

Large Scale Learning

Data hypergrowth: an example

Reuters-21578: about 10000
 10K docs (ModApte)

Bekkerman et al, SIGIR 2001

RCV1: about 807K docs

Bekkerman & Scholz, CIKM 2008

• LinkedIn job title data: about 100M docs

Bekkerman & Gavish, KDD 2011

New age of big data

- The world has gone mobile
 - 5 billion cellphones produce daily data
- Social networks have gone online
 - Twitter produces 200M tweets a day
- Crowdsourcing is the reality
 - Labeling of 100,000+ data instances is doable
 - Within a week 🙂

Size matters

- One thousand data instances
- One million data instances
- One billion data instances
- One trillion data instances

Those are not different numbers, those are different mindsets ③

One million data instances

- Currently, the most active zone
- Can be crowdsourced
- Can be processed by a quadratic algorithm
 - Once parallelized
- 1M data collection cannot be too diverse
 - But can be too homogenous
- Preprocessing / data probing is crucial

Big dataset cannot be too sparse

- 1M data instances cannot belong to 1M classes
 Simply because it's not practical to have 1M classes [©]
- Here's a statistical experiment, in text domain:
 - 1M documents
 - Each document is 100 words long
 - Randomly sampled from a unigram language model
 - No stopwords
 - 245M pairs have word overlap of 10% or more
- Real-world datasets are denser than random

One billion data instances

- Web-scale
- Guaranteed to contain data in different formats
 ASCII text, pictures, javascript code, PDF documents...
- Guaranteed to contain (near) duplicates
- Likely to be badly preprocessed ^(C)
- Storage is an issue

One trillion data instances

- Beyond the reach of the modern technology
- Peer-to-peer paradigm is (arguably) the only way to process the data
- Data privacy / inconsistency / skewness issues
 - Can't be kept in one location
 - Is intrinsically hard to sample

Not enough (clean) training data?

- Use existing labels as a *guidance* rather than a directive
 - In a semi-supervised clustering framework
- Or label more data! 😳
 - With a little help from the crowd

Crowdsourcing labeled data

- Crowdsourcing is a tough business ③
 - People are not machines
- Any worker who can game the system **will** game the system
- Validation framework + qualification tests are a must
- Labeling a lot of data can be fairly expensive

Let's talk about how we can learn with datasets this large...

Stochastic Gradient Descent

Consider Learning with Numerous Data

• Logistic regression objective:

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i))] \frac{1}{\cos \theta(\mathbf{x}_i, y_i)}$$

• Fit via gradient descent:

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}_i \right) - y_i \right) x_{ij}$$

• What is the computational complexity in terms of *n*?

Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Initialize θ Randomly shuffle dataset Repeat { (Typically 1 - 10x) For i = 1...n, do $\theta_j \leftarrow \theta_j - \alpha (h_{\theta}(\mathbf{x}_i) - y_i) x_{ij}$ for j = 0...d}

Batch vs Stochastic GD

- Learning rate α is typically held constant
- Can slowly decrease α over time to force θ to converge: e.g., $\alpha = \frac{\text{constant1}}{\frac{1}{1} + \frac{1}{2} + \frac{1}{2$

 $\overline{iterationNumber + constant2}$

Graph- and Data-Parallelism

Map-Reduce

Multi-Core Machines

Map-Reduce for Batch GD

Split dataset up into chunks (e.g., with n = 400) to compute $\theta_{j} \leftarrow \theta_{j} - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(\mathbf{x}_{i}) - y_{i}) x_{ij}$ temp1 = $\sum_{i=1}^{100} (h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i) x_{ii}$ $(\mathbf{x}_{1}, \mathbf{y}_{1}) \dots (\mathbf{x}_{100}, \mathbf{y}_{100})$ temp2 = $\sum_{i=101}^{200} (h_{\theta}(\mathbf{x}_i) - y_i) x_{ij}$ $(\mathbf{x}_{101}, \mathbf{y}_{101}) \dots (\mathbf{x}_{200}, \mathbf{y}_{200})$ temp3 = $\sum_{i=201}^{300} (h_{\theta}(\mathbf{x}_i) - y_i) x_{ij}$ $(\mathbf{x}_{201}, \mathbf{y}_{201}) \dots (\mathbf{x}_{300}, \mathbf{y}_{300})$ $(\mathbf{x}_{301}, \mathbf{y}_{301}) \dots (\mathbf{x}_{400}, \mathbf{y}_{400})$ temp4 = $\sum_{i=301}^{400} (h_{\theta}(\mathbf{x}_i) - y_i) x_{ij}$ Training set

Based on example by Andrew Ng

Map-Reduce for Batch GD

Based on example by Andrew Ng

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

Parallelizing k-means

Slide by R. Bekkerman, M. Bilenko, J. Langford

k-means on MapReduce

- Mappers read data portions and centroids
- Mappers assign data instances to clusters
- Mappers compute new local centroids and local cluster sizes
- Reducers **aggregate local centroids** (weighted by local cluster sizes) into new global centroids
- Reducers write the new centroids

Discussion on MapReduce

- MapReduce is not designed for iterative processing
 - Mappers read the same data again and again
- MapReduce looks too low-level to some people
 Data analysts are traditionally SQL folks ⁽²⁾
- MapReduce looks too high-level to others
 - A lot of MapReduce logic is hard to adapt
 - Example: grouping documents by words

GraphLab

- Open-source parallel machine learning
- Developed at Carnegie Mellon Univ.
- Available at www.graphlab.org

For more information...

Parallel and Distributed Approaches

- Cambridge Univ. Press
- Released in 2011
- 21 chapters
- Covering
 - Platforms
 - Algorithms
 - Learning setups
 - Applications

Learning Multiple Tasks via Knowledge Transfer

Transfer Learning

Idea: Transfer information from one or more source tasks to improve learning on a target task

Plenty of training data for each source task

Transfer Learning

Idea: Transfer information from one or more source tasks to improve learning on a target task

Insufficient training data on the target task

Benefits of Transfer in Learning

- **Primary goal**: learning the target task T_{new} "better" after first learning related source tasks $T_1, ..., T_N$
 - "Better" means some combination of:

Secondary goal: creating chunks of reusable knowledge

Multi-Task Learning

 Idea: Learn all task models simultaneously, sharing knowledge (Caruana 1997; Zhang et al. 2008; Kumar & Daumé 2012)

