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Computational Learning Theory

Entire subfield devoted to the
mathematical analysis of
machine learning algorithms

Has led to several practical LS -
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* PAC (probably approximately

COrrect) |earning 9 bo()sting COMPUTATIONA 1

* VC (Vapnik—Chervonenkis) theory e e
—> support vector machines

Annual conference: Conference on Learning Theory (COLT)



Computational Learning Theory

Fundamental Question: What general laws constrain
inductive learning?

Seeks theory to relate:

* Probability of successful learning

* Number of training examples

 Complexity of hypothesis space

e Accuracy to which target function is approximated
 Manner in which training examples should be presented

Based on slide by Tom Mitchell



Sample Complexity

Assume that f: X — {0, 1} is the target concept

How many training examples are sufficient to learn the
target concept f ?

1. If learner proposed instances as queries to teacher
* Learner proposes instance x, teacher provides f(x)

2. If teacher (who knows f) provides training examples
* Teacher provides labeled examples in form <z, f(x)>

3. If some random process (e.g., nature) proposes instances
* Instance x generated randomly, teacher provides f(x)

Based on slide by Tom Mitchell



Function Approximation: The Big Picture

Instance Space X = {0, 1}d Hypothesis Space
= (r1,T2,...,2q9) € X H={h|h:X—{0,1}}
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if d = 20, |X| = 220 | = 2% = 22%

* How many labeled instances are needed to determine which of
520
the 27 hypotheses are correct?
— All 229 instances in X’ must be labeled!

* Generalizing beyond the training data (inductive inference) is
impossible unless we add more assumptions (e.g., priors over H)

* There is no free lunch!

Based on example by Tom Mitchell



Bias-Variance Decomposition of Squared Error

e Assumethat ¥y = f(x) +¢€

— Noise € is sampled from a normal distribution with 0
mean and variance 2: € ~ N (0, (72)

— Noise lower-bounds the performance we can achieve

e Recall the following objective function:
1 — . AN 2
J(0) = = (<z>_h ( <z>))
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 We can re-write this as the expected value of the
squared error: E (y — hg (m))2



Bias-Variance Decomposition of Squared Error
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Therefore,
El(y — ho(x))?] = E[(y — f(2))’] + E[(f(x) —
= E[e?’] + E[(f (=) — he(w))]

Aside: A
Definition of Variance

var(z) = E[(z — E[2])’]

This is actually var(e), since mean is 0




Bias-Variance Decomposition of Squared Error
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lllustration of Bias-Variance
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Figures provided by by Max Welling



Illustration of Bias-Variance
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* Training error drives down bias, but ignores variance

Figure provided by by Max Welling
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A Way to Choose the Best Model

* It would be really helpful if we could get a guarantee
of the following form:

testingError < trainingError + f(n, h, p)
n = size of training set
h = measure of the model complexity
p = the probability that this bound fails

We need p to allow for really unlucky test sets

* Then, we could choose the model complexity that
minimizes the bound on the test error

Based on slides by Geoff Hinton



Bas

A Measure of Model Complexity

Suppose that we pick n data points and assign labels
of + or —to them at random

If our model class (e.g., a decision tree, polynomial
regression of a particular degree, etc.) can learn any
association of labels with data, it is too powerful!

More power: can model more complex functions, but may overfit
Less power: won’t overfit, but limited in what it can represent

Idea: characterize the power of a model class by
asking how many data points it can learn perfectly for
all possible assignments of labels

— This number of data points is called the Vapnik-
Chervonenkis (VC) dimension

ed on slides by Geoff Hinton




VC Dimension

* A measure of the power of a particular class of models
— |t does not depend on the choice of training set

e The VC dimension of a model class is the maximum

number of points that can be arranged so that the
class of models can shatter

Definition: a model class can shatter a set of points
az(l), 7 (2) 7w("“)
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if for every possible labeling over those points, there
exists a model in that class that obtains zero training error



An Example of VC Dimension

e Suppose our model class is a hyperplane
e Consider all labelings over three points in R*
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e In R? we can find a plane (i.e., a line) to capture any
labeling of 3 points. A 2D hyperplane shatters 3 points

Based on slides by Geoff Hinton



An Example of VC Dimension

e But, a 2D hyperplane cannot deal with some
labelings of four points:

=)

Connect all pairs of points; Can’t separate points if the pairs
two lines will always cross that cross are the same class

 Therefore, a 2D hyperplane cannot shatter 4 points



Some Examples of VC Dimension

 The VC dimension of a hyperplane in 2D is 3.

— In d dimensions it is d+1

* It’s just a coincidence that the VC dimension of a hyperplane is
almost identical to the # parameters needed to define a hyperplane

* Asine wave has infinite VC dimension and only 2 parameters!

— By choosing the phase & period carefully we can shatter any
random set of 1D data points (except for nasty special cases)
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Based on slides by Geoff Hinton



Assumptions

* Given some model class (which defines the hypothesis space H)

* Assume all training points were drawn i.i.d from
distribution D

* Assume all future test points will be drawn from D

Definitions: 1
R(0) = testError(0) = E {5@ -~ hg(az)]}

! ! . |

: I
“official” notation notation probability of misclassification

/ we’ll use
/ n

1 L .
R°™P(0) = trainError(0) = — Z - |y(z) — he(gy(z))‘

n

Based on Andrew Moore’s tutorial slides
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A Probabilistic Guarantee of
Generalization Performance

Vapnik showed that with probability (1 -7 ):

h(log(2n/h) + 1) — log(n/4)

testError(0) < trainError(0) + \/
n

n = size of training set
h = VC dimension of model class
N = the probability that this bound fails

* So, we should pick the model with the complexity
that minimizes this bound
— Actually, this is only sensible if we think the bound is fairly
tight, which it usually isn’t

— The theory provides insight, but in practice we still need
some magic

Based on slides by Geoff Hinton



Take Away Lesson

Suppose we find a model with a low training error...

* If hypothesis space H is very big (relative to the size
of the training data n), then we most likely got lucky

* If the following holds:
— H is sufficiently constrained in size
— and/or the size of the training data set n is large,

then low training error is likely to be evidence of low
generalization error



