

γp−1X
p−1









,

where X = A1/p and γi = ∑p−1
j=0 ω

ij
p θj , i = 0: p − 1, and θj = −1 for j = �q/2	 + 1 :

�q/2	 + q, θj = 1 otherwise.

Proof. From (3.3), the first block column of sign(C) is

1

p
D(� ⊗ I )







sign(X)

sign(ωpX)
...

sign(ω
p−1
p X)







= 1

p
D(� ⊗ I )







θ0I

θ1I
...

θp−1I







= V. �

The above result allows one to compute the principal pth root of A from the second
block entry of the first block column of sign(C). For p = 2 we have θ0 = 1, θ1 = −1,
γ0 = 0, γ1 = 2 and proposition 3.2 reproduces the first block column of (3.2).

Based on proposition 3.2 we have the following algorithm for computing the prin-
cipal matrix pth root of A for a general integer p � 2.

Algorithm 3.1 (pth root through matrix sign function).
INPUT: The integers p, n and the matrix A ∈ C

n×n; an algorithm sqrt for computing
the principal matrix square root; an algorithm for computing the matrix sign function.
OUTPUT: The principal pth root X of A.
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COMPUTATION:

• If p is odd set p = 2p and A = A2; if p is a multiple of 4 then repeat p = p/2,
A = sqrt(A), until p/2 is odd.

• Compute sign(C) and let V = (Vi)i=0:p−1 be its first block column.

• Compute X = (p/(2σ))V1, where σ = 1 + 2
∑�q/2	

j=1 cos(2πj/p) and q = p/2.

Observe that if the matrix A is positive definite then its eigenvalues are real and
positive, and thus the eigenvalues of X are real and positive. Therefore the real parts of
the eigenvalues of ωi

pX have the same sign as the real part of ωi
p. Hence sign(ωi

pX) =
sign(ωi

p)I , for i = 0 : p − 1, for any p � 2 such that 4 does not divide p (otherwise

we would have ω
p/4
p = i and sign(i) is not defined). As a consequence, if A is positive

definite then proposition 3.2 holds also for odd p.
Observe that the result expressed in proposition 3.2 relies on the fact that the sign

function applied to the block diagonal matrix S provides a block diagonal matrix having
diagonal blocks proportional to the identity matrix I . This fact suggests that we can
replace the sign function with any other function having the same feature and which
is easily implementable by means of a functional iteration. A candidate is the sector
function, defined in section 1, and which for scalars z /∈ {0} ∪ ⋃

j=1,h{z ∈ C: arg(z) =
jπ/h} satisfies

secth(z) = ω
j

h, if arg(z) ∈
(

(j − 1)
π

h
, (j + 1)

π

h

)
.

In fact, for h = p we have sectp(S) = diag(I, ωpI, . . . , ω
p−1
p I ), and therefore, as noted

in [12],

sectp(C) =







0 X−1 O
... 0

. . .

0
. . .

. . . X−1

AX−1 0 . . . 0







, (3.4)

which generalizes (3.2). It would be interesting to know how the available methods for
computing the sector function behave if applied to the block companion matrix C.

4. Reduction to Wiener–Hopf factorization

The splitting of the pth roots of unity with respect to the imaginary axis, implied
by the assumption that p is even and not a multiple of 4, is essential for relating the
matrix pth root to the Wiener–Hopf factorization of matrix Laurent polynomials.

We recall that a Wiener–Hopf factorization of an n × n matrix Laurent polynomial
P(z) = ∑q

i=−q ziPi is a factorization of the kind [8]

P(z) = U(z) diag
(
zκ1, zκ2, . . . , zκn

)
L

(
z−1

)
, (4.1)
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where U(z) and L(z) are matrix polynomials that are nonsingular for |z| � 1, and the
integers κ1, . . . , κn are called partial indices. A Wiener–Hopf factorization always exists
if P(z) is nonsingular for |z| = 1, and the partial indices are uniquely determined, up to
the order (see the Gohberg and Krein theorem in [8, p. 189]).

Define the matrix polynomial of degree q

Q(x) =
�q/2	∏

j=−�q/2	

(
xI − ωj

pX
) ≡

q∑

j=0

xjQj , (4.2)

constructed from the matrix pth roots ω
j
pX having eigenvalues with positive real part.

Using the fact that ω
q
p = −1, we find that

Q(x)Q(−x) = −
p−1∏

j=0

(
xI − ωj

pX
) = A − xpI.

Moreover, from (4.2) we deduce that Q(x) is singular if and only if x coincides with
an eigenvalue of ω

j
pX for −q/2 < j < q/2. Hence Q(x) can be singular only if

Re(x) > 0. In other words, the factorization

(x) := A − xpI = Q(x)Q(−x) = Q(−x)Q(x) (4.3)

provides a splitting of the matrix polynomial (x) with respect to the imaginary axis.
We note that the coefficients of Q(x) are polynomials in X and that

Qq = I, Qq−1 = −σX, σ =
�q/2	∑

j=−�q/2	
ωj

p ∈ R. (4.4)

This fact allows one to express the principal pth root X of A as X = −σ−1Qq−1.
By applying the Cayley transformation

x = 1 − z

1 + z
, z = 1 − x

1 + x
, (4.5)

which maps the imaginary axis into the unit circle and vice versa, it is straightforward to
transform the splitting (4.3) of (x) with respect to the imaginary axis into a Wiener–
Hopf factorization of a suitable matrix polynomial. Observe that under (4.5), infinity is
mapped to −1, and −1 to infinity; moreover, the open right half plane is mapped into
the open unit disk and vice versa.

Consider the matrix polynomial �(z) of (2.1) and observe that

�(z) = (1 + z)p

(
1 − z

1 + z

)
.
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Since the matrix coefficients of �(z) are (linear) polynomials in A, they commute. De-
fine the polynomial

S(z) = (1 + z)qQ

(
1 − z

1 + z

)
. (4.6)

Then we have

Q(x) = (1 + z)−qS(z), Q(−x) = (
1 + z−1

)−q
S
(
z−1

)
. (4.7)

Recalling that p = 2q, we find that the factorization (4.3) turns into

F(z) := z−q�(z) = S
(
z−1

)
S(z) = S(z)S

(
z−1

)
. (4.8)

Since z = (1 − x)/(1 + x) and det Q(x) = 0 only if Re(x) > 0, the matrix
polynomial S(z) can be singular only for |z| < 1. We conclude that (4.8) is a Wiener–
Hopf factorization (4.1) of the Laurent matrix polynomial F(z) with U(z) = zqS(z−1),
L(z) = U(z), and null partial indices κ1 = · · · = κn = 0.

A nice property that follows from (4.8) is that if ξ �= 0 is a zero of det �(z), then
also ξ−1 is a zero of det �(z). If we add k zeros equal to ∞ if det �(z) has k zeros equal
to zero, and if we set 1/∞ = 0, 1/0 = ∞, then we may group the zeros of det �(z) into
pairs (ξi, ξ

−1
i ), i = 1 : qn, where 0 � |ξi | < 1.

Observe that, since q is odd, from (4.2) and (4.6) we obtain that

S(z) =
�q/2	∏

j=−�q/2	

(
I − ωj

pX − z
(
I + ωj

pX
))

(4.9)

= G

�q/2	∏

j=−�q/2	

(
zI − (

I + ωj
pX

)−1(
I − ωj

pX
))

, (4.10)

G = −
�q/2	∏

j=−�q/2	

(
I + ωj

pX
)
, (4.11)

where I + ω
j
pX is nonsingular since the eigenvalues of ω

j
pX have positive real parts.

Summing up, we have seen that the principal pth root X of A can be obtained from
the coefficient Qq−1 of the matrix polynomial Q(x) of (4.2), and that, by applying the
Cayley transformation (4.5), from Q(x) we may derive the Wiener–Hopf factorization
(4.8) of F(z). We are now interested in the converse problem. Given a generic Wiener–
Hopf factorization of F(z),

F(z) = Û (z)Û
(
z−1

)
, Û (z) = zqŜ

(
z−1

)
, (4.12)

is it possible to recover the polynomial Q(x) of (4.2), which provides the principal
matrix pth root X via (4.4)? The answer is yes. From a classical result, since (4.8)
and (4.12) are both Wiener–Hopf factorizations of F(z), there exists a nonsingular ma-
trix W such that Ŝ(z) = S(z)W and WS(z)W = S(z). In other words, the factor S(z) is
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unique up to a right multiplicative matrix factor W such that WS(z)W = S(z). Define
the matrix polynomial

Q̂(x) = (1 + z)−q Ŝ(z), (4.13)

which, according to (4.7), corresponds to Ŝ(z) by means of the Cayley transforma-
tion (4.5). It is immediate to verify from Ŝ(z) = S(z)W that Q̂(x) = Q(x)W . There-
fore, since the leading block coefficient of Q(x) is the identity matrix, the leading block
coefficient of Q̂(x) is W . Hence the coefficients Qj , j = 0 : q, of Q(x) are related to
the corresponding coefficients Q̂j , j = 0 : q, of Q̂(x) by the relations

Qj = Q̂j Q̂
−1
q , j = 0 : q.

From (4.4), we therefore obtain

X = −σ−1Q̂q−1Q̂
−1
q . (4.14)

Now we are ready to prove the following proposition, which relates the principal
pth root X with the coefficients of Ŝ(z).

Proposition 4.1. Let Ŝ(z) be any matrix polynomial such that the Wiener–Hopf factor-
ization (4.12) holds. Then the principal pth root X of A is given by

X = −σ−1
(
qI + 2Ŝ ′(−1)Ŝ(−1)−1

)
, (4.15)

where σ = ∑�q/2	
j=−�q/2	 ω

j
p = 1 + 2

∑�q/2	
j=1 cos(2πj/p).

Proof. Consider Q̂(x), the matrix polynomial defined in (4.13). Observe that Q̂q−1 =
Q̂′

R(0), Q̂q = Q̂R(0), where Q̂R(x) = xqQ̂(x−1) is the matrix polynomial obtained by
reversing the order of the coefficients of Q̂(x). Replacing z with (1 − x)/(1 + x) in
(4.13) yields

Q̂(x) = (x + 1)q

2q
Ŝ

(
1 − x

1 + x

)
, Q̂R(x) = (x + 1)q

2q
Ŝ

(
x − 1

x + 1

)
,

whence we obtain Q̂R(0) = (1/2q)Ŝ(−1) and Q̂′
R(0) = (q/2q)Ŝ(−1) + (2/2q)Ŝ ′(−1).

From (4.14) we obtain the sought expression for X. �

Based on the above result we have the following algorithm for computing A1/p for
any integer p � 2.

Algorithm 4.1 (pth root through Wiener–Hopf factorization).
INPUT: The integers p, n and the matrix A ∈ C

n×n; an algorithm sqrt for comput-
ing the principal matrix square root; and an algorithm for computing a Wiener–Hopf
factorization of a Laurent matrix polynomial with commuting coefficients.
OUTPUT: An approximation to the principal pth root X of A.
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COMPUTATION:

• If p is odd set p = 2p and A = A2; if p is a multiple of 4 then repeat p = p/2,
A = sqrt(A), until p/2 is odd.

• Compute a Wiener–Hopf factorization F(z) = Û (z)Û(z−1) of the Laurent matrix
polynomial F(z) = z−q�(z) in (4.8) (see section 9), and set Ŝ(z) = zqÛ(z−1).

• Compute X = −σ−1(qI + 2Ŝ ′(−1)Ŝ(−1)−1), with σ = ∑�q/2	
j=−�q/2	 ω

j
p = 1 +

2
∑�q/2	

j=1 cos(2πj/p).

5. Reduction to matrix Laurent polynomial inversion

A different and computationally simpler expression for the pth root X is provided
by the next proposition. We first need to observe that the Laurent matrix polynomial
F(z) = z−q�(z) is analytic and nonsingular in the annulus (2.2), which can be rewritten
in the form

A =
{
z ∈ C: |ξnq | < |z| <

1

|ξnq |
}
, (5.1)

where ξi , i = 1 : nq, are the zeros of det S(z) ordered so that

0 � |ξ1| � · · · � |ξnq | < 1.

In this way we may define the matrix Laurent series

H(z) = F(z)−1 =
+∞∑

j=−∞
zjHj = H0 +

+∞∑

j=1

(
zj + z−j

)
Hj, (5.2)

which is analytic for z ∈ A, and is such that Hj = H−j , for j �= 0. The latter property
holds since F(z) = F(z−1) implies that H(z) = H(z−1).

Observe that, if λi , i = 1 : n are the eigenvalues of the matrix X, then {ξi : i =
1 : nq} = {(1 − ω

j
pλi)/(1 + ω

j
pλi): i = 1 : n, j = 1 : q}, and therefore

|ξnq | = max
j=1 : q, i=1 : n

∣∣
∣
∣
1 − ω

j
pλi

1 + ω
j
pλi

∣∣
∣
∣ < 1. (5.3)

Equation (5.3) relates the thickness of the annulus A where F(z) and its inverse
are analytic with the location of the eigenvalues of X. In particular, A is a thin annulus
if the eigenvalues of X are very unbalanced in modulus or if they are close to the lines
on the boundary between sectors. As we will see later, the thickness of A is related to
the speed of convergence of certain algorithms for computing the pth root.

Proposition 5.1. The principal pth root X of A can be represented as

X = 4p sin

(
π

p

)
A

q−1∑

j=0

αjHj , (5.4)
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where H(z) is the matrix Laurent series of (5.2) and α0 = 1
2

(
p−2
q−1

)
, αj = (

p−2
q−j−1

)
, j =

1 : q − 1.

Proof. In order to prove the representation (5.4) of X consider the Laurent polynomial
t (z) = z−q+1(z+1)p−2 = 2α0 +∑q−1

i=1 αi(z
i +z−i) and observe that the constant term of

the product W(z) = H(z)t (z) is W0 = 2
∑q−1

j=0 αjHj . Therefore it is sufficient to show
that X = 2p sin(π/p)AW0. Observe that from the Cauchy integral formula we have

W0 = 1

2π i

∫

|z|=1
z−1W(z) dz = 1

2π i

∫

|z|=1
F(z)−1z−q(z + 1)p−2 dz. (5.5)

Moreover, from (2.3) and (2.1) we deduce that

X = 2p sin

(
π

p

)
A

1

2iπ

∫

|z|=1
F(z)−1z−q(1 + z)p−2 dz,

whence X = 2p sin(π/p)AW0. �

The representation (5.4), which generalizes a result of Meini [22] that applies for
p = 2, provides an algorithm for approximating X if a technique for approximating the
coefficients Hi , i = 0 : q of the Laurent series H(z) = F(z)−1 is available.

Summarizing, we have the following algorithm for computing the principal pth
root of A, for a general integer p � 2, relying on the inversion of a matrix Laurent
polynomial.

Algorithm 5.1 (pth root through matrix Laurent polynomial inversion).
INPUT: The integers p, n and the matrix A ∈ C

n×n; an algorithm sqrt for computing
the principal square root; and an algorithm for computing the inverse of a Laurent matrix
polynomial with commuting coefficients.
OUTPUT: An approximation to the principal pth root X of A.
COMPUTATION:

• If p is odd set p = 2p and A = A2; if p is a multiple of 4 then repeat p = p/2,
A = sqrt(A), until p/2 is odd.

• Compute the coefficients H0, . . . , Hq−1 of the inverse H(z) = H0+∑+∞
i=1 (zi+z−i)Hi

of the Laurent matrix polynomial F(z) = z−q�(z) in (4.8) (see section 8).

• Compute X = 4p sin(π/p)A
∑q−1

j=0 αjHj , where α0 = 1
2

(
p−2
q−1

)
, αj = (

p−2
q−j−1

)
, j =

1 : q − 1.

6. Newton’s iteration for the inverse pth root

The results of this section are valid without any restriction on the integer p. Con-
sider the iteration for computing the inverse pth root, A−1/p:

Xk+1 = 1

p

[
(1 + p)Xk − X

p+1
k A

]
, X0 = I. (6.1)
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This is Newton’s method applied to X−p − A = 0 with X0 = I , the concise form (6.1)
being obtained by exploiting the fact that the iterates are polynomials in A and so com-
mute with A.

Iteration (6.1) contrasts with (1.1), which is Newton’s method applied to Xp − A

= 0 and computes A1/p. While (1.1) involves matrix inversion, (6.1) requires only
matrix multiplication. As mentioned in section 1, (1.1) has rather unsatisfactory conver-
gence properties. The region of convergence of (1.1) to a1/p for scalars a ∈ C is roughly
the wedge defined by arg a ∈ (−π/p, π/p), but it has a petal-like boundary intruding
inside the wedge for p > 2. Consequently, it is difficult to guarantee convergence ex-
cept for symmetric positive definite A. As we will now show, iteration (6.1) has better
convergence properties.

For p = 1, iteration (6.1) is the well known Schulz iteration for matrix inversion
[25], and it is easily seen that the residual Rk = I −XkA satisfies Rk+1 = R2

k . For p = 2,
the iteration is well known in the scalar case, and it is studied for symmetric positive
definite matrices by Philippe [24]. Philippe proves that the residuals Rk = I − X2

kA

satisfy Rk+1 = 3
4R

2
k + 1

4R
3
k [24, proposition 2.5]. The following result generalizes these

residual relations to arbitrary p.

Proposition 6.1. The residuals Rk = I − X
p

k A for (6.1) satisfy, for any choice of X0,

Rk+1 =
p+1∑

i=2

aiR
i
k, (6.2)

where the ai are all positive and
∑p+1

i=2 ai = 1. Hence if ‖R0‖ < 1 for some consistent
matrix norm then the sequence {‖Rk‖} decreases monotonically to 0 as k → ∞.

Proof. We have Xk+1 = p−1Xk(pI + Rk), which leads to

Rk+1 = I − 1

pp
(I − Rk)(pI + Rk)

p = I − 1

pp

[

ppI +
p∑

i=1

biR
i
k − R

p+1
k

]

= − 1

pp

[
p∑

i=1

biR
i
k − R

p+1
k

]

, (6.3)

where

bi =
(

p

i

)
pp−i −

(
p

i − 1

)
pp−i+1 = pp−i

[(
p

i

)
−

(
p

i − 1

)
p

]

= pp−i

[
p!

i!(p − i)! − p! p
(i − 1)!(p − i + 1)!

]

= pp−i p!
(i − 1)!(p − i)!

[
1

i
− p

(p − i + 1)

]
.
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It is easy to see that b1 = 0 and bi < 0 for i � 2. Hence (6.2) holds, with ai > 0 for
all i. By setting Rk ≡ I in (6.2) and (6.3) it is easy to see that

∑p+1
i=2 ai = 1.

If 0 < ‖R0‖ < 1, then taking norms in (6.2) yields

‖R1‖ �
p+1∑

i=1

|ai | ‖R0‖i < ‖R0‖
p+1∑

i=1

|ai | = ‖R0‖.

By induction, the ‖Rk‖ form a monotonically decreasing sequence that converges to
zero. �

An immediate corollary of proposition 6.1 is that iteration (6.1) converges quadrat-
ically.

Proposition 6.1 gives the sufficient condition for convergence of the iteration (6.1)
that ‖I − A‖ < 1, for some norm. It is a standard result that for any A and any δ > 0
there is a consistent norm such that ‖A‖ � ρ(A) + δ, where ρ is the spectral radius
[17, problem 6.8]. It follows that a sufficient condition for convergence of (6.1) is that
the eigenvalues λi of A satisfy

max
i

|1 − λi | < 1, (6.4)

that is, the eigenvalues of A lie strictly within the circle of centre 1 and radius 1. For
matrices with real, positive eigenvalues we can say more.

Proposition 6.2. Suppose that all the eigenvalues of A are real and positive. Then iter-
ation (6.1) converges to A−1/p if ρ(A) < p + 1. If ρ(A) = p + 1 the iteration does not
converge to the inverse of any pth root of A.

Proof. By standard arguments based on the Jordan canonical form, it suffices to ana-
lyze the convergence of the iteration on the eigenvalues of A. We therefore consider the
scalar iteration

xk+1 = 1

p

[
(1 + p)xk − x

p+1
k a

]
, x0 = 1, (6.5)

with a > 0. Let yk = a1/pxk. Then

yk+1 = 1

p

[
(1 + p)yk − y

p+1
k

] =: f (yk), y0 = a1/p

and we need to prove that yk → 1 if y0 = a1/p < (p + 1)1/p. We consider two cases. If
yk ∈ [0, 1) then

yk+1 = yk

[
1 + 1 − y

p

k

p

]
> yk.
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Moreover, since

f (0) = 0, f (1) = 1, f ′(y) = p + 1

p

(
1 − yp

)
> 0 for y ∈ [0, 1),

it follows that f (y) < 1 for y ∈ [0, 1). Hence yk < yk+1 < 1 and so the yk form a
monotonically increasing sequence tending to 1. Now suppose y0 ∈ (1, (p + 1)1/p). We
have f (1) = 1 and f ((p + 1)1/p) = 0, and f ′(y) < 0 for y > 1. It follows that f maps
(1, (p + 1)1/p) into (0, 1) and so after one iteration y1 ∈ (0, 1) and the first case applies.
The last part of the proposition follows from f ((p + 1)1/p) = 0 and the fact that 0 is a
fixed point of the iteration. �

For matrices with real, positive eigenvalues the condition ρ(A) < p + 1 in propo-
sition 6.2 is clearly much less restrictive than (6.4). It is then natural to ask whether a
region of convergence in C bigger than (6.4) can be identified, and indeed what is the
actual region of convergence. We have not been able to answer these questions analyt-
ically, so have determined the regions empirically. For a grid of points x0 in C we ran
50 iterations and declared convergence to a1/p if x50 had relative error less than 10−12.
Figure 1 shows the results for p = 1, 2, 3, 4, 8, 16; the unit circle is shown (note that the
axis scales are not equal). We see that the region of convergence grows with p, extend-
ing almost up to ±2i for small real parts and approaching the point p + 1 on the real
axis via a wedge shape.

Analysis of Smith [27] shows that the Newton iteration (1.1) is numerically sta-
ble (in the sense that arbitrary perturbations in an iterate do not grow over successive
iterations) if

1

p

∣
∣∣
∣
∣
(p − 1) −

p−1∑

r=1

(
λi

λj

)r/p
∣
∣∣
∣
∣
� 1, i, j = 1 : n. (6.6)

A similar analysis can be done for (6.1), leading to the condition

1

p

∣
∣∣
∣
∣
p −

p∑

r=1

(
λi

λj

)r/p
∣
∣∣
∣
∣
� 1, i, j = 1 : n. (6.7)

Condition (6.7) is even more restrictive than (6.6). For example, for symmetric positive
definite A and p = 3, (6.6) requires κ2(A) � 5.74, whereas (6.7) requires κ2(A) � 2.68.
However, if maxi |1 − λi | < 1/2 holds, say, then the spread of the eigenvalues is narrow
enough that instability will be mild or absent. Therefore iteration (6.1) is certainly of
interest for A or A−1 satisfying maxi |1 − λi | < 1/2, with an inversion of the limit
matrix needed to recover A1/p in the former case.

Another use of (6.1) is for refining an approximate pth root Y0 ≈ A1/p obtained
from one of our other algorithms. We can apply (6.1) to A−1 with starting matrix Y0 to
obtain

Yk+1 = 1

p

[
(1 + p)Yk − Y

p+1
k A−1

]
.
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Figure 1. Convergence regions (shaded) in C for iteration (6.5), together with unit circle. Note differing
axis limits.

Since Y0 is arbitrary, proposition 6.2 does not apply, but proposition 6.1 guarantees
quadratic convergence of the Yk to A1/p if ‖I − Y

p

0 A−1‖ < 1.

7. Inverting an A-circulant matrix

In order to compute sign(C) in algorithm 3.1, where C is the block companion
matrix (3.1), we may apply the matrix sign iteration

Ck+1 = Ck + C−1
k

2
, k = 0, 1, . . . , C0 = C, (7.1)

which converges quadratically to sign(C). The most expensive part of this iteration is
computing C−1

k . In this section we design an algorithm for the fast inversion of Ck that
exploits its structural properties.

We recall that the matrix algebra generated by C, i.e., the set of all polynomials
in C of the kind

∑p−1
i=0 (I ⊗ Wi)C

i , is called the class of A-circulant matrices and is
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composed of matrices of the form

P =








W0 W1 . . . Wp−1

AWp−1 W0
. . .

...
...

. . .
. . . W1

AW1 . . . AWp−1 W0








. (7.2)

We call (7.2) the A-circulant matrix associated with P(x).
If P and Q are A-circulant matrices associated with the polynomials P(x) and

Q(x), respectively, then P opQ is the A-circulant matrix associated with the polynomial
P(x) op Q(x) mod xpI − A, for op = +, ∗. Similarly, P −1 is the A-circulant matrix
associated with the polynomial P(x)−1 mod xpI − A. In particular, the matrix sign(C)

has the structure (7.2), as do the iterates (7.1).
We now analyze the complexity of performing a single step of the matrix sign

iteration. Since an A-circulant matrix is defined by its first block row (or its first block
column), multiplying two A-circulant matrices reduces to computing the product of an
A-circulant matrix and a block vector. This computation can be efficiently performed
by means of the FFT in O(n3p +n2p log p) operations since A-circulant matrices are in
particular block Toeplitz [7].

A different analysis is required for the problem of matrix inversion. For this pur-
pose we observe that for any matrix polynomial P(x) = ∑p−1

i=0 xiWi with commuting
matrix coefficients the product

T (x) = P(x)P (ωpx) · · · P (
ωp−1

p x
)

(7.3)

is a polynomial in xp, say T (x) = Q(xp). This property holds since, by the commuta-
tivity of the coefficients, we have T (ωix) = T (x) for i = 0 : p − 1, so that T (x) must
necessarily be a polynomial in xp.

Now observe that if P is the A-circulant matrix associated with P(x), then
D−iPDi is the A-circulant matrix associated with P(ωi

px), where D = diag(1, ωp, ω2
p,

. . . , ω
p−1
p ). Moreover, since Cp = I ⊗ A, the A-circulant matrix associated with Q(xp)

is I ⊗ K , where K = Q(A) is an n × n matrix. In this way we may rewrite (7.3) in
matrix form as

I ⊗ K = P
(
D−1PD

)(
D−2PD2

) · · · (D−p+1PDp−1
)
.

This relation provides the following inversion formula for P

P −1 = S
(
I ⊗ K−1

)
,

S = (
D−1PD

)(
D−2PD2

) · · · (D−p+1PDp−1
)
.

In this way the computation of P −1 is reduced to computing the A-circulant matrix S

and the n × n matrix K . By making the substitution B0 = D−1PD, we readily find that

S = B0
(
D−1B0D

)(
D−2B0D

2
) · · · (D−p+2B0D

p−2
)
. (7.4)
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Moreover, setting B1 = B0(D
−1B0D) yields

S = B1
(
D−2B1D

2
)(

D−4B1D
4
)(

D−6B1D
6
) · · · (D−p+3B1D

p−3
)
, (7.5)

where for simplicity we assumed p − 1 even. That is, the product (7.4) of p − 1
A-circulant matrices is reduced to the product (7.5) of (p − 1)/2 A-circulant matrices
by just performing a single product of A-circulant matrices.

The following algorithm is based on this reduction and computes the first block
column (row) of P −1, which defines the A-circulant matrix P −1.

Algorithm 7.1 (Inverting an A-circulant matrix).
INPUT: The integers p, n, the matrix A ∈ C

n×n and the commuting matrices
W0, . . . , Wp−1 ∈ C

n×n defining the A-circulant matrix P of (7.2).
OUTPUT: The first block column (row) of P −1.
COMPUTATION:

• Represent the integer p − 1 in base 2 as p − 1 = ∑d−1
i=0 2mi .

• Set B0 = D−1PD.

• For i = 0: md−1 compute Bi = Bi−1(D
−iBi−1D

i).

• Compute

V = [I, 0, . . . , 0]S = [I, 0, . . . , 0]Bm0D
−2m0

Bm1D
−2m1 · · · Bmd−1D

p−1−2md−1

by successively multiplying block row vectors and A-circulant matrices.

• Compute K as the first block of V P .

• Output V (I ⊗ K−1).

The above algorithm relies on the fact that Bi = (D−1P)2i

D2i

and that S =
(D−1P)p−1Dp−1 = Bm0D

−2m0
Bm1D

−2m1 · · · Bmd−1 . Its complexity is dominated by
�log2(p − 1)� multiplications of A-circulant matrices, so its computational cost is
O(n3p log p + n2p log2 p) operations.

8. Inverting a matrix Laurent polynomial

We present two algorithms for approximating the inverse of the matrix Lau-
rent polynomial F(z) = z−q�(z). The first algorithm is based on the evaluation-
interpolation technique, while the second relies on the Graeffe iteration [3,23] extended
to matrix polynomials with commuting coefficients. These algorithms can be used for
computing A1/p in the light of the results of section 5.
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8.1. Evaluation-interpolation

Let us recall that F(z) = z−q�(z) and H(z) are analytic and nonsingular in the
annulus

A =
{
z ∈ C: |ξnq | < |z| <

1

|ξnq |
}
. (8.1)

This implies that all the entries of H(z) are analytic functions in A.
We use some basic results from the theory of analytic functions of a complex

variable in order to prove a decay property of the coefficients of H(z). Let f (z) =∑+∞
i=−∞ zifi be a complex valued function analytic in the annulus (8.1). Since the

Fourier coefficients of f (z) are given by

fj = 1

2π i

∫

|z|=θ

f (z)

zj+1
dz

for |ξnq | < θ < 1/|ξnq |, we deduce that the sequence fj decays exponentially to zero.
More precisely, for any ε > 0 there exists a constant γ > 0 such that |fj | < γ (|ξnq |+ε)j

for j > 0 and |fj | < γ (1/|ξnq | − ε)j for j < 0.
Applying this property to each element of the matrix function H(z), it follows that,

for any ε, there exists a constant δ such that ‖Hj‖∞ < δn(|ξnq | + ε)j for j > 0, and
‖Hj‖∞ < δn(1/|ξnq | − ε)j for j < 0, where ‖ · ‖∞ denotes the infinity norm. This im-
plies that for a sufficiently large h the Laurent matrix polynomial K(z) = ∑h

i=−h ziHi

well approximates the function H(z). Moreover, due to the exponential bounds on the
norms of the Hj , the value of h is not generally large unless A is a very thin annulus,
i.e., |ξnq | ≈ 1. The latter situation may happen if the eigenvalues of X have unbalanced
moduli or if they are close to the lines which separate the sector (compare with (5.3)).
This decay property suggests the following evaluation-interpolation technique for ap-
proximating Hi , i = 0 : q − 1.

Algorithm 8.1 (Inversion by evaluation-interpolation).
INPUT: The coefficients F0, . . . , Fp of F(z); an integer h such that

∑
i>h ‖Hi‖∞ is

negligible.
OUTPUT: Approximations to the coefficients Hi , i = 0 : q − 1, of the matrix Laurent
series H(z) = F(z)−1.
COMPUTATION: Choose a positive integer N = 2ν such that N > 2h + 1 and consider
the N th roots of unity ωi

N , i = 0 : N − 1, where ωN = cos(2π/N) + i sin(2π/N).

1. Compute Wi = F(ωi
N), i = 0 : N − 1, by means of n2 FFTs of length N .

2. Compute Vi = W−1
i , i = 0 : N − 1.

3. Interpolate to the values Vi and recover the matrix coefficients Ki of the Laurent
matrix polynomial K(z) = ∑h

i=−h ziKi that interpolates H(z) at the roots of unity,
by means of n2 FFTs of length N .

4. Output the approximations Ki to Hi for i = 0 : q − 1.
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Observe that the cost of the above algorithm is O(n3N + n2N log N) operations.
The greater the width of A the smaller the value of N .

A reduction of the computational cost can be obtained by exploiting the specific
structure of F(z). In fact, since the coefficients of F(z) are

(
p

j

)
(I+(−1)j+1A), j = 0 : p,

the matrices Wi at step 1 are given by Wi = αiI + βiA, where αi = − ∑N−1
j=0 ω

ij

N

(
p

j

)
,

βi = ∑N−1
j=0 (−1)jω

ij

N

(
p

j

)
. Therefore, only two FFTs of length N must be computed. At

stage 2, we have to invert the matrices αiI + βiA, for i = 0 : N − 1. It is not clear if this
task can be accomplished with a cost lower than O(n3N). This stage remains the most
expensive part of the algorithm.

In the formulation of algorithm 8.1 the value of h, and consequently that of N , must
be known a priori. However, by following [5] we may apply a dynamic strategy which
performs the computation by repeatedly doubling the values of N until the convergence
condition is satisfied. In this way, the algorithm is adaptive and requires neither h nor N

as input values. See [5] for more details. As a convergence condition we may require a
bound on the residual, say, ‖K(z)F (z) − I‖∞ � ε, where the infinity norm of a matrix
Laurent polynomial is the maximum infinity norm of its coefficients.

It is interesting to note that the nonsingularity of F(z) for z ∈ A implies that
there exists a positive constant γ such that for any z of modulus 1 the matrix F(z)

has a condition number bounded by γ . This property guarantees that the matrices Vi ,
i = 0 : N − 1, have a condition number independent of N .

8.2. Graeffe iteration

The Graeffe iteration is used in [4] for inverting a matrix Laurent polynomial of
the form z−1A−1 + A0 + zA1 for n × n matrices A−1, A0, A1. This technique does not
apply to general matrix Laurent polynomials of larger degree. However, in our problem,
the matrix Laurent polynomial F(z) has an additional feature which is fundamental in
order to extend the inversion algorithm of [4]: its coefficients satisfy the commutativity
property FiFj = FjFi , i, j = −q : q. We now extend the algorithm of [4] to matrix
polynomials of the form

P(z) =
q∑

j=−q

zjPj , (8.2)

where PjPi = PiPj for any pair (i, j).
Observe that, because the Pi commute, the coefficients of the odd powers in the

expression P(z)P (−z) vanish. Therefore P (1)(z2) = P(z)P (−z) is a matrix Laurent
polynomial in z2 whose coefficients, as polynomial functions of the coefficients of P(z),
commute with each other. Inductively, we may define the Graeffe sequence of matrix



370 D.A. Bini et al. / Algorithms for the matrix pth root

Laurent polynomials

P (0)(z) = P(z),

P (i+1)
(
z2

) = P (i)(z)P (i)(−z), P (i)(z) =
q∑

j=−q

zjP
(i)
j ,

(8.3)

where P (i+1)(z2) has commuting matrix coefficients.
A fundamental property of the sequence (8.3) is described in the next result.

Proposition 8.1. Assume that the polynomial (8.2) can be factorized as

P(z) = U(z)V
(
z−1

)
,

where U(z) = (zI−X1)(zI−X2) · · · (zI−Xq), V (z) = (zI−Y1)(zI−Y2) · · · (zI−Yq),
and the matrices Xj , Yj are such that ‖Xj‖, ‖Yj‖ � σ < 1, j = 1 : q, for a suitable
operator norm ‖ · ‖. Moreover assume that AB = BA for any A, B ∈ {X1, . . . , Xq} ∪
{Y1, . . . , Yq}. Then the sequence generated by (8.3) is such that

∥∥P
(i)

0 − I
∥∥ � q2σ 2·2i

,

∥
∥P

(i)
j

∥
∥ <

(
q

j

)
σ j2i + O

(
q

(
q

j + 1

)
σ (j+2)2i

)
.

Proof. Using the commutativity property, we have

P (1)
(
z2

) = P(z)P (−z) =
q∏

j=1

(zI − Xj)(−zI − Xj)

q∏

j=1

(
z−1I − Yj

)(−z−1I − Yj

)

=
q∏

j=1

(
z2I − X2

j

)(
z−2I − Y 2

j

)
.

By induction, we obtain

P (i)(z) =
q∏

j=1

(
zI − X2i

j

)(
z−1I − Y 2i

j

)
.

By the commutativity of the matrices X2i

j and Y 2i

j for j = 1: q, we may write the block

coefficients of the matrix polynomials E(i)(z) = ∑q

j=0 zjE
(i)
j = ∏q

j=1(zI − X2i

j ) and

G(i)(z) = ∑q

j=0 zjG
(i)
j = ∏q

j=1(z
−1I − Y 2i

j ) in terms of the elementary symmetric
functions

fj (x1, . . . , xq) =
∑

1�σ1<···<σj �q

(xσ1 · · · xσj
), j = 0 : q.
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More precisely,

E
(i)
j = (−1)jfq−j

(
X2i

1 , . . . , X2i

q

)
,

G
(i)
j = (−1)jfq−j

(
Y 2i

1 , . . . , Y 2i

q

)
.

Moreover, from the relation P (i)(z) = E(i)(z)G(i)(z−1) we find that

P
(i)
k =

q∑

j=0

E
(i)
j G

(i)
k+j , k = −q : q, (8.4)

where we set E
(i)
j = G

(i)
j = 0 for j < 0 and for j > q. Applying the triangle inequality

yields

∥
∥E

(i)
j

∥
∥ = ∥

∥fq−j

(
X2i

1 , . . . , X2i

q

)∥∥ � fq−j

(‖X1‖2i

, . . . , ‖Xq‖2i )

� fq−j

(
σ 2i

, . . . , σ 2i ) =
(

q

j

)
σ (q−j)2i

.

Similarly, we have ‖G(i)
j ‖ �

(
q

j

)
σ (q−j)2i

. From (8.4) we find that P
(i)

0 = I +E
(i)

q−1G
(i)

q−1+
· · · + E

(i)
0 G

(i)
0 , whence

∥∥P
(i)

0 − I
∥∥ �

((
q

1

)
σ 2i

)2

+
((

q

2

)
σ 2·2i

)2

+ · · · +
((

q

0

)
σq·2i

)2

= q2σ 2·2i + O

(((
q

2

)
σ 2·2i

)2
)

.

Similarly, for k > 0 we obtain

∥∥P
(i)
k

∥∥ �
∥∥E

(i)
q−k

∥∥ · ∥∥G(i)
q

∥∥ + ∥∥E
(i)

q−k−1

∥∥ · ∥∥G
(i)

q−1

∥∥ + · · · + ∥∥E
(i)

0

∥∥ · ∥∥G
(i)
k

∥∥

�
(

q

k

)
σ k·2i + O

(
q

(
q

k + 1

)
σ (k+2)·2i

)
.

The case k < 0 is dealt with analogously. �

The above result is the basis for designing a fast algorithm that computes the cen-
tral 2q + 1 coefficients (i.e., the coefficients of zi , i = −q: q) of the matrix Laurent
series H(z) = ∑+∞

−∞ ziHi such that F(z)H(z) = I , where F(z) is the Laurent matrix
polynomial of (4.8).

Indeed, from (4.8)–(4.10) and (4.11), it follows that

F(z) = V (z)V
(
z−1

)
G2
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for G = − ∏�q/2	
i=−�q/2	(I + ωi

pX), and

V (z) = −S(z) =
�q/2	∏

i=−�q/2	

(
zI − (

I + ωi
pX

)−1(
I − ωi

pX
))

.

Therefore the polynomial P(z) = F(z)G−2 = V (z)V (z−1) satisfies the conditions of
proposition 8.1 where Xi = Yi = (I + ω

i−�q/2	−1
p X)−1(I − ω

i−�q/2	−1
p X), i = 1 : q.

Observe also that the matrix G as well as the Laurent polynomial P(z) are un-
known and that the sequence {P̂j (z)}j∈N generated by applying (8.3) to P̂0(z) = F(z) is
such that

P̂j (z) = Pj(z)G
2j+1

.

Although this sequence differs from {Pj(z)}j∈N up to a constant matrix factor, its com-
putation would generate overflow since ρ(G) > 1.

A method to remove this drawback is to scale the Laurent polynomials generated
at each step of (8.3) in the following way:

Q(0)(z) = F(z), Q(i+1)(z) = G−1
i Q(i)(−z)Q(i)(z), i � 0, (8.5)

where G−1
i is the constant coefficient of Q(i)(−z)Q(i)(z). In this way, since the polyno-

mials P (i)(z) and Q(i)(z) differ by a multiplicative matrix factor which is commutative,
and since the constant term of Q(i)(z) for i > 0 is the identity matrix, we find that

P (i)(z) = P
(i)

0 Q(i)(z),

where P
(i)

0 is the constant coefficient of P (i)(z). Therefore, since P
(i)

0 = I + O(σ 2·2i

),
the sequence {Q(i)(z)}i∈N shares the asymptotic properties of the sequence {P (i)(z)}i∈N,
that is,

∥
∥Q

(i)

0 − I
∥
∥ = O

(
σ 2i )

,
∥
∥Q

(i)
j

∥
∥ = O

(
σ 2i )

, j � 1. (8.6)

Now we are ready to describe the algorithm for computing the central coefficients
of the matrix Laurent series H(z) such that F(z)H(z) = I . Pre-multiplying both sides
of the equation F(z)H(z) = I by G−1

0 F(−z), where G0 is the constant coefficient of
F(−z)F (z), yields

Q(1)
(
z2

)
H(z) = G−1

0 F(−z).

Pre-multiplying the above equation by G−1
1 Q(1)(−z2) yields

Q(2)
(
z4

)
H(z) = G−1

1 Q(1)
(−z2

)
F(−z).

Repeating this process i times yields

Q(i)
(
z2i )

H(z) = G−1
i−1Q

(i−1)
(−z2(i−1)) · · · G−1

1 Q(1)
(−z2

)
G−1

0 F(−z) =: K(i)(z) (8.7)

and, from propositions 8.1 and (8.6), since Q(i)(z2i

) converges to the constant polyno-
mial I , we deduce that the matrix coefficients of the matrix Laurent polynomial K(i)(z)
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on the right-hand side of (8.7) converge doubly exponentially to the corresponding co-
efficients of H(z).

For the computation of the central 2q + 1 coefficients of K(i)(z) we may apply the
technique of [4], which we recall below. Let us define

L(j)(z) = G−1
i−1Q

(i−1)
(−z2j−1) · · · G−1

i−jQ
(i−j)(−z)

so that L(1)(z) = G−1
i−1Q

(i−1)(−z) and L(i)(z) = K(i)(z), where we assume Q(0)(z) =
F(z). Then the following equations hold:

L(j)(z) = L(j−1)
(
z2

)
G−1

i−jQ
(i−j)(−z), j = 2 : i, (8.8a)

L(1)(z) = G−1
i−1Q

(i−1)(−z). (8.8b)

Since L(j)(z) is the product of a Laurent polynomial in z2 with a Laurent poly-
nomial in z that has coefficients in the range −q : q, the 2q + 1 central coefficients of
this product only depend on the central 2q + 1 coefficients of the two factors. There-
fore, in order to compute the 2q + 1 central coefficients of L(i)(z) = K(i)(z) we have
to compute only the 2q + 1 central coefficients of the matrix polynomials L(j)(z) for
j = 2 : i. This computation requires computing i products of matrix Laurent polynomi-
als having 2q + 1 coefficients. Each product can be computed by means of FFT-based
fast polynomial arithmetic in O(n2q log2 q + qn3) flops, i.e., by applying the evaluation
interpolation technique at the N th roots of 1, where N is the minimum integer power
of 2 greater than or equal to 2q + 1.

Below we synthesize the algorithm for the computation of the central coefficients
of H(z) = F(z)−1 based on the previous arguments.

Algorithm 8.2 (Inversion by Graeffe iteration).
INPUT: The coefficients F0, . . . , Fq of F(z); an error tolerance ε > 0.
OUTPUT: Approximations to the coefficients Hi , i = 0 : q − 1, of the matrix Laurent
series H(z) = F(z)−1.
COMPUTATION:

1. Compute the coefficients Q
(i)
−q, . . . , Q

(i)
q of the matrix polynomials (8.5) for i =

0, 1, . . . , h − 1, together with the matrices Gi , until ‖Q(i)(z) − I‖∞ � ε.

2. Compute the 2q − 1 central coefficients of the matrix Laurent polynomials L(j)(z) of
(8.8a) and (8.8b) for j = 2 : h.

3. Output the coefficients of L(h)(z).

9. Computing the Wiener–Hopf factorization

The Wiener–Hopf factorization of the matrix Laurent polynomial F(z) of (4.8)
used in algorithm 4.1 for approximating A1/p, can be computed once the coefficients
H0, H1, . . . , Hq of H(z) = F(z)−1 have been approximated. In fact, from [6, theo-
rem 4], we deduce the following result.
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Proposition 9.1. Consider the Laurent matrix polynomial F(z) = z−q�(z) of (4.8) and
let H(z) = F(z)−1 = ∑+∞

i=−∞ ziHi . Then a Wiener–Hopf factorization of F(z),

F(z) = Ŝ
(
z−1

)
Ŝ(z),

is obtained by solving the block (m + 1) × (m + 1) Toeplitz system

Tm








X0

X1
...

Xm








=








I

0
...

0








, Tm =








H0 H1 . . . Hm

H1 H0
. . .

...
...

. . .
. . . H1

Hm . . . H1 H0








,

where m � q, and by setting Ŝ(z) = ∑q

j=0 zq−jXj . Moreover we have Xj = 0 for
j = q + 1 : m.

In this way the computation of the coefficients of Ŝ(z) is reduced to approximating
the coefficients Hj of H(z) for j = 0 : m and to solving a block Toeplitz system.

An alternative way of computing the Wiener–Hopf factor is by means of cyclic
reduction applied to a block tridiagonal block Toeplitz matrix.

Proposition 9.2. Define U, V, W the (q + 1) × (q + 1) block Toeplitz matrices

U =
((

p

q + i − j

)
(
A + (−1)i−j I

)
)

i,j=1 :q+1

,

V =
((

p

p + i − j + 1

)
(
A + (−1)i−j I

)
)

i,j=1 :q+1

,

W =
((

p

i − j − 1

)
(
A + (−1)i−j I

)
)

i,j=1 :q+1

,

where
(
p

m

) = 0 if m < 0 or m > p. Define the sequences

Uk+1 = Uk − VkU
−1
k Wk − WkU

−1
k Uk,

Vk+1 = −VkU
−1
k Vk,

Wk+1 = −WkU
−1
k Wk,

for k = 0, 1, . . . , where U0 = U , V0 = V , W0 = W , and where we assume that Uk is
nonsingular for any k. Then the limit U ∗ = limk→∞ Uk exists and U ∗ = T −1

q , where Tq

is the block Toeplitz matrix defined in proposition 9.1. Moreover, the convergence of Uk

to U ∗ is quadratic.

For proposition 9.1, the first block column of U ∗ provides the coefficients of a
Wiener–Hopf factor Ŝ(z).

We may regard the blocks Uk, Vk and Wk of proposition 9.2 as the blocks forming
the Schur complement generated at the kth step of cyclic reduction [9] applied to the
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semi-infinite block tridiagonal block Toeplitz matrix having subdiagonal, diagonal and
superdiagonal blocks U, V, W , respectively [3]. This fact allows one to deduce stability
and conditioning properties of the sequences Uk, Vk, Wk using linear algebra tools.

Summing up, a Wiener–Hopf factorization can be computed by applying proposi-
tion 9.1 or by means of cyclic reduction. In the former case, once the coefficients Hi ,
i = 0 : q, have been computed, a block (q + 1) × (q + 1) Toeplitz system must be
solved. The cost of this computation ranges from O(q2n3) flops to O(qn3 log q) flops.
In our specific case the blocks of the matrix commute and might have further special
structures. This property can in principle be exploited for reducing the cost of solving
this system. We do not analyze this computational issue in this paper.

Concerning cyclic reduction, at each step a Toeplitz-like matrix must be inverted.
This operation has a cost in the same range as the cost of inverting a block Toeplitz
matrix. However, the specific structure of the blocks might reduce the complexity of
the algorithm. This is a subject of future research. At the moment the algorithm for
computing the pth root of a matrix that has the minimum complexity appears to be the
one based on inverting a matrix Laurent polynomial by means of Graeffe’s iteration.

10. Numerical experiments

We have implemented the algorithms described in the previous sections in For-
tran 90 in double precision (unit roundoff u = 2−53 ≈ 1.1 × 10−16) and compared
them with the rootm function of [14] which implements the Smith algorithm. More
precisely, we report the results of our experiments limited to the following implementa-
tions:

• Int: Algorithm 2.1, based on equation (2.4).

• Sign: Algorithm 3.1 where the sign function is computed by means of the matrix
sign iteration Xk+1 = 1

2(Xk + X−1
k ) and X−1

k is computed by using the appropriate
LAPACK subroutine.

• Li-ei: Laurent polynomial inversion by means of evaluation/interpolation. This
is algorithm 5.1, where the Laurent polynomial inversion is performed with algo-
rithm 8.1 based on evaluation/interpolation.

In these preliminary experiments we have considered the following two test prob-
lems:

• Test 1. The matrix A is the unit ε-circulant matrix, that is, the companion matrix
associated with the polynomial xn − ε where n = 5 and ε = 10−8. The eigenvalues
of A are the fifth roots of unity multiplied by ε1/5. The matrix is normal and its limit
for ε → 0 has no pth root.

• Test 2. The matrix A is the 5 × 5 companion matrix associated with the polynomial∏5
i=1(x − i). Its eigenvalues are clearly 1, 2, 3, 4, 5. The matrix is nonnormal.

In figures 2 and 3 we report the infinity norm of the residual error A − Xp for
several values of p, where X is the computed approximation of A1/p. In the case of
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Figure 2. Infinity norm of the residual errors in computing A1/p for an ε-circulant matrix A.

test 1, the residual errors of the methods Int and Sign are much less than the residual
errors of the Smith method, while the method based on Laurent polynomial inversion
deteriorates significantly as p grows. This can be explained by the possibly large can-
cellation which may occur in the computation of the linear combinations of the coeffi-
cients of the Laurent series since the constants involved in the combination are binomi-
als.

In the case of the companion matrix the Smith method is more stable even though
the performance of both the methods based on numerical integration and on matrix sign
are still comparable with Smith’s method.

Other tests have been performed concerning the implementation of the methods
based on fast A-circulant inversion, Wiener–Hopf factorization, Graeffe iteration and
cyclic reduction. The results have shown a deterioration of the numerical behavior as p

or n grow. More investigation is needed for these methods.

11. Conclusions and open problems

We have introduced a variety of formulas for expressing the principal pth root of
a matrix A in different forms. They reduce the computation of A1/p to numerical inte-
gration on the unit circle, to computing the matrix sign function of a block companion
matrix, to inverting a matrix Laurent polynomial, to computing a Wiener–Hopf factor-
ization, and to applying a fixed point iteration.
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Figure 3. Infinity norm of the residual errors in computing A1/p for the companion matrix A associated

with the polynomial
∏5

i=1(x − i).

Numerical experiments with preliminary implementations of our new algorithms
show some of them to behave well and others to suffer numerical instability. Further
analysis and experimentation is needed to understand and improve the finite precision
behaviour.
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