Large Scale Learning

Data hypergrowth: an example

e Reuters-21578: about 100000000
10K docs (ModApte)

Bekkerman et al, SIGIR 2001 10000000

e RCV1: about 807K docs

Bekkerman & Scholz, CIKM 2008

1000000

* LinkedIn job title data: 100000
about 100M docs

Bekkerman & Gavish, KDD 2011 10000
2000 2004 2008 2012

Slide by R. Bekkerman, M. Bilenko, J. Langford

New age of big data

* The world has gone mobile
— 5 billion cellphones produce daily data

* Social networks have gone online
— Twitter produces 200M tweets a day

* Crowdsourcing is the reality

— Labeling of 100,000+ data instances is doable
* Within a week ©

Slide by R. Bekkerman, M. Bilenko, J. Langford

Size matters

* One thousand data instances

* One million data instances

* One billion data instances

 One trillion data instances

Those are not different numbers,
those are different mindsets ©

Slide by R. Bekkerman, M. Bilenko, J. Langford

One million data instances

e Currently, the most active zone
* Can be crowdsourced
* Can be processed by a quadratic algorithm

— Once parallelized

e 1M data collection cannot be too diverse

— But can be too homogenous

* Preprocessing / data probing is crucial

Slide by R. Bekkerman, M. Bilenko, J. Langford

Big dataset cannot be too sparse

1M data instances cannot belong to 1M classes
— Simply because it’s not practical to have 1M classes ©

 Here’s a statistical experiment, in text domain:
— 1M documents
— Each document is 100 words long
— Randomly sampled from a unigram language model

* No stopwords
— 245M pairs have word overlap of 10% or more

e Real-world datasets are denser than random

Slide by R. Bekkerman, M. Bilenko, J. Langford

One billion data instances

e Web-scale

e Guaranteed to contain data in different formats
— ASCII text, pictures, javascript code, PDF documents...

e Guaranteed to contain (near) duplicates
* Likely to be badly preprocessed ©
* Storage is anissue

Slide by R. Bekkerman, M. Bilenko, J. Langford

One trillion data instances

 Beyond the reach of the modern technology

* Peer-to-peer paradigm is (arguably) the only way to
process the data

* Data privacy / inconsistency / skewness issues
— Can’t be kept in one location
— Is intrinsically hard to sample

Slide by R. Bekkerman, M. Bilenko, J. Langford

Not enough (clean) training data?

* Use existing labels as a guidance rather than a
directive

— In a semi-supervised clustering framework

 Orlabel more datal ©
— With a little help from the crowd

Slide by R. Bekkerman, M. Bilenko, J. Langford

Crowdsourcing labeled data

* Crowdsourcing is a tough business ©
— People are not machines

 Any worker who can game the system will
game the system

* Validation framework + qualification tests are a
must

e Labeling a lot of data can be fairly expensive

Slide by R. Bekkerman, M. Bilenko, J. Langford

Let’s talk about how we can
learn with datasets this large...

Stochastic Gradient Descent

Consider Learning with Numerous Data

e Logistic regression objective:

J(0) = —— S [yslog ho(x:) + (L —) log (1 — hp(x:)]

1 . l J
=1 Y
coste (X, Y;)

n

* Fit via gradient descent'

 What is the computational complexity in terms of n?

Gradient Descent
Batch Gradient Descent

Initialize ©
Repeat { o
0j < 0; _agzg(he (Xi) — Yi) Tij for;=0...d
} = — J
0
%J(m

Stochastic Gradient Descent

Initialize O
Randomly shuffle dataset
Repeat{ (Typically 1-10x)
For: = 1...n, do
0j < 0 —a(he (xi) — yi) i forj = 0...d

\

} - 4 -
o0 coste (X;, Y;) .

Batch vs Stochastic GD

Batch GD Stochastic GD

-0. | 1 Il 1 _0.5 | 1 1 1
-1000 -500 0 500 1000 1500 2000 -1000 -500 0 500 1000 1500 2000

90 90

* Learning rate a is typically held constant

* Can slowly decrease a over time to force 8 to converge:

constant]
e.g., a=

iterationNumber + constant?2

Based on slide by Andrew Ng 19

Graph- and
Data-Parallelism

Based on slide by Andrew Ng

Map-Reduce

¥

Computer 1

Computer 2

B
’?@&Nﬂp
Computer 3

.

Computer 4

Combine results

21

Multi-Core Machines

AN

Core 2 Combine results

Core 3

Core 4

Base

d

Map-Reduce for Batch GD

Split dataset up into chunnks (e.g., with n = 400) to
compute 4, g, - > (ho (%) = i) @i

n

1=1

™ m=

e templ =307 (hg (%) — i)

/

(X17Y1) (X100’Y1oo)
™ w= 200

> _r.-r temp2 =) i~ (he (Xi) — ¥i) Tij

(X101>Y1o1) (X200>Y200)

B 5 300
(Xa01:¥201) -+ (X300:Y300) —> L—J temp3 = 27:201 (hg (Xz> — yi) Tij

(X3017Y301) (X400,Y400)

™ = 40
T FJ temp4 = Zi:%Ol (he (xi) — ¥i) Tij

Training set

on example by Andrew Ng

Map-Reduce for Batch GD

Split dataset up into chunks (e.g., with n = 400) to
1 mn
COmpUte 93' — (9j — Oéﬁ Z (h@ (Xz) — yi) Lij

1=1
!_T—~

templ
/
(X1,¥1) -+ (X100:Y100)
'_'" temp2 Combine results
/>
(X101 101) -+ (Xo00:Y200)

0; < 0; — a—Ztempz
(Xa01:¥201) - (X300:¥300) /
—~tempd
(X301:¥301) - (Xa00:¥400) ‘—,,g
\ temp4

Training set

Based on example by Andrew Ng

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

k-means on MapReduce

 Mappers read data portions and centroids

* Mappers assign data instances to clusters

 Mappers compute new local centroids and local
cluster sizes

 Reducers aggregate local centroids (weighted by
local cluster sizes) into new global centroids

e Reducers write the new centroids

Slide by R. Bekkerman, M. Bilenko, J. Langford

Discussion on MapReduce

 MapReduce is not designed for iterative processing
— Mappers read the same data again and again

* MapReduce looks too low-level to some people
— Data analysts are traditionally SQL folks ©

* MapReduce looks too high-level to others

— A lot of MapReduce logic is hard to adapt
* Example: grouping documents by words

Slide by R. Bekkerman, M. Bilenko, J. Langford

Graphlab

e Open-source parallel machine learning GraphLab
* Developed at Carnegie Mellon Univ.
* Available at www.graphlab.org

?ét’;'r: Triangle Counting in Twitter Graph

aC

40MUsers Total: 34.8 Billion Triangles
1.2B Edges

GraphLab API (C++)

MPI/TCP-IP PThreads Hadoop/HDFS
Hadoop
Linux Cluster Services (Amazon AWS) 59 Minutes, 1 Mac Mini!
GraphLab automatically distributions computation GraphChi
64 Machines, 1024 Cores
1.5 Minutes
Graphlab

Input Output

T

s

computation runs in memory

30

For more information...

 Cambridge Univ. Press

SCALING UP e Released in 2011

MACHINE e 21 chapters
L EARNING . Covering

Parallel and Distributed Approaches

— Platforms

— Algorithms

— Learning setups
— Applications

Slide by R. Bekkerman, M. Bilenko, J. Langford

Learning Multiple Tasks via
Knowledge Transfer

Transfer Learning

Idea: Transfer information from one or more
source tasks to improve learning on a target task

Data Model Step 1
< ~— Source
© ~— _Knowledge -
& H o °
5, Y

NI Do b L

m Plenty of training data for each source task

ric Eaton

36

Transfer Learning

Idea: Transfer information from one or more
source tasks to improve learning on a target task

New
Target
Task

m Insufficient training data on the target task

ric Eaton

37

Benefits of Transfer in Learning

77

m Primary goal: learning the target task 77 “better

new

after first learning related source tasks 7, ..., 7,

“Better” means some combination of:

More rapid Improved initial Higher achievable
learning performance performance
° _ o _ o | Wwith transfer
o § with transfer o § with transfer o
c — c E— (-
(q0) (q0) (q0)
€ _ € _ € y 4
o) without o) without S / without
T transfer T transfer = transfer
Q Q Q 4
(a (a (a
Training Examples # Training Examples # Training Examples

Figures adapted from (DARPA/IPTO, 2005)

Secondary goal: creating chunks of reusable knowledge

Eric Eaton 38

Multi-Task Learning

m ldea: Learn all task models simultaneously,

sharing knowledge (Caruana 1997; Zhang et al. 2008;
Kumar & Daumé 2012)

Data Model

rask 1 [l agy 3:@
Task 2 ‘ Multi-Task 10@

. Learner
Tas.kN !‘ s@o

Eric Eaton 39

