The Karcher Mean of Points on SO_n

Knut Hüper
joint work with
Jonathan Manton (Univ. Melbourne)

Knut.Hueper@nicta.com.au

National ICT Australia Ltd.
Contents

- Introduction
Contents

- Introduction
 - Centroids, Karcher mean, Fréchet mean
Contents

- Introduction
 - Centroids, Karcher mean, Fréchet mean
 - The Euclidean case
Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
Motivation, why SO_n
Introduction
 - Centroids, Karcher mean, Fréchet mean
 - The Euclidean case

Motivation, why SO_n

Radii of convexity and injectivity
Contents

- Introduction
 - Centroids, Karcher mean, Fréchet mean
 - The Euclidean case
- Motivation, why SO_n
- Radii of convexity and injectivity
- Karcher mean on SO_n
Contents

- Introduction
 - Centroids, Karcher mean, Fréchet mean
 - The Euclidean case
- Motivation, why SO_n
- Radii of convexity and injectivity
- Karcher mean on SO_n
- Cost function, gradient and Hessian
Contents

- Introduction
 - Centroids, Karcher mean, Fréchet mean
 - The Euclidean case
- Motivation, why SO_n
- Radii of convexity and injectivity
- Karcher mean on SO_n
- Cost function, gradient and Hessian
- Newton-type algorithm
- Convergence results
Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case

Motivation, why SO_n

Radii of convexity and injectivity

Karcher mean on SO_n

Cost function, gradient and Hessian

Newton-type algorithm

Convergence results

Discussion, outlook
Several ways to define a centroid x_C

Given $x_1, \ldots, x_k \in \mathbb{R}^n$.
Several ways to define a centroid x_C

Given $x_1, \ldots, x_k \in \mathbb{R}^n$.

1) As the sum

$$x_C := \frac{1}{n} \sum_{i=1}^{k} x_i.$$
Several ways to define a centroid x_C

Given $x_1, \ldots, x_k \in \mathbb{R}^n$.

1) As the sum

$$x_C := \frac{1}{n} \sum_{i=1}^{k} x_i.$$

2) Equivalently, to ask the vector sum

$$\overrightarrow{xx_1} + \cdots + \overrightarrow{xx_k}$$

to vanish.
3) (Appolonius of Perga) As unique minimum of

$$x_c := \arg\min_{x \in \mathbb{R}} \sum_{i=1}^{k} ||x - x_i||^2.$$
Several ways to define a centroid x_C

3) (Appolonius of Perga) As unique minimum of

$$x_c := \arg\min_{x \in \mathbb{R}} \sum_{i=1}^{k} \|x - x_i\|^2.$$

4) More generally, assign to each x_i a mass m_i, $\sum m_i = 1$. By induction

$$x_{c_{1,2}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$x_{c_{1,2,3}} = \frac{(m_1 + m_2)x_{c_{1,2}} + m_3 x_3}{m_1 + m_2 + m_3}, \ldots$$

Also works on spheres.
Several ways to define a centroid x_C

5) Axiomatically:
Let $\Phi : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \supset \Xi \rightarrow \mathbb{R}^n$ be a rule mapping points to its centroid.
Several ways to define a centroid x_C

5) Axiomatically:
Let $\Phi : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \supset \Xi \to \mathbb{R}^n$ be a rule mapping points to its centroid.

Axioms:

(A1) Φ is symmetric in its arguments.

(A2) Φ is smooth.

(A3) Φ commutes with the induced action of SE_n on $\mathbb{R}^n \times \cdots \times \mathbb{R}^n$.

(A4) If $\Omega \subset \mathbb{R}^n$ is an open convex ball then Φ maps $\Omega \times \cdots \times \Omega$ into Ω.
(A1) Centroid is independent of the ordering of the points.

(A2) Small changes in the location of the points causes only small changes in x_c.

(A3) Invariance w.r.t. translation and rotation.

(A4) Centroid lies in the "same region" as the points themselves. Especially, $\Phi(x, ., x) = x$.
Why centroids on manifolds?

- Engineering, Mathematics, Physics
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
 - smoothing data
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
 - smoothing data
 - plate tectonics
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
 - smoothing data
 - plate tectonics
 - sequence dep. continuum modeling of DNA
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
 - smoothing data
 - plate tectonics
 - sequence dep. continuum modeling of DNA
 - comparison theorems (diff. geometry)
Why centroids on manifolds?

- Engineering, Mathematics, Physics
 - statistical inferences on manifolds
 - pose estimation in vision and robotics
 - shape analysis and shape tracking
 - fuzzy control on manifolds (defuzzification)
 - smoothing data
 - plate tectonics
 - sequence dep. continuum modeling of DNA
 - comparison theorems (diff. geometry)
 - stochastic flows of mass distributions on manifolds (jets in gravitational field)
The special orthogonal group SO_n

\[SO_n := \{ X \in \mathbb{R}^{n \times n} | X^\top X = I, \det X = 1 \} . \]
The special orthogonal group SO_n

$$SO_n := \{ X \in \mathbb{R}^{n \times n} | X^\top X = I, \det X = 1 \}.$$

Facts:
The special orthogonal group

SO_n

$SO_n := \{ X \in \mathbb{R}^{n \times n} \mid X^\top X = I, \det X = 1 \}$.

Facts:

a) SO_n is a Lie group,
The special orthogonal group

\[SO_n := \{ X \in \mathbb{R}^{n \times n} | X^\top X = I, \det X = 1 \} \].

Facts:

a) \(SO_n \) is a Lie group,
b) is in general not diffeomorphic to a sphere,
The special orthogonal group SO_n

$SO_n := \{ X \in \mathbb{R}^{n\times n} | X^\top X = I, \det X = 1 \}.$

Facts:

a) SO_n is a Lie group,
b) is in general not diffeomorphic to a sphere,
c) can be equipped with a Riemannian metric, therefore notion of distance is available,
The special orthogonal group SO_n

$SO_n := \{ X \in \mathbb{R}^{n \times n} | X^\top X = I, \det X = 1 \}$.

Facts:
- SO_n is a Lie group,
- is in general not diffeomorphic to a sphere,
- can be equipped with a Riemannian metric, therefore notion of distance is available,
- is compact and connected, but in general not simply connected.
a) We think of SO_n as a submanifold of $\mathbb{R}^{n \times n}$.
a) We think of SO_n as a submanifold of $\mathbb{R}^{n \times n}$.

b) Tangent space

$T_X SO_n \cong \{XA | A \in \mathbb{R}^{n \times n}, A^\top = -A\}$.
a) We think of SO_n as a submanifold of $\mathbb{R}^{n\times n}$.

b) Tangent space

$$T_X SO_n \cong \{ XA | A \in \mathbb{R}^{n\times n}, A^\top = -A \}.$$

c) (Scaled) Frobenius inner product on $\mathbb{R}^{n\times n}$

$$\langle U, V \rangle = \frac{1}{2} \text{tr}(V^\top U)$$

restricts to

$$\langle XU, XV \rangle = \frac{1}{2} \text{tr}(V^\top U), \quad U, V \in T_X SO_n.$$

Gives Riemannian metric on SO_n.

CESAME LLN, 15/7/04 – p.9/25
d) Let $X \in SO_n$, $\Omega^\top = -\Omega \in \mathbb{R}^{n \times n}$.
d) Let $X \in SO_n$, $\Omega^\top = -\Omega \in \mathbb{R}^{n \times n}$.

$$
\gamma : \mathbb{R} \to SO_n, \\
t \mapsto X \cdot e^{t \cdot \Omega}
$$

is a geodesic through $X = \gamma(0)$.
d) Let $X \in SO_n$, $\Omega^\top = -\Omega \in \mathbb{R}^{n \times n}$.

$$\gamma : \mathbb{R} \rightarrow SO_n,$$

$$t \mapsto X \cdot e^{t \cdot \Omega}$$

is a geodesic through $X = \gamma(0)$.

$$\int_0^T \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle^{\frac{1}{2}} \, dt$$

is minimal (for T not too large..)
e) Squared distance between any two points

\[X, Y \in SO_n \]
e) Squared distance between any two points
\(X, Y \in SO_n \)

\[
d^2(X, Y) = \frac{1}{2} \min_{A^\top = -A, \exp(A) = X^\top Y} \text{tr}(AA^\top)
\]

\[
= -\frac{1}{2} \text{tr}(\log(X^\top Y))^2
\]
Centroid of SO_n by axioms

Let

$$\Xi \subset SO_n \times \cdots \times SO_n$$

be open and consider $\Phi : \Xi \rightarrow SO_n$.
Centroid of SO_n by axioms

Let

$$\Xi \subset SO_n \times \cdots \times SO_n$$

be open and consider $\Phi : \Xi \rightarrow SO_n$.

(A1) Φ is symmetric in its arguments.
Centroid of SO_n by axioms

Let

$$\Xi \subset SO_n \times \cdots \times SO_n$$

be open and consider $\Phi : \Xi \to SO_n$.

(A1) Φ is symmetric in its arguments.
(A2) Φ is smooth.
Let

$$\Xi \subset SO_n \times \cdots \times SO_n$$

be open and consider $$\Phi : \Xi \to SO_n$$.

(A1) $$\Phi$$ is symmetric in its arguments.
(A2) $$\Phi$$ is smooth.
(A3) $$\Phi$$ commutes with left and right translation.
Let

\[\mathcal{E} \subset SO_n \times \cdots \times SO_n \]

be open and consider \(\Phi : \mathcal{E} \rightarrow SO_n \).

(A1) \(\Phi \) is symmetric in its arguments.
(A2) \(\Phi \) is smooth.
(A3) \(\Phi \) commutes with left and right translation.
(A4) If \(\Omega \subset SO_n \) is an open convex ball then \(\Phi \) maps \(\Omega \times \cdots \times \Omega \) into \(\Omega \).
\(\Omega \subset SO_n \) is defined to be convex if for any \(X, Y \in SO_n \) there is a unique geodesic wholly contained in \(\Omega \) connecting \(X \) to \(Y \) and such that it is also the unique minimising geodesic in \(SO_n \) connecting \(X \) to \(Y \).
\(\Omega \subset SO_n \) is defined to be convex if for any \(X, Y \in SO_n \) there is a unique geodesic wholly contained in \(\Omega \) connecting \(X \) to \(Y \) and such that it is also the unique minimising geodesic in \(SO_n \) connecting \(X \) to \(Y \).

A function \(f : \Omega \rightarrow \mathbb{R} \) is convex if for any geodesic \(\gamma : [0, 1] \rightarrow \Omega \), the function \(f \circ \gamma : [0, 1] \rightarrow \mathbb{R} \) is convex in the usual sense, that is,

\[
f(\gamma(t)) \leq (1 - t)f(\gamma(0)) + tf(\gamma(1)), \quad t \in [0, 1].
\]
Maximal convex ball (centered at the identity I_n)
Maximal convex ball (centered at the identity I_n)

$$B(I, r) = \{ X \in SO_n | d(I, X) < r \}.$$

r_{conv} is the largest r s.t. $B(I, r)$ is convex and $d(I, X)$ is convex on $B(I, r)$.

\[\text{Notion of convexity cont’d} \]
Maximal convex ball (centered at the identity I_n)

\[B(I, r) = \{ X \in SO_n | d(I, X) < r \}. \]

r_{conv} is the largest r s.t. $B(I, r)$ is convex and $d(I, X)$ is convex on $B(I, r)$.

Theorem: For SO_n it holds $r_{\text{conv}} = \frac{\pi}{2}$.

For $\mathfrak{s}o_n := \{ A \in \mathbb{R}^{n \times n} \mid A^\top = -A \}$ let

$$\exp : \mathfrak{s}o_n \to SO_n,$$

$$\Psi \mapsto \exp(\Psi),$$

and

$$B(0, \rho) = \{ A \in \mathfrak{s}o_n \mid \frac{1}{2} \text{tr} A^\top A < \rho^2 \}.$$
Injectivity radius

For $\mathfrak{s}_n := \{A \in \mathbb{R}^{n \times n} \mid A^\top = -A\}$ let

$$
\exp : \mathfrak{s}_n \rightarrow SO_n,
\Psi \mapsto \exp(\Psi),
$$

and

$$
B(0, \rho) = \{A \in \mathfrak{s}_n \mid \frac{1}{2} \text{tr} A^\top A < \rho^2\}.
$$

The injectivity radius r_{inj} of \mathfrak{s}_n is the largest ρ s.t. $\exp \mid_{B(0,\rho)}$ is a diffeomorphism onto its image.
For $\mathfrak{so}_n := \{ A \in \mathbb{R}^{n \times n} | A^\top = -A \}$ let

$$\exp : \mathfrak{so}_n \rightarrow SO_n,$$

$$\Psi \mapsto \exp(\Psi),$$

and

$$B(0, \rho) = \{ A \in \mathfrak{so}_n | \frac{1}{2} \text{tr} A^\top A < \rho^2 \}.$$

The injectivity radius r_{inj} of \mathfrak{so}_n is the largest ρ s.t. $\exp \big|_{B(0, \rho)}$ is a diffeomorphism onto its image.

Theorem: For \mathfrak{so}_n it holds $r_{\text{inj}} = \pi$.
Let $\Omega \subset SO_n$ be open.
Let $\Omega \subset SO_n$ be open. A Karcher mean of $Q_1, \ldots, Q_k \in SO_n$ is defined to be a minimiser of

$$f : \Omega \to \mathbb{R},$$

$$f(X) = \sum_{i=1}^{k} d^2(Q_i, X).$$
Let \(\Omega \subset SO_n \) be open. A Karcher mean of \(Q_1, \ldots, Q_k \in SO_n \) is defined to be a minimiser of

\[
f : \Omega \to \mathbb{R},
\]

\[
f(X) = \sum_{i=1}^{k} d^2(Q_i, X).
\]

Existence, uniqueness?
Results

Theorem (MH’04):
The critical points of

$$f : \Omega \rightarrow \mathbb{R},$$

$$f(X) = \sum_{i=1}^{k} d^2(Q_i, X)$$

are precisely the solutions of

$$\sum_{i=1}^{k} \log(Q_i^\top X) = 0.$$
Theorem (MH’04):
The Karcher mean is well defined and satisfies axioms (A1)-(A4) of a centroid on the open set

$$\Xi = \bigcup_{Y \in SO_n} B(Y, \pi/2) \times \cdots \times B(Y, \pi/2).$$
Theorem (MH’04): The Hessian of f represented along geodesics

$$\frac{d^2}{dt^2} (f \circ \gamma)(t) \bigg|_{t=0}$$

is always positive definite.
\(f : \Omega \rightarrow \mathbb{R}, \)

\[
f(X) = \sum_{i=1}^{k} d^2(Q_i, X) = -\sum_{i=1}^{k} \frac{1}{2} \text{tr} \left(\log(X^\top Q_i) \right)^2.
\]
\(f : \Omega \rightarrow \mathbb{R}, \)

\[
f(X) = \sum_{i=1}^{k} d^2(Q_i, X) = - \sum_{i=1}^{k} \frac{1}{2} \text{tr}(\log(X^\top Q_i))^2.
\]

\[
\text{D} f(X) X A = - \sum_{i=1}^{k} \text{tr}(\log(Q_i^\top X) A)
\]

\[
= \left\langle 2X \sum_{i=1}^{k} \log(Q_i^\top X), X A \right\rangle.
\]

\[
= \text{grad} f(X)
\]
\[\frac{d^2}{d\varepsilon^2} f \left(X e^{\varepsilon A} \right)_{\varepsilon=0} = \operatorname{vec}^\top A \cdot \mathcal{H}(X) \cdot \operatorname{vec} A \]
\[
\frac{d^2}{d \varepsilon^2} f \left(X e^{\varepsilon A} \right)_{\varepsilon=0} = \text{vec}^\top A \cdot \mathcal{H}(X) \cdot \text{vec} A
\]

with \((n^2 \times n^2)\)-matrix

\[
\mathcal{H}(X) := \sum_{i=1}^{k} Z_i(X) \coth(Z_i(X))
\]
\[
\frac{d^2}{d\epsilon^2} f \left(X e^{\epsilon A} \right)_{\epsilon=0} = \text{vec}^\top A \cdot \mathcal{H}(X) \cdot \text{vec} A
\]

with \((n^2 \times n^2)\)-matrix

\[
\mathcal{H}(X) := \sum_{i=1}^{k} Z_i(X) \coth(Z_i(X))
\]

and

\[
Z_i(X) := \frac{I_n \otimes \log(Q_i^\top X) + \log(Q_i^\top X) \otimes I_n}{2}
\]
Given $Q_1, \ldots, Q_k \in SO_n$, compute a local minimum of f.

Step 1: Set $X \in SO_n$ to an initial estimate.

Step 2: Compute $\sum_{i=1}^{k} \log (Q_i^T X)$.

Step 3: Stop if $\| \sum_{i=1}^{k} \log (Q_i^T X) \|$ is suff. small.

Step 4: Compute the update direction

$$ \text{vec } A_{\text{opt}} = - (\mathcal{H}(X))^{-1} \sum_{i=1}^{k} \text{vec}(\log (Q_i^T X)) $$

Step 5: Set $X := X e^{A_{\text{opt}}}$.

Step 6: Go to Step 2.
Theorem (MH’04):
The algorithm is an intrinsic Newton method.
Theorem (MH’04):
The algorithm is an intrinsic Newton method.

Theorem:
If the algorithm converges, then it converges locally quadratically fast.
Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.
Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.

- Different RM, e.g. Cayley-like, gives different function, geodesics, etc., but typically $\|KM_{cay} - KM_{exp}\| \ll 1$.
- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.
- Different RM, e.g. Cayley-like, gives different function, geodesics, etc., but typically
 $\|K M_{\text{cay}} - K M_{\text{exp}}\| \ll 1$.
- $(\mathcal{H}(X))^{-1}$ via EVD.
Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \(\Rightarrow \) global convergence.

- Different RM, e.g. Cayley-like, gives different function, geodesics, etc., but typically
 \[\| K M_{\text{cay}} - K M_{\text{exp}} \| \ll 1. \]

- \((\mathcal{H}(X))^{-1} \) via EVD.

- Quasi-Newton (rank-one updates).
• Linear convergent algorithm
(joint work with Robert Orsi, ANU)

\[X_{i+1} = X_i e^{\frac{1}{k} \sum_{j=1}^{k} \log(X_i^T Q_j)} \]
Discussion, outlook

- **Linear convergent algorithm**
 (joint work with Robert Orsi, ANU)

\[
X_{i+1} = X_i e^{\frac{1}{k} \sum_{j=1}^{k} \log(X_i^T Q_j)}
\]

- **Centroids on homogeneous (symmetric) spaces.**
Discussion, outlook

- Linear convergent algorithm
 (joint work with Robert Orsi, ANU)

\[X_{i+1} = X_i e^{\frac{1}{k} \sum_{j=1}^{k} \log(X_i^T Q_j)} \]

- Centroids on homogeneous (symmetric) spaces.

- Project with NICTA vision/robotic program
 (Richard Hartley) to treat SE_3 case.