Large Scale Learning




Data hypergrowth: an example

e Reuters-21578: about 100000000
10K docs (ModApte)

Bekkerman et al, SIGIR 2001 10000000

e RCV1: about 807K docs

Bekkerman & Scholz, CIKM 2008

1000000

* LinkedIn job title data: 100000
about 100M docs

Bekkerman & Gavish, KDD 2011 10000
2000 2004 2008 2012
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New age of big data

* The world has gone mobile
— 5 billion cellphones produce daily data

* Social networks have gone online
— Twitter produces 200M tweets a day

* Crowdsourcing is the reality

— Labeling of 100,000+ data instances is doable
* Within a week ©
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Size matters

* One thousand data instances

* One million data instances

* One billion data instances

 One trillion data instances

Those are not different numbers,
those are different mindsets ©
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One million data instances

e Currently, the most active zone
* Can be crowdsourced
* Can be processed by a quadratic algorithm

— Once parallelized

e 1M data collection cannot be too diverse

— But can be too homogenous

* Preprocessing / data probing is crucial
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Big dataset cannot be too sparse

1M data instances cannot belong to 1M classes
— Simply because it’s not practical to have 1M classes ©

 Here’s a statistical experiment, in text domain:
— 1M documents
— Each document is 100 words long
— Randomly sampled from a unigram language model

* No stopwords
— 245M pairs have word overlap of 10% or more

e Real-world datasets are denser than random
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One billion data instances

e Web-scale

e Guaranteed to contain data in different formats
— ASCII text, pictures, javascript code, PDF documents...

e Guaranteed to contain (near) duplicates
* Likely to be badly preprocessed ©
* Storage is anissue

Slide by R. Bekkerman, M. Bilenko, J. Langford



One trillion data instances

 Beyond the reach of the modern technology

* Peer-to-peer paradigm is (arguably) the only way to
process the data

* Data privacy / inconsistency / skewness issues
— Can’t be kept in one location
— Is intrinsically hard to sample
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Not enough (clean) training data?

* Use existing labels as a guidance rather than a
directive

— In a semi-supervised clustering framework

 Orlabel more datal ©
— With a little help from the crowd
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Crowdsourcing labeled data

* Crowdsourcing is a tough business ©
— People are not machines

 Any worker who can game the system  will
game the system

* Validation framework + qualification tests are a
must

e Labeling a lot of data can be fairly expensive
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Let’s talk about how we can
learn with datasets this large...



Stochastic Gradient Descent



Consider Learning with Numerous Data

e Logistic regression objective:

J(0) = —— S [yslog ho(x:) + (L — ) log (1 — hp(x:)]

1 . l J
=1 Y
coste (X, Y;)

n

* Fit via gradient descent'

 What is the computational complexity in terms of n?



Gradient Descent
Batch Gradient Descent

Initialize ©
Repeat { o
0j < 0; _agzg(he (Xi) — Yi) Tij for;=0...d
} = — J
0
%J(m

Stochastic Gradient Descent

Initialize O
Randomly shuffle dataset
Repeat{ (Typically 1-10x)
For: = 1...n, do
0j < 0 —a(he (xi) — yi) i forj = 0...d

\

} - 4 -
o0 coste (X;, Y;) .




Batch vs Stochastic GD

Batch GD Stochastic GD
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* Learning rate a is typically held constant

* Can slowly decrease a over time to force 8 to converge:

constant]
e.g., a=

iterationNumber + constant?2
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Graph- and
Data-Parallelism



Based on slide by Andrew Ng

Map-Reduce
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Multi-Core Machines
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Map-Reduce for Batch GD

Split dataset up into chunnks (e.g., with n = 400) to
compute 4, g, - > (ho (%) = i) @i

n

1=1

™ m=

e templ =307 (hg (%) — i)

/

(X17Y1) (X100’Y1oo)
™ w= 200

> _r.-r temp2 = ) i~ (he (Xi) — ¥i) Tij

(X101>Y1o1) (X200>Y200)

B 5 300
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Training set

on example by Andrew Ng



Map-Reduce for Batch GD

Split dataset up into chunks (e.g., with n = 400) to
1 mn
COmpUte 93' — (9j — Oéﬁ Z (h@ (Xz) — yi) Lij

1=1
!_T—~

templ
/
(X1,¥1) -+ (X100:Y100)
'_'" temp2 Combine results
/>
(X101 101) -+ (Xo00:Y200)

0; < 0; — a—Ztempz
(Xa01:¥201) - (X300:¥300) /
—~tempd
(X301:¥301) - (Xa00:¥400) ‘—,,g
\ temp4

Training set

Based on example by Andrew Ng




Parallelizing k-means
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Parallelizing k-means
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Parallelizing k-means
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k-means on MapReduce

 Mappers read data portions and centroids

* Mappers assign data instances to clusters

 Mappers compute new local centroids and local
cluster sizes

 Reducers aggregate local centroids (weighted by
local cluster sizes) into new global centroids

e Reducers write the new centroids
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Discussion on MapReduce

 MapReduce is not designed for iterative processing
— Mappers read the same data again and again

* MapReduce looks too low-level to some people
— Data analysts are traditionally SQL folks ©

* MapReduce looks too high-level to others

— A lot of MapReduce logic is hard to adapt
* Example: grouping documents by words
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Graphlab

e Open-source parallel machine learning GraphLab
* Developed at Carnegie Mellon Univ.
* Available at www.graphlab.org

?ét’;'r: Triangle Counting in Twitter Graph

aC

40MUsers  Total: 34.8 Billion Triangles
1.2B Edges

GraphLab API (C++)

MPI/TCP-IP PThreads Hadoop/HDFS
Hadoop
Linux Cluster Services (Amazon AWS) 59 Minutes, 1 Mac Mini!
GraphLab automatically distributions computation GraphChi
64 Machines, 1024 Cores
1.5 Minutes
Graphlab

Input Output

T

s

computation runs in memory
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For more information...

 Cambridge Univ. Press

SCALING UP e Released in 2011

MACHINE e 21 chapters
L EARNING . Covering

Parallel and Distributed Approaches

— Platforms

— Algorithms

— Learning setups
— Applications
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Learning Multiple Tasks via
Knowledge Transfer



Transfer Learning

Idea: Transfer information from one or more
source tasks to improve learning on a target task

Data Model Step 1
< ~— Source
© ~— _Knowledge -
& H o °
5, Y

NI Do b L

m Plenty of training data for each source task

ric Eaton
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Transfer Learning

Idea: Transfer information from one or more
source tasks to improve learning on a target task

New
Target
Task

m Insufficient training data on the target task

ric Eaton
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Benefits of Transfer in Learning

77

m Primary goal: learning the target task 77 “better

new

after first learning related source tasks 7, ..., 7,

“Better” means some combination of:

More rapid Improved initial Higher achievable
learning performance performance
° _ o _ o | Wwith transfer
o § with transfer o § with transfer o
c — c E— (-
(q0) (q0) (q0)
€ _ € _ € y 4
o) without o) without S / without
T transfer T transfer = transfer
Q Q Q 4
(a (a (a
# Training Examples # Training Examples # Training Examples

Figures adapted from (DARPA/IPTO, 2005)

Secondary goal: creating chunks of reusable knowledge
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Multi-Task Learning

m ldea: Learn all task models simultaneously,

sharing knowledge (Caruana 1997; Zhang et al. 2008;
Kumar & Daumé 2012)

Data Model

rask 1 [l agy 3:@
Task 2 ‘ Multi-Task 10@

. Learner
Tas.kN !‘ s@o
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