‘ Unsupervised Learning:

K-Means &
Gaussian Mixture Models
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Unsupervised Learning

Supervised learning used labeled data pairs (x, )
to learn a function f: X—Y

— But, what if we don’t have labels?

No labels = unsupervised learning

Only some points are labeled = semi-supervised
learning

— Labels may be expensive to obtain, so we only get a few

Clustering is the unsupervised grouping of data
points. It can be used for knowledge discovery.



K-Means Clustering

Some material adapted from slides by Andrew Moore, CMU.

Visit http://www.autonlab.org/tutorials/ for
Andrew’s repository of Data Mining tutorials.
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K-Means Clustering

K-Means ( £, X )
e Randomly choose £ cluster
center locations (centroids)

e Loop until convergence
e Assign each point to the
cluster of the closest centroid

e Re-estimate the cluster
centroids based on the data

assigned to each cluster
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K-Means Clustering

K-Means ( £, X )
e Randomly choose £ cluster
center locations (centroids)

e Loop until convergence
e Assign each point to the
cluster of the closest centroid
e Re-estimate the cluster
centroids based on the data
assigned to each cluster
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K-Means Animation

Example generated by
Andrew Moore using
Dan Pelleg’s supet-
duper fast K-means

system:

Dan Pelleg and Andrew
Moore. Accelerating
Exact k-means
Algorithms with
Geometric Reasoning.

Proc. Conference on
Knowledge Discovery in
Databases 1999.




K-Means Objective Function

* K-means finds a local optimum of the
following objective function:

g winy" 3 x|
1=1 x€S§;
where & = {51, ...,Sk} is a partitioning over

X ={x1,...,X,} s.t. X = Ule S;
and p; = mean(S;)



Problems with K-Means

* Very sensitive to the initial points

— Do many runs of K-Means, each with different initial
centroids

— Seed the centroids using a better method than
randomly choosing the centroids

e e.g., Farthest-first sampling

 Must manually choose &

— Learn the optimal £ for the clustering
* Note that this requires a performance measure



Problems with K-Means

* How do you tell it which clustering you want?
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Constrained clustering techniques (semi-supervised)

Same-cluster constraint — — = Different-cluster constraint
(must-link) (cannot-link)



Gaussian Mixture Models

e Recall the Gaussian distribution:

1)d|2‘ exp (—§(X —p)TE T (x u))

P(x|p,X)=

\/(27T




The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector u; W

o Ui
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The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w, has an
associated mean vector y; \

e Each component generates data
from a Gaussian with mean y;
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:
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The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean y;
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).
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The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean y; X
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

2. Datapoint ~ N(u, o°I')

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 16



The General GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data L Uy
from a Gaussian with mean y;
and covariance matrix %

Assume that each datapoint is |
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

2. Datapoint ~ N(y;, ;)
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Fitting a Gaussian
Mixture Model

(Optional)



Expectation-Maximization for GMMs

Iterate until convergence:
On the t th iteration let our estimates be

Just evaluate a

A= L U8, o(V) .. UE) } Gaussian at x,
E-step: Compute “expected” classes of all datapoints for )e}m
P, 1) Pl : 7 P0o1) el @.0%1)p, 0
5/4) ;p(xk\wj,uj (1.0°1)p, (0

M-step: Estimate p given our data’s class membership distributions
ZP
Z Plw
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e A xk
t+1 =

WX, , A t



E.M. for General GMMs & eimes

P(w;) on t' th
iteration

Iterate. On the t th iteration let our estimates be

A = L), Mot .. WD), 23(1), 205(t) ... 2(1), ps(t), Po(E) ... pL) }

Just evaluate a

E-step: Compute “expected” clusters of all datapoints Gaussian at x,

P(Wi‘xka/lt) ( l(,x t‘)j()w ‘/1 ) p(xk‘wi’ Hi (t)’zi(t))pi (t)
. S ol 2,0.2,0))p, 0

M-step: Estimate M, Z given our data’s class membership distributions

Zp xk,)%)xk ( ) ZP xk,/'l,t)[xk /,tl(t+1)xk /,tl(t+1)]r
1 2\t+l)=

ZP xk, t ZP(W xk?;l’t)

ZP(W xkﬁ/lt)
R % R = #records
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(End optional section)



Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible
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After first
iteration
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After 2nd
iteration
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After 3rd
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 25



After 4th
iteration
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After 5th
iteration
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After 6th
iteration
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After 20th
iteration
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GMM
clustering
of the
assay data

Copyright © 2001, 2004, Andrew W. Moore
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Resulting
Density
Estimator

”
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