
CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 1

CIS 501: Computer Architecture

Unit 5: Performance & Benchmarking

Slides developed by Joe Devietti, Milo Martin & Amir Roth at Upenn
with sources that included University of Wisconsin slides

by Mark Hill, Guri Sohi, Jim Smith, and David Wood

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 2

This Unit
• Metrics
• CPU Performance
• Comparing Performance
• Benchmarks
• Performance Laws

Performance Metrics

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 3

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 4

Performance: Latency vs. Throughput
• Latency (execution time): time to finish a fixed task
• Throughput (bandwidth): number of tasks per unit time

• Different: exploit parallelism for throughput, not latency (e.g., bread)
• Often contradictory (latency vs. throughput)

• Will see many examples of this
• Choose definition of performance that matches your goals

• Scientific program? latency. web server? throughput.

• Example: move people 10 miles
• Car: capacity = 5, speed = 60 miles/hour
• Bus: capacity = 60, speed = 20 miles/hour
• Latency: car = 10 min, bus = 30 min
• Throughput: car = 15 PPH (count return trip), bus = 60 PPH

• Fastest way to send 10TB of data? (1+ gbits/second)

Amazon Does This!

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 5

“Never underestimate the bandwidth of a
station wagon full of tapes hurtling down the
highway.”

Andrew Tanenbaum
Computer Networks, 4th ed., p. 91

CPU Performance

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 7

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 8

Frequency as a performance metric

• 1 Hertz = 1 cycle per second

1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz

• (Micro-)architects often ignore dynamic instruction count…

• … but general public (mostly) also ignores CPI

• and instead equate clock frequency with performance!

• Which processor would you buy?

• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

• Core i7 faster clock-per-clock than Core 2

• Same ISA and compiler!

• partial performance metrics are dangerous!

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 9

MIPS (performance metric, not the ISA)
• (Micro) architects often ignore dynamic instruction count

• Typically work in one ISA/one compiler ® treat it as fixed

• CPU performance equation becomes
• Latency: seconds / insn = (cycles / insn) * (seconds / cycle)
• Throughput: insn / second = (insn / cycle) * (cycles / second)

• MIPS (millions of instructions per second)
• Cycles / second: clock frequency (in MHz)
• Example: CPI = 2, clock = 500 MHz ® 0.5 * 500 MHz = 250 MIPS

• Pitfall: may vary inversely with actual performance
– Compiler removes insns, program gets faster, MIPS goes down
– Work per instruction varies (e.g., multiply vs. add, FP vs. integer)

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 10

Cycles per Instruction (CPI)
• CPI: Cycle/instruction on average

• IPC = 1/CPI
• Used more frequently than CPI
• Favored because “bigger is better”, but harder to compute with

• Different instructions have different cycle costs
• E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

• Depends on relative instruction frequencies

• CPI example
• A program executes equal: integer, floating point (FP), memory ops
• Cycles per instruction type: integer = 1, memory = 2, FP = 3
• What is the CPI? (33% * 1) + (33% * 2) + (33% * 3) = 2
• Caveat: this sort of calculation ignores many effects

• Back-of-the-envelope arguments only

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 11

CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle
• Load: 20%, 5 cycle
• Store: 10%, 1 cycle
• Branch: 20%, 2 cycle

• Which change would improve performance more?
• A. “Branch prediction” to reduce branch cost to 1 cycle?
• B. Faster data memory to reduce load cost to 3 cycles?

• Compute CPI
• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 CPI

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 12

Measuring CPI
• How are CPI and execution-time actually measured?

• Execution time? stopwatch timer (Unix “time” command)
• CPI = (CPU time * clock frequency) / dynamic insn count
• How is dynamic instruction count measured?

• More useful is CPI breakdown (CPICPU, CPIMEM, etc.)
• So we know what performance problems are and what to fix
• Hardware event counters

• Available in most processors today
• One way to measure dynamic instruction count
• Calculate CPI using counter frequencies / known event costs

• Cycle-level micro-architecture simulation
+ Measure exactly what you want … and impact of potential fixes!
• Method of choice for many micro-architects

Comparing Performance

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 13

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 14

Comparing Performance - Speedup
• Speedup of A over B

• X = Latency(B)/Latency(A) (divide by the faster)
• X = Throughput(A)/Throughput(B) (divide by the slower)

• A is X% faster than B if
• X = ((Latency(B)/Latency(A)) – 1) * 100
• X = ((Throughput(A)/Throughput(B)) – 1) * 100
• Latency(A) = Latency(B) / (1+(X/100))
• Throughput(A) = Throughput(B) * (1+(X/100))

• Car/bus example
• Latency? Car is 3 times (and 200%) faster than bus
• Throughput? Bus is 4 times (and 300%) faster than car

Speedup and % Increase and Decrease

• Program A runs for 200 cycles

• Program B runs for 350 cycles

• Percent increase and decrease are not the same.
• % increase: ((350 – 200)/200) * 100 = 75%

• % decrease: ((350 - 200)/350) * 100 = 42.3%

• Speedup:
• 350/200 = 1.75 – Program A is 1.75x faster than program B

• As a percentage: (1.75 – 1) * 100 = 75%

• If program C is 1x faster than A, how many cycles does C
run for? – 200 (the same as A)
• What if C is 1.5x faster? 133 cycles (50% faster than A)

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 15

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 16

Mean (Average) Performance Numbers
• Arithmetic: (1/N) * ∑P=1..N P_latency

• For units that are proportional to time (e.g., latency)

• Harmonic: N / ∑P=1..N 1/P_throughput
• For units that are inversely proportional to time (e.g., throughput)

• You can add latencies, but not throughputs
• Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
• Average is not 60 miles/hour

• Geometric: N√∏P=1..N P_speedup
• For unitless quantities (e.g., speedup ratios)

For Example…

• You drive two miles
• 30 miles per hour for the first mile
• 90 miles per hour for the second mile

• Question: what was your average speed?
• Hint: the answer is not 60 miles per hour
• Why?

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 17

Answer

• You drive two miles
• 30 miles per hour for the first mile
• 90 miles per hour for the second mile

• Question: what was your average speed?
• Hint: the answer is not 60 miles per hour
• 0.03333 hours per mile for 1 mile
• 0.01111 hours per mile for 1 mile
• 0.02222 hours per mile on average
• = 45 miles per hour

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 18

Measurement Challenges

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 19

Measurement Challenges
• Are –O3 compiler optimizations really faster than –O0?
• Why might they not be?

• other processes running
• not enough runs
• not using a high-resolution timer
• cold-start effects
• managed languages: JIT/GC/VM startup

• solution: experiment design + statistics

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 20

Experiment Design
• Two kinds of errors: systematic and random
• removing systematic error

• aka “measurement bias” or “not measuring what you think you are”
• Run on an unloaded system
• Measure something that runs for at least several seconds
• Understand the system being measured

• simple empty-for-loop test => compiler optimizes it away
• Vary experimental setup
• Use appropriate statistics

• removing random error
• Perform many runs: how many is enough?

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 21

Determining performance differences
• Program runs in 20s on machine A, 20.1s on machine B
• Is this a meaningful difference?

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 22

co
un

t

execution time

the distribution
matters!

Confidence Intervals
• Compute mean and confidence interval (CI)

• Meaning of the 95% confidence interval x � 1.3
• collected 1 sample with n experiments
• given repeated sampling, x will be within 1.3 of the true mean 95%

of the time
• If CIs overlap, differences not statistically significant

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 23

±t s
n

t = critical value from t-distribution
s = sample standard error
n = # experiments in sample

CI example
• setup

• 130 experiments, mean = 45.4s, stderr = 10.1s
• What’s the 95% CI?
• t = 1.962 (depends on %CI and # experiments)

• look it up in a stats textbook or online
• at 95% CI, performance is 45.4 �1.74 seconds
• What if we want a smaller CI?

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 24

Benchmarking

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 25

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 26

Processor Performance and Workloads

• Q: what does performance of a chip mean?

• A: nothing, there must be some associated workload

• Workload: set of tasks someone (you) cares about

• Benchmarks: standard workloads

• Used to compare performance across machines

• Either are, or highly representative of, actual programs people run

• Micro-benchmarks: non-standard non-workloads

• Tiny programs used to isolate certain aspects of performance

• Not representative of complex behaviors of real applications

• Examples: binary tree search, towers-of-hanoi, 8-queens, etc.

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 27

Example: SPECmark 2006/2017
• performance wrt reference machine
• Latency SPECmark

• For each benchmark
• Take odd number of samples
• Choose median
• Take speedup (reference machine / your machine)

• Take “average” (Geometric mean) of speedups over all
benchmarks

• Throughput SPECmark
• Run multiple benchmarks in parallel on multiple-processor system

Example: GeekBench
• Set of cross-platform multicore benchmarks

• Can run on iPhone, Android, laptop, desktop, etc

• Tests integer, floating point, memory bandwidth
performance

• GeekBench stores all results online
• Easy to check scores for many different systems, processors

• Pitfall: Workloads are simple, may not be a completely
accurate representation of performance
• We know they evaluate compared to a baseline benchmark

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 28

Example: GTA V

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 29

http://www.anandtech.com/show/9306/the-nvidia-geforce-gtx-980-ti-review

Performance Laws

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 30

Amdahl’s Law

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 31

1

(1−P)+ P
S

How much will an
optimization improve
performance?

P = proportion of running time
affected by optimization
S = speedup

What if I speedup 25% of a
program’s execution by 2x? 1.14x speedup

What if I speedup 25% of a
program’s execution by ∞? 1.33x speedup

Amdahl’s Law for the US Budget

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

$B

US Federal Gov’t Expenses 2017

Department of Health and Human Services

Social Security Administration

Department of Defense--Military Programs

all others

Department of the Treasury

Department of Veterans Affairs

Department of Agriculture

Department of Education

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 32

https://www.whitehouse.gov/omb/historical-tables/ scrapping Dept of Education
($111B) cuts budget by 2.7%

https://www.whitehouse.gov/omb/historical-tables/

Amdahl’s Law for Parallelization

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 33

1

(1−P)+ P
N

How much will parallelization
improve performance?

P = proportion of parallel code
N = threads

What is the max speedup for a
program that’s 10% serial?

What about 1% serial?

Increasing proportion of parallel code
• Amdahl’s Law requires extremely parallel code to take

advantage of large multiprocessors
• two approaches:

• strong scaling: shrink the serial component
+same problem runs faster
- becomes harder and harder to do

• weak scaling: increase the problem size
+natural in many problem domains: internet systems, scientific

computing, video games
- doesn’t work in other domains

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 34

Use Little’s Law!

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 35

How long am I going to be in this line?

Little’s Law

• Assumption:
• system is in steady state, i.e., average arrival rate = average

departure rate
• No assumptions about:

• arrival/departure/wait time distribution or service order (FIFO,
LIFO, etc.)

• Works on any queuing system
• Works on systems of systems
CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 36

L = λW
L = items in the system
λ = average arrival rate
W = average wait time

Little’s Law for Computing Systems
• Only need to measure two of L, λ and W

• often difficult to measure L directly
• Describes how to meet performance requirements

• e.g., to get high throughput (λ), we need either:
• low latency per request (small W)
• service requests in parallel (large L)

• Addresses many computer performance questions
• sizing queue of L1, L2, L3 misses
• sizing queue of outstanding network requests for 1 machine

• or the whole datacenter
• calculating average latency for a design

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 37

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 38

Performance Rules of Thumb
• Design for actual performance, not peak performance

• Peak performance: “Performance you are guaranteed not to exceed”
• Greater than “actual” or “average” or “sustained” performance

• Why? Caches misses, branch mispredictions, limited ILP, etc.
• For actual performance X, machine capability must be > X

• Easier to “buy” bandwidth than latency
• say we want to transport more cargo via train:

• (1) build another track or (2) make a train that goes twice as fast?
• Use bandwidth to reduce latency

• Build a balanced system
• Don’t over-optimize 1% to the detriment of other 99%
• System performance often determined by slowest component

Measuring LC-4 Processor
Performance

39CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance

Benchmarking the LC-4 processors

• Fixed workload: wireframe trace
• Focus on improving frequency with pipelining

• measure frequency with Vivado timing reports

• Focus on improving IPC with superscalar

• see how many cycles the wireframe trace takes

40CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance

Summary
• Latency = seconds / program =

• (instructions / program) * (cycles / instruction) * (seconds / cycle)
• Instructions / program: dynamic instruction count

• Function of program, compiler, instruction set architecture (ISA)
• Cycles / instruction: CPI

• Function of program, compiler, ISA, micro-architecture
• Seconds / cycle: clock period

• Function of micro-architecture, technology parameters

• Optimize each component
• this class focuses mostly on CPI (caches, parallelism)
• …but some on dynamic instruction count (compiler, ISA)
• …and some on clock frequency (pipelining, technology)

CIS 501: Comp. Arch. | Prof. Joe Devietti | Performance 41

