
Performance &
Benchmarking
CIS 5710
Computer Organization & Design

CIS 5710 | Prof Joseph Devietti

• Metrics
• CPU Performance
• Comparing Performance
• Benchmarks
• Performance Laws

This Unit

CIS 5710 | Prof Joseph Devietti

Performance Metrics

CIS 5710 | Prof Joseph Devietti

• Latency (execution time): time to finish fixed task
• Throughput (tput/bandwidth): tasks per unit time

• often contradictory (improve tput but hurt latency)
• often easier to improve throughput than latency

• e.g., baking bread
• Fastest way to send 10TB of data? (1+

gbits/second)

Performance: Latency vs. Throughput

CIS 5710 | Prof Joseph Devietti

AWS’s Answer

“Never underestimate the bandwidth of a station
wagon full of tapes hurtling down the highway.”

Andrew Tanenbaum
Computer Networks, 4th ed., p. 91

CIS 5710 | Prof Joseph Devietti

CPU Performance

CIS 5710 | Prof Joseph Devietti

• Latency = seconds / program =
• (instructions/program) * (cycles/instruction) * (seconds/cycle)

• Instructions / program: dynamic instruction count
• Function of program, compiler, ISA

• Cycles / instruction: CPI
• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period
• Function of micro-architecture, technology parameters

• Optimize each component
• this class focuses mostly on CPI (caches, parallelism)
• …but some on dynamic instruction count (compiler, ISA)
• …and some on clock frequency (pipelining, technology)

Basic Performance Equation

CIS 5710 | Prof Joseph Devietti

• CPI: Cycle/instruction on average
• IPC = 1/CPI

• Used more frequently than CPI
• Intuitive “bigger is better” metric, harder to compute with

• Different instructions have different cycle costs
• E.g., add takes 1 cycle, divide takes >10 cycles

• Depends on relative instruction frequencies
• CPI example

• A program executes equal: integer, floating point (FP),
memory ops

• Cycles per instruction type: integer = 1, memory = 2, FP = 3
• What is the CPI? (33% * 1) + (33% * 2) + (33% * 3) = 2
• Caveat: this sort of calculation ignores many effects

• Back-of-the-envelope arguments only

Cycles per Instruction (CPI) and IPC

CIS 5710 | Prof Joseph Devietti

• Assume a processor with instruction frequencies
and costs
• Integer ALU: 50%, 1 cycle
• Load: 20%, 5 cycle
• Store: 10%, 1 cycle
• Branch: 20%, 2 cycle

• Which change would improve performance more?
• A. “Branch prediction” to reduce branch cost to 1 cycle?
• B. Faster data memory to reduce load cost to 3 cycles?

• Compute CPI
• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 CPI

CPI Example

CIS 5710 | Prof Joseph Devietti

• How are CPI and execution-time measured?
• Execution time? stopwatch timer (Unix “time” command)
• CPI = (CPU time * clock frequency) / dynamic insn count
• How is dynamic instruction count measured?

• CPI breakdown: CPICPU, CPIMEM, etc.
• So we know what performance problems are and what to fix
• Hardware event counters

• Widely available, e.g., RV’s rdinstret counts dyn insns
• Calculate CPI using event frequencies & event costs

• Cycle-level micro-architecture simulation
+ Measure anything, and impact of potential fixes!
• Method of choice for many micro-architects

Measuring CPI

CIS 5710 | Prof Joseph Devietti

• 1 Hertz = 1 cycle per second
1 Ghz is 1 cycle per nanosecond

• Architects often ignore dynamic instruction count
• but general public (mostly) ignores CPI
• and instead equates clock frequency with performance!

• Which processor would you buy?
• Processor A: CPI = 2, clock = 5 GHz
• Processor B: CPI = 1, clock = 3 GHz
• B is faster (assuming same ISA/compiler)

• Classic example
• Core i7 faster clock-per-clock than Core 2
• Same ISA and compiler!

• partial performance metrics are dangerous!

Frequency as a performance metric

CIS 5710 | Prof Joseph Devietti

Comparing Performance

CIS 5710 | Prof Joseph Devietti

• Speedup of A over B
• X = Latency(B)/Latency(A) (divide by the faster)
• X = Throughput(A)/Throughput(B) (divide by the slower)

• A is X% faster than B if
• X = ((Latency(B)/Latency(A)) – 1) * 100
• X = ((Throughput(A)/Throughput(B)) – 1) * 100
• Latency(A) = Latency(B) / (1+(X/100))
• Throughput(A) = Throughput(B) * (1+(X/100))

• Car/bus example
• Latency? Car is 3 times (and 200%) faster than bus
• Throughput? Bus is 4 times (and 300%) faster than car

Comparing Performance - Speedup

CIS 5710 | Prof Joseph Devietti

• Program A runs for 200 cycles
• Program B runs for 350 cycles
• Percent increase and decrease are not the same

• % increase: ((350 – 200)/200) * 100 = 75%
• % decrease: ((350 - 200)/350) * 100 = 42.3%

• Speedup:
• 350/200 = 1.75 – Program A is 1.75x faster than program B
• As a percentage: (1.75 – 1) * 100 = 75%

• If program C is 1x faster than A, how many cycles
does C run for? – 200 (the same as A)
• What if C is 1.5x faster? 133 cycles (50% faster than A)

Speedup, % Increase/Decrease

CIS 5710 | Prof Joseph Devietti

• Arithmetic: (1/N) * ∑P=1..N P_latency
• For units that are proportional to time (e.g., latency)

• Harmonic: N / ∑P=1..N 1/P_throughput
• For units that are inversely proportional to time (e.g.,

throughput)
• You can add latencies, but not throughputs

• Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
• Throughput(P1+P2,A) != Throughput(P1,A) +

Throughput(P2,A)
• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
• Average is not 60 miles/hour

• Geometric: N√∏P=1..N P_speedup
• For unitless quantities (e.g., speedup ratios)

Means/Averages

CIS 5710 | Prof Joseph Devietti

• You drive two miles
• 30 miles per hour for the first mile
• 90 miles per hour for the second mile

• Question: what was your average speed?
• Hint: the answer is not 60 miles per hour
• Why?

For Example…

CIS 5710 | Prof Joseph Devietti

• You drive two miles
• 30 miles per hour for the first mile
• 90 miles per hour for the second mile

• Question: what was your average speed?
• Hint: the answer is not 60 miles per hour
• 0.03333 hours per mile for 1 mile
• 0.01111 hours per mile for 1 mile
• 0.02222 hours per mile on average
• = 45 miles per hour

Answer

CIS 5710 | Prof Joseph Devietti

Measurement Challenges

CIS 5710 | Prof Joseph Devietti

• Are –O3 compiler optimizations faster than –O0?
• Why might they not be?

• other processes running
• not enough runs
• not using a high-resolution timer
• cold-start effects
• managed languages: JIT/GC/VM startup

• solution: experiment design + statistics

Measurement Challenges

CIS 5710 | Prof Joseph Devietti

• Two kinds of errors: systematic and random
• removing systematic error

• aka “measurement bias” or “not measuring what you think
you are”

• Run on an unloaded system
• Measure something that runs for at least several seconds
• Understand the system being measured

• simple empty-for-loop test => compiler optimizes it away
• Vary experimental setup
• Use appropriate statistics

• removing random error
• Perform many runs: how many is enough?

Experiment Design

CIS 5710 | Prof Joseph Devietti

• Program runs in 20s on machine A, 20.1s on
machine B

• Is this a meaningful difference?

Determining performance differences

co
un

t

execution time

the distribution
matters!

CIS 5710 | Prof Joseph Devietti

• Compute mean and confidence interval (CI)

• Meaning of the 95% confidence interval x ± 1.3
• collected 1 sample with n experiments
• given repeated sampling, x will be within 1.3 of the true

mean 95% of the time
• If CIs overlap, differences not statistically

significant

Confidence Intervals

±t s
n

t = critical value from t-distribution
s = sample standard error

n = # experiments in sample

CIS 5710 | Prof Joseph Devietti

• setup
• 130 experiments, mean = 45.4s, stderr = 10.1s

• What’s the 95% CI?
• t = 1.962 (depends on %CI and # experiments)

• look it up in a stats textbook or online
• at 95% CI, performance is 45.4 ±1.74 seconds
• What if we want a smaller CI?

CI example

CIS 5710 | Prof Joseph Devietti

Benchmarking

CIS 5710 | Prof Joseph Devietti

• Q: what does performance of a chip mean?
• A: Nothing! There must be some associated

workload
• Workload: set of tasks someone (ideally, you) cares about

• Benchmarks: standardized workloads
• Used to compare performance across machines
• Either are, or highly representative of, actual programs

people run
• Micro-benchmarks

• Tiny programs that isolate certain aspects of performance
• Not representative of complex behaviors of real applications
• Examples: binary tree search, matrix-vector add

Workloads

CIS 5710 | Prof Joseph Devietti

• performance wrt reference machine
• Latency SPECmark

• For each benchmark
• Take odd number of samples
• Choose median
• Take speedup (reference machine / your machine)

• Take “average” (Geometric mean) of speedups over all
benchmarks

• Throughput SPECmark
• Run multiple benchmarks in parallel on multiple-processor

system

Example: SPECmark 2017

CIS 5710 | Prof Joseph Devietti

• Set of cross-platform multicore benchmarks
• Can run on iPhone, Android, laptop, desktop, etc

• Tests integer, floating point, memory bandwidth
performance

• GeekBench stores all results online
• Easy to check scores for many different systems,

processors
• Pitfall: Workloads are simple microbenchmarks

Example: GeekBench

CIS 5710 | Prof Joseph Devietti

Example: GTA V

http://www.anandtech.com/show/9306/the-nvidia-geforce-gtx-980-ti-review

CIS 5710 | Prof Joseph Devietti

Performance Laws

CIS 5710 | Prof Joseph Devietti

Amdahl’s Law

1

(1−P)+ P
S

How much will an
optimization improve

performance?

P = proportion of running time
affected by optimization

S = speedup

Everyone knows Amdahl’s law, but quickly forgets it.
—Thomas Puzak, IBM, 2007

CIS 5710 | Prof Joseph Devietti

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

$B

US Federal Gov’t Expenses 2017

Department of Health and Human Services

Social Security Administration

Department of Defense--Military Programs

all others

Department of the Treasury

Department of Veterans Affairs

Department of Agriculture

Department of Education

Amdahl’s Law for the US Budget

https://www.whitehouse.gov/omb/historical-tables/ scrapping Dept of Education
($111B) cuts budget by 2.7%

https://www.whitehouse.gov/omb/historical-tables/

CIS 5710 | Prof Joseph Devietti

Amdahl’s Law for Parallelization

1

(1−P)+ P
N

How much will parallelization
improve performance?

P = proportion of parallel code
N = threads

CIS 5710 | Prof Joseph Devietti

Amdahl’s Law visualization

from Wikipedia

https://en.wikipedia.org/wiki/Amdahl%27s_law

CIS 5710 | Prof Joseph Devietti

• Amdahl’s Law requires extremely parallel code to
take advantage of large multicores

• two approaches:
• strong scaling: shrink the serial component

+same problem runs faster
- becomes harder and harder to do

• weak scaling: increase the problem size
+natural in many problem domains: internet services,

climate modeling, video games
- doesn’t work in some domains

Increasing proportion of parallel code

CIS 5710 | Prof Joseph Devietti

How long am I going to be in this line?

use Little’s Law!

CIS 5710 | Prof Joseph Devietti

• Assumption:
• system is in steady state, i.e., average arrival rate = average

departure rate
• No assumptions about:

• arrival/departure/wait time distribution or service order
(FIFO, LIFO, etc.)

• Works on any queuing system
• Works on systems of systems

Little’s Law
L = λW

L = items in the system
λ = average arrival rate
W = average wait time

CIS 5710 | Prof Joseph Devietti

• Only need to measure two of L, λ and W
• often difficult to measure L directly

• Describes how to meet performance requirements
• e.g., to get high throughput (λ), we need either:

• low latency per request (small W)
• service requests in parallel (large L)

• Addresses many computer performance
questions
• sizing queue of L1, L2, L3 misses
• sizing queue of outstanding network requests for 1 machine

• or the whole datacenter
• calculating average latency for a design

Little’s Law for Computing Systems

CIS 5710 | Prof Joseph Devietti

• Can we have low latency and high throughput?

• M/M/1 queue assumptions
• task arrival is independent of previous tasks (Markovian)
• service time is Markovian
• service 1 task at a time
• arrival rate unaffected by queue size

Latency vs Throughput

𝐿
𝑆
=

1
1 − 𝑅𝑆

S = service time
L = total latency (queueing + service)

R = arrival rate

CIS 5710 | Prof Joseph Devietti

M/M/1 queue tradeoffs

from Three Other Models of Computer System Performance by Mark Hill

low latency
low throughput

high throughput
high latency

https://www.sigarch.org/three-other-models-of-computer-system-performance-part-2/

CIS 5710 | Prof Joseph Devietti

• Can we have low latency and high throughput?
• With unscheduled (Markovian) task arrival, no
• With scheduled arrivals, yes

• this is why your dentist uses appointments
• also requires accurate latency estimates

M/M/1 queue

CIS 5710 | Prof Joseph Devietti

Optimizing Performance

CIS 5710 | Prof Joseph Devietti

• How utilized is my machine?
• key resources: memory and compute
• case study: AMD Opteron X2 CPU

• 15 GB/sec memory bandwidth (DRAM)
• 17.6 GFlops/sec compute bandwidth (ALUs)
• typically have more compute bw than memory bw

When can I stop optimizing?

CIS 5710 | Prof Joseph Devietti

• aka “arithmetic intensity”
• how much compute on each byte brought from

memory?
• units: Flops/byte
• each iteration of dot product:

• load 8 bytes
• 1 multiply, 1 add
• operational intensity = 0.25 Flops/byte

Operational Intensity

float A[N] = ..., B[N] = ...;
for (int i = 0; i < N; i++) {
 dot_product += A[i] * B[i];
}

CIS 5710 | Prof Joseph Devietti

• What is the operational intensity for this code?

Operational Intensity

double A[N] = ...;
for (int i = 0; i < N; i++) {
 A[i] = A[i] * 2.0;
}

CIS 5710 | Prof Joseph Devietti

• see also the Roofline paper
• key question: am I keeping the ALUs fed?

Roofline Model

Fl
op

s
pe

r s
ec

on
d

operational intensity (Flops/byte)

pe
ak

 m
em

ory
 ba

nd
widt

h

peak compute bandwidth

ridge point (peak compute/op intensity = peak mem)

https://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

CIS 5710 | Prof Joseph Devietti

• Roofline model for AMD
Opteron X2 CPU
• log-log plot
• 17.6 GFlops/sec compute bw
• 15 GB/sec memory bw

• Figure 1a from Roofline
paper

Roofline example

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

CIS 5710 | Prof Joseph Devietti

Rooflines for different machines

CIS 5710 | Prof Joseph Devietti

• Don’t be misled by peak performance
• “Performance you are guaranteed not to exceed”
• peak > actual/average/sustained performance

• Why? Caches misses, branch mispredictions, etc.
• For actual performance X, machine capability must be > X

• Easier to “buy” bandwidth than latency
• say we want to transport more cargo via train:

• (1) build another track or (2) make a train twice as fast?
• can you use bandwidth to reduce latency?

• Build a balanced system
• System performance often determined by slowest component

Performance Rules of Thumb

CIS 5710 | Prof Joseph Devietti

• Fixed workload: dhrystone benchmark
• Focus on improving frequency with pipelining

• measure frequency with Vivado timing reports
• Focus on improving IPC with a cache

• reduce time spent waiting for memory

Benchmarking our RV processors

