
CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 1

CIS 571
Computer Organization and Design

Unit 7: Branch Prediction

Based on slides by Profs. Amir Roth, Milo Martin & C.J. Taylor

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 2

This Unit: Branch Prediction
• Control hazards

• Branch prediction

CPUMem I/O

System software
AppApp App

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 3

Readings
• P&H

• Chapter 4

Control Dependences and
Branch Prediction

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 4

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 5

What About Branches?

• Branch speculation
• Could just stall to wait for branch outcome (two-cycle penalty)
• Fetch past branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

D X

M

PC

A

B

IR

O

B

IR

PC

IR

S
X

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 6

Big Idea: Speculative Execution

• Speculation: “risky transactions on chance of profit”

• Speculative execution
• Execute before all parameters known with certainty

• Correct speculation
+ Avoid stall, improve performance

• Incorrect speculation (mis-speculation)
– Must abort/flush/squash incorrect insns

– Must undo incorrect changes (recover pre-speculation state)

• Control speculation: speculation aimed at control hazards

• Unknown parameter: are these the correct insns to execute next?

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 7

Control Speculation Mechanics
• Guess branch target, start fetching at guessed position

• Doing nothing is implicitly guessing target is the next sequential PC
• We were already speculating before!

• Can actively guess other targets: dynamic branch prediction

• Execute branch to verify (check) guess
• Correct speculation? keep going
• Mis-speculation? Flush mis-speculated insns

• Hopefully haven’t modified permanent state (Regfile, DMem)
+ Happens naturally in in-order 5-stage pipeline

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 8

Dynamic Branch Prediction Components

• Step #1: is it a branch?
• Easy after decode...

• Step #2: is the branch taken or not taken?
• Direction predictor (applies to conditional branches only)
• Predicts taken/not-taken

• Step #3: if the branch is taken, where does it go?
• Easy after decode…

regfile

DI
B
P

Branch Prediction Steps

CIS 571: Comp. Org. & Des. | Prof. Joe Devietti | Branch Prediction 9

is insn a
branch?

T or NT?

PC+4
no

yes

Not Taken

Taken

predicted
target branch target buffer

direction predictor

• Which insn’s behavior are
we trying to predict?

• Where does PC come
from?

hardware structure:

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 10

When to Perform Branch Prediction?

• Option #1: During Decode
• Look at instruction opcode to determine branch instructions
• Can calculate next PC from instruction (for PC-relative branches)
– One cycle “mis-fetch” penalty even if branch predictor is correct

• Option #2: During Fetch?
• How do we do that?

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4⟵r5,r4 F D X M W

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 11

Branch Recovery

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

D X

M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S
X

• Branch recovery: what to do when branch is actually taken
• Insns that are in F and D are wrong
• Flush them, i.e., replace them with nops
+ They haven’t written permanent state yet (regfile, DMem)
– Two cycle penalty for taken branches

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 12

Branch Speculation and Recovery

• Mis-speculation recovery: what to do on wrong guess
• Not too painful in a short, in-order pipeline
• Branch resolves in X
+ Younger insns (in F, D) haven’t changed permanent state
• Flush insns currently in D and X (i.e., replace with nops)

1 2 3 4 5 6 7 8 9
addi r3⟵r1,1 F D X M W
bnez r3,targ F D X M W
st r6⟶[r7+4] F D X M W
mul r10⟵r8,r9 F D X M W

1 2 3 4 5 6 7 8 9
addi r3⟵r1,1 F D X M W
bnez r3,targ F D X M W
st r6⟶[r7+4] F D -- -- --
mul r10⟵r8,r9 F -- -- -- --

targ:add r4⟵r4,r5 F D X M W

Correct:

Recovery:

speculative

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 14

Dynamic Branch Prediction

• Dynamic branch prediction: hardware guesses outcome
• Start fetching from guessed address
• Flush on mis-prediction

PC
Insn
Mem

Register
File

S
X

s1 s2 d

+
4

<<
2

TG
PC

IR

TG
PC

A

B

IR

O

B

IR

D X M

nopnop

BP
<>

IS IT A BRANCH?

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 16

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 17

Revisiting Branch Prediction Components

• Step #1: is it a branch?

• Easy after decode... during fetch: predictor
• Step #2: is the branch taken or not taken?

• Direction predictor (later)

• Step #3: if the branch is taken, where does it go?

• Branch target predictor (BTB)

• Supplies target PC if branch is taken

regfile

DI
B
P

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 18

Branch Target Buffer
• Learn from past, predict the future

• Record the past in a hardware structure

• Branch target buffer (BTB):
• Record a list of branches we have seen

+ code doesn’t change
• PC indexes table of bits

• each entry is 1 bit: is there a branch here?
• What about aliasing?

• Two PCs with the same lower bits?

branch
[9:2] 1:0[31:10]

branch

PC
BTB

is it a branch?

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 19

Branch Target Buffer

• BTB entries are too coarse-grained

+ Record only branches that were taken at least once

• a never-taken branch might as well be a NOP

– doesn’t help enough

• better idea: Tag each BTB entry
• remember some things precisely, rather than everything imprecisely

• record a subset of actual taken branches

• is_a_branch = (BTB[PC].branch && BTB[PC].tag == PC)

• How big is each tag?

branch
[9:2] 1:0[31:10]

branch

PC
BTB

is it a branch?

tag

tag

BRANCH DIRECTION
PREDICTION

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 20

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 21

Revisiting Branch Prediction Components

• Step #1: is it a branch?
• Easy after decode... during fetch: predictor

• Step #2: is the branch taken or not taken?
• Direction predictor

• Step #3: if the branch is taken, where does it go?
• Branch target predictor (BTB)
• Supplies target PC if branch is taken

regfile

DI
B
P

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 22

Branch Direction Prediction
• Learn from past, predict the future

• Record the past in a hardware structure
• Direction predictor (DIRP)

• Map conditional-branch PC to taken/not-taken (T/N) decision
• Individual conditional branches often biased or weakly biased

• 90%+ one way or the other considered “biased”
• Why? Loop back edges, checking for uncommon conditions

• Bimodal predictor: simplest predictor
• PC indexes Branch History Table of bits (0 = N, 1 = T), no tags
• Essentially: branch will go same way it went last time

• What about aliasing?
• Two PC with the same lower bits?
• No problem, just a prediction!

T or NT
[9:2] 1:0[31:10]

T or NT

PC BHT

Prediction (taken or
not taken)

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 23

Bimodal Branch Predictor
• simplest direction predictor

• PC indexes table of bits (0 = N, 1 = T),
no tags

• Essentially: branch will go same way it
went last time

• Problem: inner loop branch below
for (i=0;i<100;i++)

for (j=0;j<3;j++)
// whatever

– Two “built-in” mis-predictions per
inner loop iteration

– Branch predictor “changes its mind
too quickly”

Tim
e

State

Prediction

O
utcom

e Result?

1 N N T Wrong
2 T T T Correct
3 T T T Correct
4 T T N Wrong
5 N N T Wrong
6 T T T Correct
7 T T T Correct
8 T T N Wrong
9 N N T Wrong
10 T T T Correct
11 T T T Correct
12 T T N Wrong

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 24

Two-Bit Saturating Counters (2bc)
• Two-bit saturating counters (2bc)

[Smith 1981]
• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)
• Adds “hysteresis”

• Force predictor to mis-predict twice
before “changing its mind”

• One mispredict each loop execution
(rather than two)

+ Fixes this pathology (which is not
contrived, by the way)

• Can we do even better?

Tim
e

State

Prediction

Outcom
e Result?

1 N N T Wrong
2 n N T Wrong
3 t T T Correct
4 T T N Wrong
5 t T T Correct
6 T T T Correct
7 T T T Correct
8 T T N Wrong
9 t T T Correct
10 T T T Correct
11 T T T Correct
12 T T N Wrong

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 27

Branches may be correlated
• Consider:

for (i=0; i<1000000; i++) { // Highly biased
if (i % 3 == 0) { // Locally correlated

…
}
if (random() % 2 == 0) { // Unpredictable

…
}
if (i % 3 == 0) {

… // Globally correlated
}

}

Gshare History-Based Predictor
• Exploits observation that branch outcomes are correlated
• Maintains recent branch outcomes in Branch History

Register (BHR)
• In addition to BHT of counters (typically 2-bit sat. counters)

• How do we incorporate history into our predictions?
• Use PC xor BHR to index into BHT. Why?

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 28

PC

BHR BH
T

direction prediction (T/NT)

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 29

Gshare History-based Predictor
• Gshare working example

• assume program has one branch
• BHT: one 1-bit DIRP entry
• 3BHR: last 3 branch outcomes
• train counter, and update BHR

after each branch

Tim
e

State

BH
R

Prediction

O
utcom

e Result?

1 N NNN N T wrong
2 N NNT N T wrong
3 N NTT N T wrong
4 N TTT N N correct
5 N TTN N T wrong
6 N TNT N T wrong
7 T NTT T T correct
8 N TTT N N correct
9 T TTN T T correct
10 T TNT T T correct
11 T NTT T T correct
12 N TTT N N correct

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 32

Hybrid Predictor
• Hybrid (tournament) predictor [McFarling 1993]

• Attacks correlated predictor BHT capacity problem
• Idea: combine two predictors

• Simple bimodal predictor for history-independent branches
• Correlated predictor for branches that need history
• Chooser assigns branches to one predictor or the other
• Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches
+ 90–95% accuracy

PC

BHR BH
T

BH
T

ch
oo
se
r

BRANCH TARGET
PREDICTION

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 33

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 34

Revisiting Branch Prediction Components

• Step #1: is it a branch?
• Easy after decode... during fetch: predictor

• Step #2: is the branch taken or not taken?
• Direction predictor

• Step #3: if the branch is taken, where does it go?
• Branch target predictor (BTB)
• Supplies target PC if branch is taken

regfile

DI
B
P

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 35

Branch Target Buffer, Again
• Branch target buffer (BTB):

• “guess” the future PC based on past behavior
• “Last time the branch X was taken, it went to address Y”

• “So, in the future, if address X is fetched, fetch address Y next”
• Essentially: branch will go to same place it went last time
• PC indexes table of target addresses

• use tags to precisely remember a subset of branch targets
• What about aliasing?

• Two PCs with the same lower bits?
• No problem, just a prediction!

target
[9:2] 1:0[31:10]

target

PC BTB

predicted target

tag

tag

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 36

Branch Target Buffer (continued)
• At Fetch, how do we know we have a branch? We don’t…

• …all insns access BTB in parallel with Imem Fetch
• BTB predicts which insn are branches, and targets

• tag each entry with its corresponding PC
• Update BTB on every taken branch insn, record target PC:

• BTB[PC].tag = PC, BTB[PC].target = target of branch
• All insns access at Fetch in parallel with Imem

• Check for tag match, indicates insn at that PC is a branch
• otherwise, assume insn is not a branch

• Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4

PC

+
4

BTB
tag

==

target predicted target

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 37

Why Does a BTB Work?
• Because most control insns use direct targets

• Target encoded in insn itself ® same “taken” target every time

• What about indirect targets?
• Target held in a register ® can be different each time
• Two indirect call idioms

+ Dynamically linked functions (DLLs): target always the same
• Dynamically dispatched (virtual) functions: hard but uncommon

• Also two indirect unconditional jump idioms
• Switches: hard but uncommon
– Function returns: hard and common

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 38

Return Address Stack (RAS)

• Return address stack (RAS)
• Call instruction? RAS[TopOfStack++] = PC+4
• Return instruction? Predicted-target = RAS[--TopOfStack]
• Q: how can you tell if an insn is a call/return before decoding it?

• mark some BTB entries as “returns”, or use another table

PC

+
4

BTB
tag

==

target predicted target

RAS

REDUCING BRANCH
PENALTY

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 39

40

Reducing Penalty: Fast Branches

• Fast branch: can decide at D, not X
• Test must be comparison to zero or equality, no time for ALU
+ New taken branch penalty is 1
– Additional insns (slt) for more complex tests, must bypass to D too

PC
Insn
Mem

Register
File
s1 s2 d

+
4

<<
2

D

X M
S
X

<>
0

O

B

IR

A

B

IR

PC

IR

S
X

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 42

Reducing Penalty: Fast Branches

• Fast branch: targets control-hazard penalty

• Basically, branch insns that can resolve at D, not X

• Test must be comparison to zero or equality, no time for ALU
+ New taken branch penalty is 1

– Additional comparison insns (e.g., cmplt, slt) for complex tests

– Must bypass into decode stage now, too

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W
st r6⟶[r7+4] F D -- -- --

targ:add r4⟵r5,r4 F D X M W

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 43

Fast Branch Performance
• Assume: Branch: 20%, 75% of branches are taken

• CPI = 1 + 20% * 75% * 1 = 1 + 0.20*0.75*1 = 1.15
• 15% slowdown

• But wait, fast branches assume only simple comparisons
• Fine for MIPS
• But not fine for ISAs with “branch if $1 > $2” operations

• In such cases, say 25% of branches require an extra insn
• CPI = 1 + (20% * 75% * 1) + 20%*25%*1(extra insn) = 1.2

• Example of ISA and micro-architecture interaction
• Type of branch instructions
• Another option: “Delayed branch” or “branch delay slot”
• What about condition codes?

Putting It All Together
• BTB & branch direction predictor during fetch

• If branch prediction correct, no taken branch penalty

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 44

PC

+
4

BTB
tag

==

target predicted target

RAS

BHT
taken/not-taken

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 45

Branch Prediction Performance
• Dynamic branch prediction

• 20% of instruction branches
• Simple predictor: branches predicted with 75% accuracy

• CPI = 1 + (20% * 25% * 2) = 1.1
• More advanced predictor: 95% accuracy

• CPI = 1 + (20% * 5% * 2) = 1.02

• Branch mis-predictions still a big problem though
• Pipelines are long: typical mis-prediction penalty is 10+ cycles
• For cores that do more per cycle, predictions more costly (later)

PREDICATION

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 46

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 47

Predication
• Instead of predicting which way we’re going, why not go

both ways?
• compute a predicate bit indicating a condition
• ISA includes predicated instructions

• predicated insns either execute as normal or as NOPs, depending
on the predicate bit

• Examples
• x86 cmov performs conditional load/store
• 32b ARM allows almost all insns to be predicated

• 64b ARM has predicated reg-reg move, inc, dec, not
• Nvidia GPU ISA supports predication on most insns
• predicate bits are like LC4 NZP bits

• x86 FLAGS, ARM condition codes

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 48

Predication Example
• Instead of predicting which way we’re going, why not go

both ways?
• compute a predicate bit indicating a condition
• ISA includes predicated instructions

• predicated insns either execute as normal or as NOPs, depending
on the predicate bits

; predicated LC4
CMP R1 R2
ADDzp R3 <- R3 R4
SUBn R3 <- R3 R5

// C code
if (a <= b) {
x += y;

} else {
x -= z;

}

; original LC4
CMP R1 R2
BRn else
ADD R3 <- R3 R4
JMP after
else:
SUB R3 <- R3 R5
after:

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 49

Predication Performance
• Predication overhead is additional insns

• Sometimes overhead is zero
• for if-then statement where condition is true

– Most of the times it isn’t
• if-then-else statement, only one of the paths is useful

• Calculation for a given branch, predicate (vs speculate) if…
• Average number of additional insns > overall mis-prediction penalty
• For an individual branch

• Mis-prediction penalty in a 5-stage scalar pipeline = 2
• Mis-prediction rate is <50%, and often <20%
• Overall mis-prediction penalty <1 and often <0.4

• So when is predication ever worth it?

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 50

Predication Performance

• What does predication actually accomplish?

• In a scalar 5-stage pipeline (penalty = 2): nothing!

• In a 4-way superscalar 15-stage pipeline (penalty = 60)?

• Use when mis-predictions >10% and insn overhead <6

• In a 4-way out-of-order superscalar (penalty ~ 150)

• potentially useful in more situations

• typically only desirable for branches that mis-predict frequently

• Other predication advantages

• Low-power: eliminates the need for a large branch predictor

• Real-time: predicated code performs consistently

• Predication disadvantages

• wasted time/energy compared to correct prediction

• doesn’t nest well

CIS 571: Comp. Org. & Des. | Dr. Joe Devietti | Branch Prediction 51

Summary
• Control hazards

• Branch target prediction
• Branch direction prediction

CPUMem I/O

System software
AppApp App

