Unsupervised Learning:
K-Means & PCA




Unsupervised Learning

Supervised learning used labeled data pairs (x, )
to learn a function f: X—Y

— But, what if we don’t have labels?

No labels = unsupervised learning

Only some points are labeled = semi-supervised
learning

— Labels may be expensive to obtain, so we only get a few

Clustering is the unsupervised grouping of data
points. It can be used for knowledge discovery.



K-Means Clustering

Some material adapted from slides by Andrew Moore, CMU.

Visit http://www.autonlab.org/tutorials/ for
Andrew’s repository of Data Mining tutorials.
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K-Means Clustering

K-Means ( £, X )
e Randomly choose £ cluster
center locations (centroids)

e Loop until convergence
e Assign each point to the
cluster of the closest centroid

e Re-estimate the cluster
centroids based on the data

assigned to each cluster
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K-Means Clustering

K-Means ( £, X )
e Randomly choose £ cluster
center locations (centroids)

e Loop until convergence
e Assign each point to the
cluster of the closest centroid
e Re-estimate the cluster
centroids based on the data
assigned to each cluster
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K-Means Animation

Example generated by
Andrew Moore using
Dan Pelleg’s supet-
duper fast K-means

system:

Dan Pelleg and Andrew
Moore. Accelerating
Exact k-means
Algorithms with
Geometric Reasoning.

Proc. Conference on
Knowledge Discovery in
Databases 1999.




K-Means Objective Function

* K-means finds a local optimum of the
following objective function:

g winy" 3 x|
1=1 x€8;
where & = {51, ...,Sk} is a partitioning over

X ={x1,...,X,} st. X = U,lle S;
and p; = mean(S;)



Problems with K-Means

* Very sensitive to the initial points

— Do many runs of K-Means, each with different initial
centroids

— Seed the centroids using a better method than
randomly choosing the centroids

e e.g., Farthest-first sampling

 Must manually choose &

— Learn the optimal £ for the clustering
* Note that this requires a performance measure



Problems with K-Means

* How do you te

| it which clustering you want?
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Constrained clustering techniques (semi-supervised)

Same-cluster constraint

(must-link)

(cannot-link)

— — — Different-cluster constraint




Gaussian Mixture Models

e Recall the Gaussian distribution:
1

P(x|p,X) =

\/(27T

sy P <—§(X —p)TE T (x - u))

(x)d



The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector u; W

o Ui
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The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w, has an
associated mean vector y; \

e Each component generates data
from a Gaussian with mean y;
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 14



The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean y;
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 15



The GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean y; X
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

2. Datapoint ~ N(u, o°I')
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The General GMM assumption

e There are k components. The
i’ th component is called w,

e Component w; has an
associated mean vector y;

e Each component generates data L Uy
from a Gaussian with mean y;
and covariance matrix %

Assume that each datapoint is |
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

2. Datapoint ~ N(y;, ;)
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Fitting a Gaussian
Mixture Model

(Optional)



Expectation-Maximization for GMMs

Iterate until convergence:
On the t th iteration let our estimates be

Just evaluate a

A= L U8, o(V) .. UE) } Gaussian at x,
E-step: Compute “expected” classes of all datapoints for )e}m
P, 1) Pl : 7 P0o1) el @.0%1)p, 0
5/4) ;p(xk\wj,uj (1.0°1)p, (0

M-step: Estimate p given our data’s class membership distributions
ZP
Z Plw
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e A xk
t+1 =

WX, , A t



E.M. for General GMMs & eimes

P(w;) on t' th
iteration

Iterate. On the t th iteration let our estimates be

A = L), Mot .. WD), 23(1), 205(t) ... 2(1), ps(t), Po(E) ... pL) }

Just evaluate a

E-step: Compute “expected” clusters of all datapoints Gaussian at x,

P(Wi‘xka/lt) ( l(,x t‘)j()w ‘/1 ) p(xk‘wi’ Hi (t)’zi(t))pi (t)
. S ol 2,0.2,0))p, 0

M-step: Estimate M, Z given our data’s class membership distributions

Zp xk,)%)xk ( ) ZP xk,/'l,t)[xk /,tl(t+1)xk /,tl(t+1)]r
1 2\t+l)=

ZP xk, t ZP(W xk?;l’t)

ZP(W xkﬁ/lt)
R % R = #records
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(End optional section)



Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible
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After first
iteration
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After 2nd
iteration
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After 3rd
iteration
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After 4th
iteration
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After 5th
iteration
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After 6th
iteration
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After 20th
iteration
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GMM
clustering
of the
assay data
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Resulting
Density
Estimator

”
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Principal Components Analysis

Based on slides by Barnabas Poczos, UAlberta



How Can We Visualize High
Dimensional Data?

e E.g., 53 blood and urine tests for 65 patients

Difficult to see the correlations between the features...

H-WBC | H-RBC H-Hgb H-Hct H-MCV | H-MCH | H-MCHC

A1 8.0000| 4.8200| 14.1000| 41.0000| 85.0000| 29.0000| 34.0000

A2 7.3000| 5.0200| 14.7000| 43.0000| 86.0000| 29.0000| 34.0000

% A3 4.3000| 4.4800| 14.1000| 41.0000| 91.0000| 32.0000| 35.0000
O A4 7.5000 | 4.4700| 14.9000| 45.0000| 101.0000| 33.0000| 33.0000
S A5 7.3000| 5.5200| 15.4000| 46.0000| 84.0000| 28.0000| 33.0000
*g A6 6.0000 | 4.8600| 16.0000| 47.0000| 97.0000| 33.0000| 34.0000
— A7 7.8000| 4.6800| 14.7000| 43.0000| 92.0000| 31.0000| 34.0000
A8 8.6000 | 4.8200| 15.8000| 42.0000| 88.0000| 33.0000| 37.0000

A9 51000 | 4.7100| 14.0000| 43.0000| 92.0000| 30.0000| 32.0000

Features
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Data Visualization

e |sthere a representation better than the raw features?
e |s it really necessary to show all the 53 dimensions?
e ... what if there are strong correlations between the features?

Could we find the smallest subspace of the 53-D space
that keeps the most information about the original data?

One solution: Principal Component Analysis

35



Principle Component Analysis
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Orthogonal projection of data onto lower-dimension linear
space that...

* maximizes variance of projected data (purple line)
e minimizes mean squared distance between
data point and projections (sum of blue lines)
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The Principal Components

e Vectors originating from the center of mass

e Principal component #1 points in the direction of the
largest variance

e Each subsequent principal component...
e is orthogonal to the previous ones, and

e points in the directions of the largest variance of the
residual subspace

38



2D Gaussian Dataset
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15t PCA axis
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2nd PCA axis
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Dimensionality Reduction

Can ignore the components of lesser significance
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues
are small, you don’t lose much

— choose only the first & eigenvectors, based on
their eigenvalues

— final data set has only £ dimensions
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PCA Algorithm

e Givendata {x,, ..., X, }, compute covariance matrix 2
e X isthe n x ddata matrix
e Compute data mean (average over all rows of X)

e Subtract mean from each row of X (centering the data)
e Compute covariance matrix £ = XX

e PCA basis vectors are given by the eigenvectors of X
e Q,A = numpy.linalg.eig(Z)

e {q, N}, , , arethe eigenvectors/eigenvalues of Z
Az ==

e Larger eigenvalue = more important eigenvectors
44



Columns are ordered by importance!

"01011001...
11011100...
¥ _|00111000...

010101000...

PCA

" 034 0.23
0.04 0.13

0= | —064 093
. —0.20 —0.83

—0.30 —0.23
—0.40 0.21
0.61 0.28

0.78 —0.93




PCA

Keep only first £ columns of ()

"01011001...
11011100...

¥ _ | 00111000... |x
1010101000... |

034 0.23

0.04 0.13

0= | —064 093

020 —0.83

0.30 —0.23
—0. 0.2
0.61

0.78 —0.93
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PCA Visualization of MNIST D
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Challenge: Facial Recognition

e Want to identify specific person, based on facial image
e Robust to glasses, lighting, ...
= Can't just use the given 256 x 256 pixels
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PCA applications -Eigenfaces

* Eigenfaces are

the eigenvectors of

the covariance matrix of

the probability distribution of
the vector space of

human faces

« Eigenfaces are the ‘standardized face
ingredients’ derived from the statistical analysis of

many pictures of human faces

* A human face may be considered to be a
combination of these standard faces




PCA applications -Eigenfaces

To generate a set of eigenfaces:

1. Large set of digitized images of human faces is taken
under the same lighting conditions.

2. The images are normalized to line up the eyes and
mouths.

3. The eigenvectors of the covariance matrix of the
statistical distribution of face image vectors are then
extracted.

4. These eigenvectors are called eigenfaces.



PCA applications -Eigenfaces

* the principal eigenface looks like a bland
androgynous average human face

http://en.wikipedia.org/wiki/Image:Eigenfaces.png



Eigenfaces — Face Recognition

When properly weighted, eigenfaces can be
summed together to create an approximate gray-
scale rendering of a human face.

Remarkably few eigenvector terms are needed
to give a fair likeness of most people's faces

Hence eigenfaces provide a means of applying
data compression to faces for identification
purposes.

Similarly, Expert Object Recognition in Video




Eigenfaces

 Experiment and Results

Data used here are from the ORL database of faces.
Facial images of 16 persons each with 10 views are
used. - Training set contains 16x7 images.

Test set contains 16x3 images.

First three eigenfaces :




the person with the closest average.

Classification Using Nearest Neighbor

Save average coefficients for each person. Classify new face as

Recognition accuracy increases with number of eigenfaces till 15.
Later eigenfaces do not help much with recognition.

accuracy

0.8

0.6

0.4

i
HO00000000000 000000000
-
0 50 100 130

number of eigenfaces

¢ validation set ® training set

Best recognition rates
Training set 99%
Test set 89%




Facial Expression Recognition:
Happiness subspace

59



Disgust subspace

60



Image Compression



Original Image
|'.' “ _ . . :

Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid

View each as a 144-D vector
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Relative rec. error
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PCA compressmn 144D = 60D




PCA compression: 144D = 16D
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PCA compressmn 144D = 6D




6 most important eigenvectors
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PCA compressmn 144D = 3D




3 most important eigenvectors

rrrrrr
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PCA compression: 144D = 1D




60 most important eigenvectors
el L AN
MEESEEENET
MENSRNENEE
NSRS NER
E%MENMEE

Looks like the discrete cosine bases of JPG!...




2D Discrete Cosine Basis
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Noisy iImage
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Denoised image
using 15 PCA components
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